Articles | Volume 12, issue 3
https://doi.org/10.5194/tc-12-935-2018
https://doi.org/10.5194/tc-12-935-2018
Research article
 | 
16 Mar 2018
Research article |  | 16 Mar 2018

Impact of rheology on probabilistic forecasts of sea ice trajectories: application for search and rescue operations in the Arctic

Matthias Rabatel, Pierre Rampal, Alberto Carrassi, Laurent Bertino, and Christopher K. R. T. Jones

Related authors

Modeling the contribution of leads to sea spray aerosol in the high Arctic
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024,https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Data-driven emulation of melt ponds on Arctic sea ice
Simon Driscoll, Alberto Carrassi, Julien Brajard, Laurent Bertino, Einar Ólason, Marc Bocquet, and Amos Lawless
EGUsphere, https://doi.org/10.5194/egusphere-2024-2476,https://doi.org/10.5194/egusphere-2024-2476, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Data assimilation schemes for ocean forecasting: state of the art
Matthew J. Martin, Ibrahim Hoteit, Laurent Bertino, and Andrew M. Moore
State Planet Discuss., https://doi.org/10.5194/sp-2024-20,https://doi.org/10.5194/sp-2024-20, 2024
Revised manuscript under review for SP
Short summary
Numerical Models for Monitoring and Forecasting Sea Ice: a short description of present status
Laurent Bertino, Patrick Heimbach, Ed Blockley, and Einar Ólason
State Planet Discuss., https://doi.org/10.5194/sp-2024-24,https://doi.org/10.5194/sp-2024-24, 2024
Revised manuscript under review for SP
Short summary
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024,https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary

Related subject area

Sea Ice
Seasonal evolution of the sea ice floe size distribution in the Beaufort Sea from 2 decades of MODIS data
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024,https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
National Weather Service Alaska Sea Ice Program: Gridded ice concentration maps for the Alaskan Arctic
Astrid Pacini, Michael Steele, and Mary-Beth Schreck
EGUsphere, https://doi.org/10.5194/egusphere-2024-1813,https://doi.org/10.5194/egusphere-2024-1813, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024,https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary

Cited articles

Abi-Zeid, I. and Frost, J. R.: SARPlan: A decision support system for Canadian Search and Rescue Operations, Eur. J. Oper. Res., 162, 630–653, 2005.
Bertino, L., Bergh, J., and Xie, J.: Evaluation of uncertainties by ensemble simulation, Tech. Rep. Tech. Rep. 355, NERSC, ART JIP Deliverable 3.3, Bergen, Norway, 2015.
Bonan, B., Nichols, N. K., Baines, M. J., and Partridge, D.: Data assimilation for moving mesh methods with an application to ice sheet modelling, Nonlin. Processes Geophys., 24, 515–534, https://doi.org/10.5194/npg-24-515-2017, 2017.
Bouillon, S. and Rampal, P.: Presentation of the dynamical core of neXtSIM, a new sea ice model, Ocean Model., 91, 23–37, 2015a.
Bouillon, S. and Rampal, P.: On producing sea ice deformation data sets from SAR-derived sea ice motion, The Cryosphere, 9, 663–673, https://doi.org/10.5194/tc-9-663-2015, 2015b.
Download
Short summary
Large deviations still exist between sea ice forecasts and observations because of both missing physics in models and uncertainties on model inputs. We investigate how the new sea ice model neXtSIM is sensitive to uncertainties in the winds. We highlight and quantify the role of the internal forces in the ice on this sensitivity and show that neXtSIM is better at predicting sea ice drift than a free-drift (without internal forces) ice model and is a skilful tool for search and rescue operations.