Articles | Volume 13, issue 6
https://doi.org/10.5194/tc-13-1681-2019
https://doi.org/10.5194/tc-13-1681-2019
Research article
 | 
14 Jun 2019
Research article |  | 14 Jun 2019

Sensitivity of a calving glacier to ice–ocean interactions under climate change: new insights from a 3-D full-Stokes model

Joe Todd, Poul Christoffersen, Thomas Zwinger, Peter Råback, and Douglas I. Benn

Related authors

Coupled modelling of subglacial hydrology and calving-front melting at Store Glacier, West Greenland
Samuel J. Cook, Poul Christoffersen, Joe Todd, Donald Slater, and Nolwenn Chauché
The Cryosphere, 14, 905–924, https://doi.org/10.5194/tc-14-905-2020,https://doi.org/10.5194/tc-14-905-2020, 2020
Short summary
Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Tom Cowton, and Joe Todd
The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019,https://doi.org/10.5194/tc-13-2303-2019, 2019
Short summary
Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome
Olivier Passalacqua, Olivier Gagliardini, Frédéric Parrenin, Joe Todd, Fabien Gillet-Chaulet, and Catherine Ritz
Geosci. Model Dev., 9, 2301–2313, https://doi.org/10.5194/gmd-9-2301-2016,https://doi.org/10.5194/gmd-9-2301-2016, 2016
Short summary
UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet
J. C. Ryan, A. L. Hubbard, J. E. Box, J. Todd, P. Christoffersen, J. R. Carr, T. O. Holt, and N. Snooke
The Cryosphere, 9, 1–11, https://doi.org/10.5194/tc-9-1-2015,https://doi.org/10.5194/tc-9-1-2015, 2015
Short summary
Are seasonal calving dynamics forced by buttressing from ice mélange or undercutting by melting? Outcomes from full-Stokes simulations of Store Glacier, West Greenland
J. Todd and P. Christoffersen
The Cryosphere, 8, 2353–2365, https://doi.org/10.5194/tc-8-2353-2014,https://doi.org/10.5194/tc-8-2353-2014, 2014
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ocean Interactions
Local forcing mechanisms challenge parameterizations of ocean thermal forcing for Greenland tidewater glaciers
Alexander O. Hager, David A. Sutherland, and Donald A. Slater
The Cryosphere, 18, 911–932, https://doi.org/10.5194/tc-18-911-2024,https://doi.org/10.5194/tc-18-911-2024, 2024
Short summary
Modelling Antarctic ice shelf basal melt patterns using the one-layer Antarctic model for dynamical downscaling of ice–ocean exchanges (LADDIE v1.0)
Erwin Lambert, André Jüling, Roderik S. W. van de Wal, and Paul R. Holland
The Cryosphere, 17, 3203–3228, https://doi.org/10.5194/tc-17-3203-2023,https://doi.org/10.5194/tc-17-3203-2023, 2023
Short summary
Basal melt rates and ocean circulation under the Ryder Glacier ice tongue and their response to climate warming: a high-resolution modelling study
Jonathan Wiskandt, Inga Monika Koszalka, and Johan Nilsson
The Cryosphere, 17, 2755–2777, https://doi.org/10.5194/tc-17-2755-2023,https://doi.org/10.5194/tc-17-2755-2023, 2023
Short summary
Can rifts alter ocean dynamics beneath ice shelves?
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023,https://doi.org/10.5194/tc-17-2261-2023, 2023
Short summary
Large-eddy simulations of the ice-shelf–ocean boundary layer near the ice front of Nansen Ice Shelf, Antarctica
Ji Sung Na, Taekyun Kim, Emilia Kyung Jin, Seung-Tae Yoon, Won Sang Lee, Sukyoung Yun, and Jiyeon Lee
The Cryosphere, 16, 3451–3468, https://doi.org/10.5194/tc-16-3451-2022,https://doi.org/10.5194/tc-16-3451-2022, 2022
Short summary

Cited articles

Ahlstrøm, A. P., Andersen, S. B., Andersen, M. L., Machguth, H., Nick, F. M., Joughin, I., Reijmer, C. H., van de Wal, R. S. W., Merryman Boncori, J. P., Box, J. E., Citterio, M., van As, D., Fausto, R. S., and Hubbard, A.: Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments, Earth Syst. Sci. Data, 5, 277–287, https://doi.org/10.5194/essd-5-277-2013, 2013. 
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010. 
Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A., and Sole, A.: Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier, Nat. Geosci., 3, 408–411, https://doi.org/10.1038/ngeo863, 2010. 
Benn, D. and Evans, D. J. A.: Glaciers and Glaciation, Routledge, London, 2014. 
Benn, D. I., Hulton, N. R. J., and Mottram, R. H.: “Calving laws”,'sliding laws' and the stability of tidewater glaciers, Ann. Glaciol., 46, 123–130, 2007a. 
Download
Short summary
The Greenland Ice Sheet loses 30 %–60 % of its ice due to iceberg calving. Calving processes and their links to climate are not well understood or incorporated into numerical models of glaciers. Here we use a new 3-D calving model to investigate calving at Store Glacier, West Greenland, and test its sensitivity to increased submarine melting and reduced support from ice mélange (sea ice and icebergs). We find Store remains fairly stable despite these changes, but less so in the southern side.