Articles | Volume 12, issue 2
https://doi.org/10.5194/tc-12-721-2018
https://doi.org/10.5194/tc-12-721-2018
Research article
 | 
28 Feb 2018
Research article |  | 28 Feb 2018

Calving relation for tidewater glaciers based on detailed stress field analysis

Rémy Mercenier, Martin P. Lüthi, and Andreas Vieli

Related authors

Freshly calved icebergs from Sermeq Kujalleq in Kangia, Greenland: is their blue ice temperate?
Antoine Paul Zaninetti, Martin P. Lüthi, Adrien Justin Wehrlé, Janneke van Ginkel, and Ana Nap
EGUsphere, https://doi.org/10.5194/egusphere-2025-2963,https://doi.org/10.5194/egusphere-2025-2963, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Alps-wide high-resolution 3D modelling reconstruction of glacier geometry and climatic conditions for the Little Ice Age
Andreas Henz, Johannes Reinthaler, Samuel U. Nussbaumer, Tancrède P. M. Leger, Sarah Kamleitner, Guillaume Jouvet, and Andreas Vieli
EGUsphere, https://doi.org/10.5194/egusphere-2025-2353,https://doi.org/10.5194/egusphere-2025-2353, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Calorimetric in-situ determination of ice water content in two Alpine glaciers
Martin Peter Lüthi, Diego Wasser, and Luc Moreau
EGUsphere, https://doi.org/10.5194/egusphere-2025-832,https://doi.org/10.5194/egusphere-2025-832, 2025
Short summary
Greenland and Canadian Arctic ice temperature profiles database
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023,https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
The control of short-term ice mélange weakening episodes on calving activity at major Greenland outlet glaciers
Adrien Wehrlé, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 17, 309–326, https://doi.org/10.5194/tc-17-309-2023,https://doi.org/10.5194/tc-17-309-2023, 2023
Short summary

Related subject area

Numerical Modelling
Calibrated sea level contribution from the Amundsen Sea sector, West Antarctica, under RCP8.5 and Paris 2C scenarios
Sebastian H. R. Rosier, G. Hilmar Gudmundsson, Adrian Jenkins, and Kaitlin A. Naughten
The Cryosphere, 19, 2527–2557, https://doi.org/10.5194/tc-19-2527-2025,https://doi.org/10.5194/tc-19-2527-2025, 2025
Short summary
Calving driven by horizontal forces in a revised crevasse-depth framework
Donald A. Slater and Till J. W. Wagner
The Cryosphere, 19, 2475–2493, https://doi.org/10.5194/tc-19-2475-2025,https://doi.org/10.5194/tc-19-2475-2025, 2025
Short summary
The demise of the world's largest piedmont glacier: a probabilistic forecast
Douglas J. Brinkerhoff, Brandon S. Tober, Michael Daniel, Victor Devaux-Chupin, Michael S. Christoffersen, John W. Holt, Christopher F. Larsen, Mark Fahnestock, Michael G. Loso, Kristin M. F. Timm, Russell C. Mitchell, and Martin Truffer
The Cryosphere, 19, 2321–2353, https://doi.org/10.5194/tc-19-2321-2025,https://doi.org/10.5194/tc-19-2321-2025, 2025
Short summary
Improved basal drag of the West Antarctic Ice Sheet from L-curve analysis of inverse models utilizing subglacial hydrology simulations
Lea-Sophie Höyns, Thomas Kleiner, Andreas Rademacher, Martin Rückamp, Michael Wolovick, and Angelika Humbert
The Cryosphere, 19, 2133–2158, https://doi.org/10.5194/tc-19-2133-2025,https://doi.org/10.5194/tc-19-2133-2025, 2025
Short summary
Disentangling the oceanic drivers behind the post-2000 retreat of Sermeq Kujalleq, Greenland (Jakobshavn Isbræ)
Ziad Rashed, Alexander A. Robel, and Hélène Seroussi
The Cryosphere, 19, 1775–1788, https://doi.org/10.5194/tc-19-1775-2025,https://doi.org/10.5194/tc-19-1775-2025, 2025
Short summary

Cited articles

Amundson, J., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M., and Motyka, R.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010. a
Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H.: PETSc Users Manual, Tech. Rep. ANL-95/11 – Revision 3.0.0, Argonne National Laboratory, available at: http://www.mcs.anl.gov/petsc (last access: 2 March 2017), 2008. a
Bassis, J. N. and Walker, C. C.: Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice, P. Roy. Soc. Lond. A Mat., 468, 913–931, https://doi.org/10.1098/rspa.2011.0422, 2012. a, b, c, d, e, f, g
Benn, D. I., Hulton, N. R., and Mottram, R. H.: `Calving laws', `sliding laws' and the stability of tidewater glaciers, Ann. Glaciol., 46, 123–130, 2007a. a, b
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, https://doi.org/10.1016/j.earscirev.2007.02.002, 2007b. a, b
Download
Short summary
This study investigates the effect of geometrical properties on the stress state and flow regime in the vicinity of the calving front of grounded tidewater glaciers. Our analysis shows that the stress state for simple geometries can be determined solely by the water depth relative to ice thickness. This scaled relationship allows for a simple parametrization to predict calving rates of grounded tidewater glaciers that is simple, physics-based and in good agreement with observations.
Share