Articles | Volume 13, issue 6
https://doi.org/10.5194/tc-13-1681-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-1681-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity of a calving glacier to ice–ocean interactions under climate change: new insights from a 3-D full-Stokes model
Scott Polar Research Institute, University of Cambridge, Cambridge, UK
Department of Geography and Sustainable Development, University of St
Andrews, St Andrews, UK
Poul Christoffersen
Scott Polar Research Institute, University of Cambridge, Cambridge, UK
Thomas Zwinger
CSC-IT Center for Science, Espoo, Finland
Peter Råback
CSC-IT Center for Science, Espoo, Finland
Douglas I. Benn
Department of Geography and Sustainable Development, University of St
Andrews, St Andrews, UK
Related authors
No articles found.
Florian Vacek, Faezeh M. Nick, Douglas Benn, Maarten P. A. Zwarts, Walter Immerzeel, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-5733, https://doi.org/10.5194/egusphere-2025-5733, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We studied a unique glacier in South Greenland that ends in both a lake and the ocean. Using satellite data and field work, we found that the two glacier fronts behave very differently even under the same climate. At the lake glacier little melt below water and the presence of lake ice reduce the production of icebergs. The lake glacier experienced a sudden large breakup. Our work suggests that lake and marine glacier fronts must be treated differently in model simulations.
Yiliang Ma, Liyun Zhao, Rupert Gladstone, Thomas Zwinger, Michael Wolovick, Junshun Wang, and John C. Moore
The Cryosphere, 19, 6187–6205, https://doi.org/10.5194/tc-19-6187-2025, https://doi.org/10.5194/tc-19-6187-2025, 2025
Short summary
Short summary
Totten Glacier in Antarctica holds a sea level potential of 3.85 m. Basal sliding and sub-shelf melt rate have an important impact on ice sheet dynamics. We simulate the evolution of Totten Glacier using an ice flow model with different basal sliding parameterizations and sub-shelf melt rates to quantify their effect on the projections. We found that the modelled glacier retreat and mass loss are sensitive to the choice of basal sliding parameterizations and maximal sub-shelf melt rate.
A. Clara J. Henry, Thomas Zwinger, and Josefin Ahlkrona
EGUsphere, https://doi.org/10.5194/egusphere-2025-4192, https://doi.org/10.5194/egusphere-2025-4192, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
To overcome time-step restrictions, we implement the Free-Surface Stabilisation Algorithm (FSSA) at the ice-ocean interface in Stokes ice-sheet simulations. In 2D experiments, a time step of 10 years is generally numerically stable and accurate, whereas a time step of 50 years is stable, but cannot fully capture grounding-line dynamics. Implementation at the ice-ocean interface increases the applicability of Stokes models and motivates future coupling with adaptive time-stepping schemes.
Johanna Beckmann, Ronja Reese, Felicity S. McCormack, Sue Cook, Lawrence Bird, Dawid Gwyther, Daniel Richards, Matthias Scheiter, Yu Wang, Hélène Seroussi, Ayako Abe‐Ouchi, Torsten Albrecht, Jorge Alvarez‐Solas, Xylar S. Asay‐Davis, Jean‐Baptiste Barre, Constantijn J. Berends, Jorge Bernales, Javier Blasco, Justine Caillet, David M. Chandler, Violaine Coulon, Richard Cullather, Christophe Dumas, Benjamin K. Galton‐Fenzi, Julius Garbe, Fabien Gillet‐Chaulet, Rupert Gladstone, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, G. Hilmar Gudmundsson, Holly Kyeore Han, Trevor R. Hillebrand, Matthew J. Hoffman, Philippe Huybrechts, Nicolas C. Jourdain, Ann Kristin Klose, Petra M. Langebroek, Gunter R. Leguy, William H. Lipscomb, Daniel P. Lowry, Pierre Mathiot, Marisa Montoya, Mathieu Morlighem, Sophie Nowicki, Frank Pattyn, Antony J. Payne, Tyler Pelle, Aurélien Quiquet, Alexander Robinson, Leopekka Saraste, Erika G. Simon, Sainan Sun, Jake P. Twarog, Luke D. Trusel, Benoit Urruty, Jonas Van Breedam, Roderik S. W. van de Wal, Chen Zhao, and Thomas Zwinger
EGUsphere, https://doi.org/10.5194/egusphere-2025-4069, https://doi.org/10.5194/egusphere-2025-4069, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Antarctica holds enough ice to raise sea levels by many meters, but its future is uncertain. Warm ocean water melts ice shelves from below, letting inland ice flow faster into the sea. By 2300, Antarctica could add 0.6–4.4 m to sea levels. Our study identifies two key factors—how strongly shelves melt and how the ice responds. These explain much of the range, and refining them in models may improve future predictions.
