Articles | Volume 11, issue 1
https://doi.org/10.5194/tc-11-65-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-11-65-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
University Centre in Svalbard, Longyearbyen, Svalbard
Mari H. Halvorsen
Geophysical Institute, University of Bergen, Bergen, Norway
Julienne C. Stroeve
National Snow and Ice Data Centre, University of Colorado, Boulder, USA
Centre for Polar Observation and Modelling, University College
London, London, UK
Rong Zhang
Geophysical Fluid Dynamics Laboratory, National Oceanic and
Atmospheric Administration, Princeton, New Jersey, USA
Kjell Kloster
Nansen Environmental and Remote Sensing Center, Bergen, Norway
Related authors
Philipp Anhaus, Lars H. Smedsrud, Marius Årthun, and Fiammetta Straneo
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-35, https://doi.org/10.5194/tc-2019-35, 2019
Revised manuscript not accepted
Short summary
Short summary
Atlantic Water flows towards the Arctic and under floating glaciers on Greenland. Observations in a rift on the 79 North Glacier show presence of such water with temperature of 1 °C at 600 m. We simulate how this warm water melts the floating ice. Melt rates are largest where the glacier starts floating, are smaller where the water rises, and increase linearly with rising ocean temperature. Our results improve the understanding of ocean processes driving melting of floating glaciers.
Winfried Hoke, Tina Swierczynski, Peter Braesicke, Karin Lochte, Len Shaffrey, Martin Drews, Hilppa Gregow, Ralf Ludwig, Jan Even Øie Nilsen, Elisa Palazzi, Gianmaria Sannino, Lars Henrik Smedsrud, and ECRA network
Adv. Geosci., 46, 1–10, https://doi.org/10.5194/adgeo-46-1-2019, https://doi.org/10.5194/adgeo-46-1-2019, 2019
Short summary
Short summary
The European Climate Research Alliance is a bottom-up association of European research institutions helping to facilitate the development of climate change research, combining the capacities of national research institutions and inducing closer ties between existing national research initiatives, projects and infrastructures. This article briefly introduces the network's structure and organisation, as well as project management issues and prospects.
T. Krumpen, R. Gerdes, C. Haas, S. Hendricks, A. Herber, V. Selyuzhenok, L. Smedsrud, and G. Spreen
The Cryosphere, 10, 523–534, https://doi.org/10.5194/tc-10-523-2016, https://doi.org/10.5194/tc-10-523-2016, 2016
Short summary
Short summary
We present an extensive data set of ground-based and airborne electromagnetic ice thickness measurements covering Fram Strait in summer between 2001 and 2012. An investigation of back trajectories of surveyed sea ice using satellite-based sea ice motion data allows us to examine the connection between thickness variability, ice age and source area. In addition, we determine across and along strait gradients in ice thickness and associated volume fluxes.
M. H. Halvorsen, L. H. Smedsrud, R. Zhang, and K. Kloster
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-4205-2015, https://doi.org/10.5194/tcd-9-4205-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
A new and updated timeseries of Fram Strait sea ice area export from 1979 - 2013 shows an overall increase until today. Spring and summer ice area export increases more (14% per decade) than in autumn and winter, and these export anomalies have a large influence on the following September mean ice extent.
M. Zygmuntowska, P. Rampal, N. Ivanova, and L. H. Smedsrud
The Cryosphere, 8, 705–720, https://doi.org/10.5194/tc-8-705-2014, https://doi.org/10.5194/tc-8-705-2014, 2014
V. A. Alexeev, V. V. Ivanov, R. Kwok, and L. H. Smedsrud
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-245-2013, https://doi.org/10.5194/tcd-7-245-2013, 2013
Revised manuscript not accepted
Caroline R. Holmes, Thomas J. Bracegirdle, Paul R. Holland, Julienne Stroeve, and Jeremy Wilkinson
The Cryosphere, 18, 5641–5652, https://doi.org/10.5194/tc-18-5641-2024, https://doi.org/10.5194/tc-18-5641-2024, 2024
Short summary
Short summary
Until recently, satellite data showed an increase in Antarctic sea ice area since 1979, but climate models simulated a decrease over this period. This mismatch was one reason for low confidence in model projections of 21st-century sea ice loss. We show that following low Antarctic sea ice in 2022 and 2023, we can no longer conclude that modelled and observed trends differ. However, differences in the manner of the decline mean that model sea ice projections should still be viewed with caution.
Lu Zhou, Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Shiming Xu, Weixin Zhu, Sahra Kacimi, Stefanie Arndt, and Zifan Yang
The Cryosphere, 18, 4399–4434, https://doi.org/10.5194/tc-18-4399-2024, https://doi.org/10.5194/tc-18-4399-2024, 2024
Short summary
Short summary
Snow over Antarctic sea ice, influenced by highly variable meteorological conditions and heavy snowfall, has a complex stratigraphy and profound impact on the microwave signature. We employ advanced radiation transfer models to analyse the effects of complex snow properties on brightness temperatures over the sea ice in the Southern Ocean. Great potential lies in the understanding of snow processes and the application to satellite retrievals.
