Articles | Volume 12, issue 2
The Cryosphere, 12, 721–739, 2018
https://doi.org/10.5194/tc-12-721-2018
The Cryosphere, 12, 721–739, 2018
https://doi.org/10.5194/tc-12-721-2018

Research article 28 Feb 2018

Research article | 28 Feb 2018

Calving relation for tidewater glaciers based on detailed stress field analysis

Rémy Mercenier et al.

Related authors

Modelling steady states and the transient response of debris-covered glaciers
James C. Ferguson and Andreas Vieli
The Cryosphere, 15, 3377–3399, https://doi.org/10.5194/tc-15-3377-2021,https://doi.org/10.5194/tc-15-3377-2021, 2021
Short summary
Kinematic observations of the mountain cryosphere using in-situ GNSS instruments
Jan Beutel, Andreas Biri, Ben Buchli, Alessandro Cicoira, Reynald Delaloye, Reto Da Forno, Isabelle Gaertner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Phillipe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapoza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Samuel Weber, and Vanessa Wirz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-176,https://doi.org/10.5194/essd-2021-176, 2021
Preprint under review for ESSD
Short summary
Automated detection and analysis of surface calving waves with a terrestrial radar interferometer at the front of Eqip Sermia, Greenland
Adrien Wehrlé, Martin P. Lüthi, Andrea Walter, Guillaume Jouvet, and Andreas Vieli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-33,https://doi.org/10.5194/tc-2021-33, 2021
Revised manuscript accepted for TC
Short summary
Calving event size measurements and statistics of Eqip Sermia, Greenland, from terrestrial radar interferometry
Andrea Walter, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 14, 1051–1066, https://doi.org/10.5194/tc-14-1051-2020,https://doi.org/10.5194/tc-14-1051-2020, 2020
Short summary
In situ measurements of the ice flow motion at Eqip Sermia Glacier using a remotely controlled unmanned aerial vehicle (UAV)
Guillaume Jouvet, Eef van Dongen, Martin P. Lüthi, and Andreas Vieli
Geosci. Instrum. Method. Data Syst., 9, 1–10, https://doi.org/10.5194/gi-9-1-2020,https://doi.org/10.5194/gi-9-1-2020, 2020
Short summary

Related subject area

Numerical Modelling
Elements of future snowpack modeling – Part 2: A modular and extendable Eulerian–Lagrangian numerical scheme for coupled transport, phase changes and settling processes
Anna Simson, Henning Löwe, and Julia Kowalski
The Cryosphere, 15, 5423–5445, https://doi.org/10.5194/tc-15-5423-2021,https://doi.org/10.5194/tc-15-5423-2021, 2021
Short summary
Assessment of neutrons from secondary cosmic rays at mountain altitudes – Geant4 simulations of environmental parameters including soil moisture and snow cover
Thomas Brall, Vladimir Mares, Rolf Bütikofer, and Werner Rühm
The Cryosphere, 15, 4769–4780, https://doi.org/10.5194/tc-15-4769-2021,https://doi.org/10.5194/tc-15-4769-2021, 2021
Short summary
A seasonal algorithm of the snow-covered area fraction for mountainous terrain
Nora Helbig, Michael Schirmer, Jan Magnusson, Flavia Mäder, Alec van Herwijnen, Louis Quéno, Yves Bühler, Jeff S. Deems, and Simon Gascoin
The Cryosphere, 15, 4607–4624, https://doi.org/10.5194/tc-15-4607-2021,https://doi.org/10.5194/tc-15-4607-2021, 2021
Short summary
Edge displacement scores
Arne Melsom
The Cryosphere, 15, 3785–3796, https://doi.org/10.5194/tc-15-3785-2021,https://doi.org/10.5194/tc-15-3785-2021, 2021
Short summary
The 21st-century fate of the Mocho-Choshuenco ice cap in southern Chile
Matthias Scheiter, Marius Schaefer, Eduardo Flández, Deniz Bozkurt, and Ralf Greve
The Cryosphere, 15, 3637–3654, https://doi.org/10.5194/tc-15-3637-2021,https://doi.org/10.5194/tc-15-3637-2021, 2021
Short summary

Cited articles

Amundson, J., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M., and Motyka, R.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010. a
Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H.: PETSc Users Manual, Tech. Rep. ANL-95/11 – Revision 3.0.0, Argonne National Laboratory, available at: http://www.mcs.anl.gov/petsc (last access: 2 March 2017), 2008. a
Bassis, J. N. and Walker, C. C.: Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice, P. Roy. Soc. Lond. A Mat., 468, 913–931, https://doi.org/10.1098/rspa.2011.0422, 2012. a, b, c, d, e, f, g
Benn, D. I., Hulton, N. R., and Mottram, R. H.: `Calving laws', `sliding laws' and the stability of tidewater glaciers, Ann. Glaciol., 46, 123–130, 2007a. a, b
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, https://doi.org/10.1016/j.earscirev.2007.02.002, 2007b. a, b
Download
Short summary
This study investigates the effect of geometrical properties on the stress state and flow regime in the vicinity of the calving front of grounded tidewater glaciers. Our analysis shows that the stress state for simple geometries can be determined solely by the water depth relative to ice thickness. This scaled relationship allows for a simple parametrization to predict calving rates of grounded tidewater glaciers that is simple, physics-based and in good agreement with observations.