Cyrille Mosbeux, Peter Råback, Adrien Gilbert, Julien Brondex, Fabien Gillet-Chaulet, Nicolas C. Jourdain, Mondher Chekki, Olivier Gagliardini, and Gaël Durand
EGUsphere, https://doi.org/10.5194/egusphere-2025-3039, https://doi.org/10.5194/egusphere-2025-3039, 2025
Short summary
Short summary
Transport processes like rocks carried by ice flow and damage evolution – a proxy for crevasses – are key in ice sheet modeling and should occur without diffusion. Yet, standard numerical methods often blur these features. We explore a particle-based Semi-Lagrangian approach, comparing it to a Discontinuous Galerkin method, and show it can accurately simulate such transport when run at high enough resolution.
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024, https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Short summary
Our research delves into the future evolution of Antarctica's Wilkes Subglacial Basin (WSB) and its potential contribution to sea level rise, focusing on how basal melt is implemented at the grounding line in ice flow models. Our findings suggest that these implementation methods can significantly impact the magnitude of future ice loss projections. Under a high-emission scenario, the WSB ice sheet could undergo massive and rapid retreat between 2200 and 2300.
André Löfgren, Thomas Zwinger, Peter Råback, Christian Helanow, and Josefin Ahlkrona
The Cryosphere, 18, 3453–3470, https://doi.org/10.5194/tc-18-3453-2024, https://doi.org/10.5194/tc-18-3453-2024, 2024
Short summary
Short summary
This paper investigates a stabilization method for free-surface flows in the context of glacier simulations. Previous applications of the stabilization on ice flows have only considered simple ice-sheet benchmark problems; in particular the method had not been tested on real-world glacier domains. This work addresses this shortcoming by demonstrating that the stabilization works well also in this case and increases stability and robustness without negatively impacting computation times.
Iain Wheel, Douglas I. Benn, Anna J. Crawford, Joe Todd, and Thomas Zwinger
Geosci. Model Dev., 17, 5759–5777, https://doi.org/10.5194/gmd-17-5759-2024, https://doi.org/10.5194/gmd-17-5759-2024, 2024
Short summary
Short summary
Calving, the detachment of large icebergs from glaciers, is one of the largest uncertainties in future sea level rise projections. This process is poorly understood, and there is an absence of detailed models capable of simulating calving. A new 3D calving model has been developed to better understand calving at glaciers where detailed modelling was previously limited. Importantly, the new model is very flexible. By allowing for unrestricted calving geometries, it can be applied at any location.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Denis Cohen, Guillaume Jouvet, Thomas Zwinger, Angela Landgraf, and Urs H. Fischer
E&G Quaternary Sci. J., 72, 189–201, https://doi.org/10.5194/egqsj-72-189-2023, https://doi.org/10.5194/egqsj-72-189-2023, 2023
Short summary
Short summary
During glacial times in Switzerland, glaciers of the Alps excavated valleys in low-lying regions that were later filled with sediment or water. How glaciers eroded these valleys is not well understood because erosion occurred near ice margins where ice moved slowly and was present for short times. Erosion is linked to the speed of ice and to water flowing under it. Here we present a model that estimates the location of water channels beneath the ice and links these locations to zones of erosion.
Maryam Zarrinderakht, Christian Schoof, and Thomas Zwinger
EGUsphere, https://doi.org/10.5194/egusphere-2023-807, https://doi.org/10.5194/egusphere-2023-807, 2023
Preprint withdrawn
Short summary
Short summary
We used a model to study how crevasses propagate in ice shelves. Our model combines a viscous model and a fracture mechanics model. We studied periodic crevasses on an ice shelf being stretched. We show that existing models based only on stress cannot fully explain how crevasses grow and lead to iceberg calving. This model can be a useful tool to train a low-dimensional representation calving law for an ice sheet model.
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022, https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
Short summary
Thwaites Glacier (TG), in West Antarctica, is potentially unstable and may contribute significantly to sea-level rise as global warming continues. Using satellite data, we show that Thwaites Eastern Ice Shelf, the largest remaining floating extension of TG, has started to accelerate as it fragments along a shear zone. Computer modelling does not indicate that fragmentation will lead to imminent glacier collapse, but it is clear that major, rapid, and unpredictable changes are underway.
Gregoire Guillet, Owen King, Mingyang Lv, Sajid Ghuffar, Douglas Benn, Duncan Quincey, and Tobias Bolch
The Cryosphere, 16, 603–623, https://doi.org/10.5194/tc-16-603-2022, https://doi.org/10.5194/tc-16-603-2022, 2022
Short summary
Short summary
Surging glaciers show cyclical changes in flow behavior – between slow and fast flow – and can have drastic impacts on settlements in their vicinity.
One of the clusters of surging glaciers worldwide is High Mountain Asia (HMA).
We present an inventory of surging glaciers in HMA, identified from satellite imagery. We show that the number of surging glaciers was underestimated and that they represent 20 % of the area covered by glaciers in HMA, before discussing new physics for glacier surges.
Jan Bouke Pronk, Tobias Bolch, Owen King, Bert Wouters, and Douglas I. Benn
The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021, https://doi.org/10.5194/tc-15-5577-2021, 2021
Short summary
Short summary
About 10 % of Himalayan glaciers flow directly into lakes. This study finds, using satellite imagery, that such glaciers show higher flow velocities than glaciers without ice–lake contact. In particular near the glacier tongue the impact of a lake on the glacier flow can be dramatic. The development of current and new meltwater bodies will influence the flow of an increasing number of Himalayan glaciers in the future, a scenario not currently considered in regional ice loss projections.
Tun Jan Young, Carlos Martín, Poul Christoffersen, Dustin M. Schroeder, Slawek M. Tulaczyk, and Eliza J. Dawson
The Cryosphere, 15, 4117–4133, https://doi.org/10.5194/tc-15-4117-2021, https://doi.org/10.5194/tc-15-4117-2021, 2021
Short summary
Short summary
If the molecules that make up ice are oriented in specific ways, the ice becomes softer and enhances flow. We use radar to measure the orientation of ice molecules in the top 1400 m of the Western Antarctic Ice Sheet Divide. Our results match those from an ice core extracted 10 years ago and conclude that the ice flow has not changed direction for the last 6700 years. Our methods are straightforward and accurate and can be applied in places across ice sheets unsuitable for ice coring.
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Susheel Adusumilli, and Anna Crawford
The Cryosphere, 15, 3317–3328, https://doi.org/10.5194/tc-15-3317-2021, https://doi.org/10.5194/tc-15-3317-2021, 2021
Short summary
Short summary
The stability of the West Antarctic ice sheet depends on the behaviour of the fast-flowing glaciers, such as Thwaites, that connect it to the ocean. Here we show that a large ocean-melted cavity beneath Thwaites Glacier has remained stable since it first formed, implying that, in line with current theory, basal melt is now concentrated close to where the ice first goes afloat. We also show that Thwaites Glacier continues to thin and to speed up and that continued retreat is therefore likely.