Wiebke Margitta Kolbe, Rasmus T. Tonboe, and Julienne Stroeve
Earth Syst. Sci. Data, 16, 1247–1264, https://doi.org/10.5194/essd-16-1247-2024, https://doi.org/10.5194/essd-16-1247-2024, 2024
Short summary
Short summary
Current satellite-based sea-ice climate data records (CDRs) usually begin in October 1978 with the first multichannel microwave radiometer data. Here, we present a sea ice dataset based on the single-channel Electrical Scanning Microwave Radiometer (ESMR) that operated from 1972-1977 onboard NASA’s Nimbus 5 satellite. The data were processed using modern methods and include uncertainty estimations in order to provide an important, easy-to-use reference period of good quality for current CDRs.
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
EGUsphere, https://doi.org/10.5194/egusphere-2023-2509, https://doi.org/10.5194/egusphere-2023-2509, 2023
Short summary
Short summary
Snow on sea ice is vital for near-shore sea ice geophysical and biological processes. Past studies have measured snow depths using satellite altimeters Cryosat-2 and ICESat-2 (Cryo2Ice) but estimating sea surface height from lead-less land-fast sea ice remains challenging. Snow depths from Cryo2Ice are compared to in-situ after adjusting for tides. Realistic snow depths are retrieved but difference in roughness, satellite footprints and snow geophysical properties are identified as challenges.
Alistair Duffey, Robbie Mallett, Peter J. Irvine, Michel Tsamados, and Julienne Stroeve
Earth Syst. Dynam., 14, 1165–1169, https://doi.org/10.5194/esd-14-1165-2023, https://doi.org/10.5194/esd-14-1165-2023, 2023
Short summary
Short summary
The Arctic is warming several times faster than the rest of the planet. Here, we use climate model projections to quantify for the first time how this faster warming in the Arctic impacts the timing of crossing the 1.5 °C and 2 °C thresholds defined in the Paris Agreement. We show that under plausible emissions scenarios that fail to meet the Paris 1.5 °C target, a hypothetical world without faster warming in the Arctic would breach that 1.5 °C target around 5 years later.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Younjoo J. Lee, Wieslaw Maslowski, John J. Cassano, Jaclyn Clement Kinney, Anthony P. Craig, Samy Kamal, Robert Osinski, Mark W. Seefeldt, Julienne Stroeve, and Hailong Wang
The Cryosphere, 17, 233–253, https://doi.org/10.5194/tc-17-233-2023, https://doi.org/10.5194/tc-17-233-2023, 2023
Short summary
Short summary
During 1979–2020, four winter polynyas occurred in December 1986 and February 2011, 2017, and 2018 north of Greenland. Instead of ice melting due to the anomalous warm air intrusion, the extreme wind forcing resulted in greater ice transport offshore. Based on the two ensemble runs, representing a 1980s thicker ice vs. a 2010s thinner ice, a dominant cause of these winter polynyas stems from internal variability of atmospheric forcing rather than from the forced response to a warming climate.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
William Gregory, Julienne Stroeve, and Michel Tsamados
The Cryosphere, 16, 1653–1673, https://doi.org/10.5194/tc-16-1653-2022, https://doi.org/10.5194/tc-16-1653-2022, 2022
Short summary
Short summary
This research was conducted to better understand how coupled climate models simulate one of the large-scale interactions between the atmosphere and Arctic sea ice that we see in observational data, the accurate representation of which is important for producing reliable forecasts of Arctic sea ice on seasonal to inter-annual timescales. With network theory, this work shows that models do not reflect this interaction well on average, which is likely due to regional biases in sea ice thickness.
Isolde A. Glissenaar, Jack C. Landy, Alek A. Petty, Nathan T. Kurtz, and Julienne C. Stroeve
The Cryosphere, 15, 4909–4927, https://doi.org/10.5194/tc-15-4909-2021, https://doi.org/10.5194/tc-15-4909-2021, 2021
Short summary
Short summary
Scientists can estimate sea ice thickness using satellites that measure surface height. To determine the sea ice thickness, we also need to know the snow depth and density. This paper shows that the chosen snow depth product has a considerable impact on the findings of sea ice thickness state and trends in Baffin Bay, showing mean thinning with some snow depth products and mean thickening with others. This shows that it is important to better understand and monitor snow depth on sea ice.
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Robbie D. C. Mallett, Julienne C. Stroeve, Michel Tsamados, Jack C. Landy, