Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.713 IF 4.713
  • IF 5-year value: 4.927 IF 5-year
    4.927
  • CiteScore value: 8.0 CiteScore
    8.0
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 2.353 SJR 2.353
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 53 h5-index 53
Volume 12, issue 3
The Cryosphere, 12, 935–953, 2018
https://doi.org/10.5194/tc-12-935-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 12, 935–953, 2018
https://doi.org/10.5194/tc-12-935-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 16 Mar 2018

Research article | 16 Mar 2018

Impact of rheology on probabilistic forecasts of sea ice trajectories: application for search and rescue operations in the Arctic

Matthias Rabatel et al.

Related authors

The impact of atmospheric and oceanic circulations on the Greenland Sea iceconcentration
Sourav Chatterjee, Roshin P. Raj, Laurent Bertino, Sebastian H. Merlind, Nuncio Murukesh, and Muthalagu Ravichandran
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-127,https://doi.org/10.5194/tc-2020-127, 2020
Preprint under review for TC
Short summary
On the numerical integration of the Lorenz-96 model, with scalar additive noise, for benchmark twin experiments
Colin Grudzien, Marc Bocquet, and Alberto Carrassi
Geosci. Model Dev., 13, 1903–1924, https://doi.org/10.5194/gmd-13-1903-2020,https://doi.org/10.5194/gmd-13-1903-2020, 2020
Short summary
On the statistical properties of sea ice lead fraction and heat fluxes in the Arctic
Einar Örn Ólason, Pierre Rampal, and Véronique Dansereau
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-13,https://doi.org/10.5194/tc-2020-13, 2020
Revised manuscript under review for TC
Short summary
Wave–sea-ice interactions in a brittle rheological framework
Guillaume Boutin, Timothy Williams, Pierre Rampal, Einar Olason, and Camille Lique
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-19,https://doi.org/10.5194/tc-2020-19, 2020
Revised manuscript under review for TC
Short summary
The Arctic Front and its variability in the Norwegian Sea
Roshin P. Raj, Sourav Chatterjee, Laurent Bertino, Antonio Turiel, and Marcos Portabella
Ocean Sci., 15, 1729–1744, https://doi.org/10.5194/os-15-1729-2019,https://doi.org/10.5194/os-15-1729-2019, 2019
Short summary

Related subject area

Sea Ice
Modeling the annual cycle of daily Antarctic sea ice extent
Mark S. Handcock and Marilyn N. Raphael
The Cryosphere, 14, 2159–2172, https://doi.org/10.5194/tc-14-2159-2020,https://doi.org/10.5194/tc-14-2159-2020, 2020
Short summary
Changes of the Arctic marginal ice zone during the satellite era
Rebecca J. Rolph, Daniel L. Feltham, and David Schröder
The Cryosphere, 14, 1971–1984, https://doi.org/10.5194/tc-14-1971-2020,https://doi.org/10.5194/tc-14-1971-2020, 2020
Short summary
An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC)
Mark A. Tschudi, Walter N. Meier, and J. Scott Stewart
The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020,https://doi.org/10.5194/tc-14-1519-2020, 2020
Short summary
Accuracy and inter-analyst agreement of visually estimated sea ice concentrations in Canadian Ice Service ice charts using single-polarization RADARSAT-2
Angela Cheng, Barbara Casati, Adrienne Tivy, Tom Zagon, Jean-François Lemieux, and L. Bruno Tremblay
The Cryosphere, 14, 1289–1310, https://doi.org/10.5194/tc-14-1289-2020,https://doi.org/10.5194/tc-14-1289-2020, 2020
Short summary
Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks
Young Jun Kim, Hyun-Cheol Kim, Daehyeon Han, Sanggyun Lee, and Jungho Im
The Cryosphere, 14, 1083–1104, https://doi.org/10.5194/tc-14-1083-2020,https://doi.org/10.5194/tc-14-1083-2020, 2020
Short summary

Cited articles

Abi-Zeid, I. and Frost, J. R.: SARPlan: A decision support system for Canadian Search and Rescue Operations, Eur. J. Oper. Res., 162, 630–653, 2005.
Bertino, L., Bergh, J., and Xie, J.: Evaluation of uncertainties by ensemble simulation, Tech. Rep. Tech. Rep. 355, NERSC, ART JIP Deliverable 3.3, Bergen, Norway, 2015.
Bonan, B., Nichols, N. K., Baines, M. J., and Partridge, D.: Data assimilation for moving mesh methods with an application to ice sheet modelling, Nonlin. Processes Geophys., 24, 515–534, https://doi.org/10.5194/npg-24-515-2017, 2017.
Bouillon, S. and Rampal, P.: Presentation of the dynamical core of neXtSIM, a new sea ice model, Ocean Model., 91, 23–37, 2015a.
Bouillon, S. and Rampal, P.: On producing sea ice deformation data sets from SAR-derived sea ice motion, The Cryosphere, 9, 663–673, https://doi.org/10.5194/tc-9-663-2015, 2015b.
Publications Copernicus
Download
Short summary
Large deviations still exist between sea ice forecasts and observations because of both missing physics in models and uncertainties on model inputs. We investigate how the new sea ice model neXtSIM is sensitive to uncertainties in the winds. We highlight and quantify the role of the internal forces in the ice on this sensitivity and show that neXtSIM is better at predicting sea ice drift than a free-drift (without internal forces) ice model and is a skilful tool for search and rescue operations.
Large deviations still exist between sea ice forecasts and observations because of both missing...
Citation