Andreas Kellerer-Pirklbauer, Michael Avian, Douglas I. Benn, Felix Bernsteiner, Philipp Krisch, and Christian Ziesler
The Cryosphere, 15, 1237–1258, https://doi.org/10.5194/tc-15-1237-2021, https://doi.org/10.5194/tc-15-1237-2021, 2021
Short summary
Short summary
Present climate warming leads to glacier recession and formation of lakes. We studied the nature and rate of lake evolution in the period 1998–2019 at Pasterze Glacier, Austria. We detected for instance several large-scale and rapidly occurring ice-breakup events from below the water level. This process, previously not reported from the European Alps, might play an important role at alpine glaciers in the future as many glaciers are expected to recede into valley basins allowing lake formation.
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021, https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Cited articles
Ahlstrøm, A. P., Andersen, S. B., Andersen, M. L., Machguth, H., Nick, F.
M., Joughin, I., Reijmer, C. H., van de Wal, R. S. W., Merryman Boncori, J.
P., Box, J. E., Citterio, M., van As, D., Fausto, R. S., and Hubbard, A.:
Seasonal velocities of eight major marine-terminating outlet glaciers of the
Greenland ice sheet from continuous in situ GPS instruments, Earth Syst. Sci.
Data, 5, 277–287, https://doi.org/10.5194/essd-5-277-2013, 2013.
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P.,
and Motyka, R. J.: Ice mélange dynamics and implications for terminus
stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005,
https://doi.org/10.1029/2009JF001405, 2010.
Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A., and Sole,
A.: Seasonal evolution of subglacial drainage and acceleration in a Greenland
outlet glacier, Nat. Geosci., 3, 408–411, https://doi.org/10.1038/ngeo863, 2010.
Benn, D. and Evans, D. J. A.: Glaciers and Glaciation, Routledge, London, 2014.
Benn, D. I., Hulton, N. R. J., and Mottram, R. H.: “Calving laws”,'sliding
laws' and the stability of tidewater glaciers, Ann. Glaciol., 46, 123–130,
2007a.
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the
dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, 2007b.
Bevan, S. L., Luckman, A. J., Benn, D. I., Cowton, T., and Todd, J.: Warming
of SE Greenland shelf waters in 2016 primes large glacier for runaway
retreat, The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-260, in review, 2019.
Carr, J. R., Vieli, A., and Stokes, C.: Influence of sea ice decline,
atmospheric warming, and glacier width on marine-terminating outlet glacier
behavior in northwest Greenland at seasonal to interannual timescales, J.
Geophys. Res.-Earth, 118, 1210–1226, https://doi.org/10.1002/jgrf.20088, 2013.
Catania, G. A., Stearns, L. A., Sutherland, D. A., Fried, M. J.,
Bartholomaus, T. C., Morlighem, M., Shroyer, E., and Nash, J.: Geometric
Controls on Tidewater Glacier Retreat in Central Western Greenland, J.
Geophys. Res.-Earth, 123, 2024–2038, https://doi.org/10.1029/2017JF004499, 2018.
Chauché, N.: Glacier-Ocean interaction at Store Glacier (West Greenland),
PhD thesis, Aberystwyth University, Aberystwyth, 2016.
Chauché, N., Hubbard, A., Gascard, J.-C., Box, J. E., Bates, R., Koppes,
M., Sole, A., Christoffersen, P., and Patton, H.: Ice–ocean interaction and
calving front morphology at two west Greenland tidewater outlet glaciers, The
Cryosphere, 8, 1457–1468, https://doi.org/10.5194/tc-8-1457-2014, 2014.
Christoffersen, P., Mugford, R. I., Heywood, K. J., Joughin, I., Dowdeswell,
J. A., Syvitski, J. P. M., Luckman, A., and Benham, T. J.: Warming of waters
in an East Greenland fjord prior to glacier retreat: mechanisms and
connection to large-scale atmospheric conditions, The Cryosphere, 5,
701–714, https://doi.org/10.5194/tc-5-701-2011, 2011.
Christoffersen, P., O'Leary, M., Van Angelen, J. H., and Van Den Broeke, M.: Partitioning effects from ocean and atmosphere on the calving stability of Kangerdlugssuaq Glacier, East Greenland, Ann. Glaciol., 53, 249–256, https://doi.org/10.3189/2012AoG60A087, 2012.
Chudley, T. R., Christoffersen, P., Doyle, S. H., Abellan, A., and Snooke,
N.: High-accuracy UAV photogrammetry of ice sheet dynamics with no ground
control, The Cryosphere, 13, 955–968, https://doi.org/10.5194/tc-13-955-2019, 2019.
Cook, S., Rutt, I. C., Murray, T., Luckman, A., Zwinger, T., Selmes, N.,
Goldsack, A., and James, T. D.: Modelling environmental influences on calving
at Helheim Glacier in eastern Greenland, The Cryosphere, 8, 827–841,
https://doi.org/10.5194/tc-8-827-2014, 2014.
Cuffey, K. M. and Paterson, W. S. B.:
The Physics of Glaciers, 4th edn., Butterworth-Heinemann/Elsevier, Burlington, MA, 2010.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M.,
Ligtenberg, S. R. M., van den Broeke, M. R., and Moholdt, G.: Calving fluxes
and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92, 2013.
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and
van den Broeke, M. R.: An Improved Mass Budget for the Greenland Ice Sheet,
Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014.
Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz,
C., Zwinger, T., Greve, R., and Vaughan, D. G.: Greenland ice sheet
contribution to sea-level rise from a new-generation ice-sheet model, The
Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, 2012.
Goelzer, H., Huybrechts, P., Fürst, J. J., Nick, F. M., Andersen, M. L.,
Edwards, T. L., Fettweis, X., Payne, A. J., and Shannon, S.: Sensitivity of
Greenland ice sheet projections to model formulations, J. Glaciol., 59,
733–749, https://doi.org/10.3189/2013JoG12J182, 2013.
Greve, R.: Relation of measured basal temperatures and the spatial
distribution of the geothermal heat flux for the Greenland ice sheet, Ann.
Glaciol., 42, 424–432, https://doi.org/10.3189/172756405781812510, 2005.
Holland, D. M., Thomas, R. H., de Young, B., Ribergaard, M. H., and Lyberth,
B.: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean
waters, Nat. Geosci., 1, 659–664, https://doi.org/10.1038/ngeo316, 2008.
Howat, I., Joughin, I., Tulaczyk, S., and Gogineni, S.: Rapid retreat and
acceleration of Helheim Glacier, east Greenland, Geophys. Res. Lett., 32,
L22502, https://doi.org/10.1029/2005GL024737, 2005.
Howat, I. M., Box, J. E., Ahn, Y., Herrington, A., and McFadden, E. M.:
Seasonal variability in the dynamics of marine-terminating outlet glaciers in
Greenland, J. Glaciol., 56, 601–613, 2010.
James, T. D., Murray, T., Selmes, N., Scharrer, K., and O'Leary, M.: Buoyant
flexure and basal crevassing in dynamic mass loss at Helheim Glacier, Nat.
Geosci., 7, 593–596, https://doi.org/10.1038/ngeo2204, 2014.
Jenkins, A.: Convection-Driven Melting near the Grounding Lines of Ice
Shelves and Tidewater Glaciers, J. Phys. Oceanogr., 41, 2279–2294,
https://doi.org/10.1175/JPO-D-11-03.1, 2011.
Kimura, S., Holland, P. R., Jenkins, A., and Piggott, M.: The Effect of
Meltwater Plumes on the Melting of a Vertical Glacier Face, J. Phys.
Oceanogr., 44, 3099–3117, https://doi.org/10.1175/JPO-D-13-0219.1, 2014.
Krug, J., Weiss, J., Gagliardini, O., and Durand, G.: Combining damage and
fracture mechanics to model calving, The Cryosphere, 8, 2101–2117,
https://doi.org/10.5194/tc-8-2101-2014, 2014.
Krug, J., Durand, G., Gagliardini, O., and Weiss, J.: Modelling the impact of
submarine frontal melting and ice mélange on glacier dynamics, The
Cryosphere, 9, 989–1003, https://doi.org/10.5194/tc-9-989-2015, 2015.
Luckman, A., Benn, D. I., Cottier, F., Bevan, S., Nilsen, F., and Inall, M.:
Calving rates at tidewater glaciers vary strongly with ocean temperature,
Nat. Commun., 6, 8566, https://doi.org/10.1038/ncomms9566, 2015.
McFadden, E. M., Howat, I. M., Joughin, I., Smith, B. E., and Ahn, Y.:
Changes in the dynamics of marine terminating outlet glaciers in west
Greenland (2000–2009), J. Geophys. Res., 116, F02022,
https://doi.org/10.1029/2010JF001757, 2011.
Medrzycka, D., Benn, D. I., Box, J. E., Copland, L., and Balog, J.: Calving
Behavior at Rink Isbræ, West Greenland, from Time-Lapse Photos, Arct.
Antarct. Alp. Res., 48, 263–277, https://doi.org/10.1657/AAAR0015-059, 2016.
Moon, T. and Joughin, I.: Changes in ice front position on Greenland's outlet
glaciers from 1992 to 2007, J. Geophys. Res., 113, F02022,
https://doi.org/10.1029/2007JF000927, 2008.
Moon, T., Joughin, I., and Smith, B.: Seasonal to multiyear variability of
glacier surface velocity, terminus position, and sea ice/ice mélange in
northwest Greenland, J. Geophys. Res.-Earth, 120, 818–833,
https://doi.org/10.1002/2015JF003494, 2015.
Morlighem, M., Bondzio, J., Seroussi, H., Rignot, E., Larour, E., Humbert,
A., and Rebuffi, S.: Modeling of Store Gletscher's calving dynamics, West
Greenland, in response to ocean thermal forcing, Geophys. Res. Lett., 43,
2659–2666, 2016.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J.
L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I.,
Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K.
K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y., Cofaigh, C.
Ó., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P.,
Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen,
K. B.: BedMachine v3: Complete bed topography and ocean bathymetry mapping of
Greenland from multi-beam echo sounding combined with mass conservation,
Geophys. Res. Lett., 44, 11051–11061, https://doi.org/10.1002/2017GL074954, 2017.
Murray, T., Selmes, N., James, T. D., Edwards, S., Martin, I., O'Farrell, T.,
Aspey, R., Rutt, I., Nettles, M., and Baugé, T.: Dynamics of glacier
calving at the ungrounded margin of Helheim Glacier, southeast Greenland, J.
Geophys. Res.-Earth, 120, 964–982, https://doi.org/10.1002/2015JF003531, 2015.
Nick, F. M., Van der Veen, C. J., Vieli, A., and Benn, D. I.: A physically
based calving model applied to marine outlet glaciers and implications for
the glacier dynamics, J. Glaciol., 56, 781–794, 2010.
Nick, F. M., Vieli, A., Andersen, M. L., Joughin, I., Payne, A., Edwards, T.
L., Pattyn, F., and Van De Wal, R. S. W.: Future sea-level rise from
Greenland's main outlet glaciers in a warming climate, Nature, 497, 235–238,
https://doi.org/10.1038/nature12068, 2013.
Noël, B., van de Berg, W. J., van Meijgaard, E., Kuipers Munneke, P., van
de Wal, R. S. W., and van den Broeke, M. R.: Evaluation of the updated
regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice
Sheet, The Cryosphere, 9, 1831–1844, https://doi.org/10.5194/tc-9-1831-2015, 2015.
Nye, J. F.: The Distribution of Stress and Velocity in Glaciers and
Ice-Sheets, P. Roy. Soc. A Math. Phy., 239, 113–133,
https://doi.org/10.1098/rspa.1957.0026, 1957.
O'Leary, M. and Christoffersen, P.: Calving on tidewater glaciers amplified
by submarine frontal melting, The Cryosphere, 7, 119–128,
https://doi.org/10.5194/tc-7-119-2013, 2013.
Peters, I. R., Amundson, J. M., Cassotto, R., Fahnestock, M., Darnell, K. N.,
Truffer, M., and Zhang, W. W.: Dynamic jamming of iceberg-choked fjords,
Geophys. Res. Lett., 42, 1122–1129, https://doi.org/10.1002/2014GL062715, 2015.
Post, A., O'Neel, S., Motyka, R. J., and Streveler, G.: A complex
relationship between calving glaciers and climate, Eos T. Am. Geophys. Un.,
92, 305–312, https://doi.org/10.1029/2011EO370001, 2011.
Rignot, E. and Kanagaratnam, P.: Changes in the velocity structure of the
Greenland Ice Sheet, Science, 311, 986–990, https://doi.org/10.1126/science.1121381,
2006.
Rignot, E., Koppes, M., and Velicogna, I.: Rapid submarine melting of the
calving faces of West Greenland glaciers, Nat. Geosci., 3, 187–191,
https://doi.org/10.1038/ngeo765, 2010.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-shelf melting
around antarctica, Science, 341, 266–270, https://doi.org/10.1126/science.1235798,
2013.
Rignot, E., Fenty, I., Xu, Y., Cai, C., and Kemp, C.: Undercutting of
marine-terminating glaciers in West Greenland, Geophys. Res. Lett., 42,
5909–5917, https://doi.org/10.1002/2015GL064236, 2015.
Robel, A. A.: Thinning sea ice weakens buttressing force of iceberg
mélange and promotes calving, Nat. Commun., 8, 14596,
https://doi.org/10.1038/ncomms14596, 2017.
Schild, K. M. and Hamilton, G. S.: Seasonal variations of outlet glacier
terminus position in Greenland, J. Glaciol., 59, 759–770,
https://doi.org/10.3189/2013JoG12J238, 2013.
Seale, A., Christoffersen, P., Mugford, R. I., and O'Leary, M.: Ocean forcing
of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified
by automatic satellite monitoring of eastern outlet glaciers, J. Geophys.
Res., 116, F03013, https://doi.org/10.1029/2010JF001847, 2011.
Slater, D. A., Nienow, P. W., Cowton, T. R., Goldberg, D. N., and Sole, A.
J.: Effect of near-terminus subglacial hydrology on tidewater glacier
submarine melt rates, Geophys. Res. Lett., 42, 2861–2868,
https://doi.org/10.1002/2014GL062494, 2015.
Slater, D. A., Goldberg, D. N., Nienow, P. W., and Cowton, T. R.: Scalings
for Submarine Melting at Tidewater Glaciers from Buoyant Plume Theory, J.
Phys. Oceanogr., 46, 1839–1855, https://doi.org/10.1175/JPO-D-15-0132.1, 2016.
Sohn, H.-G., Jezek, K. C., and Van der Veen, C. J.: Jakobshavn Glacier, west
Greenland: 30 years of spaceborne observations, Geophys. Res. Lett., 25,
2699–2702, https://doi.org/10.1029/98GL01973, 1998.
Straneo, F., Hamilton, G. S., Sutherland, D. A., Stearns, L. A., Davidson,
F., Hammill, M. O., Stenson, G. B., and Rosing-Asvid, A.: Rapid circulation
of warm subtropical waters in a major glacial fjord in East Greenland, Nat.
Geosci., 3, 182–186, https://doi.org/10.1038/ngeo764, 2010.
Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., and
Huybrechts, P.: Melt-induced speed-up of Greenland ice sheet offset by
efficient subglacial drainage, Nature, 469, 521–524,
https://doi.org/10.1038/nature09740, 2011.
Toberg, N., Ryan, J., Christoffersen, C., Snooke, N., Todd, J., and Hubbard,
A.: Estimating ice-melange properties with repeat UAV surveys over Store
Glacier, West Greenland, EGU General Assembly 2016, Vienna Austria,
17–22 April 2016, EPSC2016-16354, 2016.
Todd, J. and Christoffersen, P.: Are seasonal calving dynamics forced by
buttressing from ice mélange or undercutting by melting? Outcomes from
full-Stokes simulations of Store Glacier, West Greenland, The Cryosphere, 8,
2353–2365, https://doi.org/10.5194/tc-8-2353-2014, 2014.
Todd, J., Christoffersen, P., Zwinger, T., Råback, P., Chauché, N.,
Benn, D., Luckman, A., Ryan, J., Toberg, N., Slater, D., and Hubbard, A.: A
Full-Stokes 3-D Calving Model Applied to a Large Greenlandic Glacier, J.
Geophys. Res.-Earth, 123, 410–432, https://doi.org/10.1002/2017JF004349, 2018.
van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de
Berg, W. J., van Meijgaard, E., Velicogna, I., and Wouters, B.: Partitioning
recent Greenland mass loss, Science, 326, 984–986,
https://doi.org/10.1126/science.1178176, 2009.
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P.,
Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.:
On the recent contribution of the Greenland ice sheet to sea level change,
The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016.
Van der Veen, C. J.: Tidewater calving, J. Glaciol., 42, 375–385, 1996.
Vieli, A. and Nick, F.: Understanding and modelling rapid dynamic changes of
tidewater outlet glaciers: issues and implications, Surv. Geophys., 32,
437–458, 2011.
Vieli, A., Funk, M., and Blatter, H.: Tidewater glaciers: Frontal flow
acceleration and basal sliding, Ann. Glaciol., 31, 217–221, 2000.
Walter, J. I., Jason, E., Tulaczyk, S., Brodsky, E. E., Howat, I. M., Yushin,
A. H. N., and Brown, A.: Oceanic mechanical forcing of a marine-terminating
Greenland glacier, Ann. Glaciol., 53, 181–192, 2012.
Warren, C. R. and Glasser, N. F.: Contrasting Response of South Greenland
Glaciers to Recent Climatic Change, Arctic Alpine Res., 24, 124–132,
1992.
Weertman, J.: Can a water-filled crevasse reach the bottom surface of a glacier?, Union Géodésique et Géophysique Internationale, Association Internationale d'Hydrologie Scientifique, Commission de Neiges et Glaces, Symposium on the Hydrology of Glaciers, Cambridge, 7-–13 September 1969, 139–-145, 1973.
Xu, Y., Rignot, E., Menemenlis, D., and Koppes, M.: Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge, Ann. Glaciol., 53, 229–234, https://doi.org/10.3189/2012AoG60A139, 2012.
Xu, Y., Rignot, E., Fenty, I., Menemenlis, D., and Flexas, M. M.: Subaqueous
melting of Store Glacier, west Greenland from three-dimensional,
high-resolution numerical modeling and ocean observations, Geophys. Res.
Lett., 40, 4648–4653, https://doi.org/10.1002/grl.50825, 2013.
Short summary
The Greenland Ice Sheet loses 30 %–60 % of its ice due to iceberg calving. Calving processes and their links to climate are not well understood or incorporated into numerical models of glaciers. Here we use a new 3-D calving model to investigate calving at Store Glacier, West Greenland, and test its sensitivity to increased submarine melting and reduced support from ice mélange (sea ice and icebergs). We find Store remains fairly stable despite these changes, but less so in the southern side.
The Greenland Ice Sheet loses 30 %–60 % of its ice due to iceberg calving. Calving processes and...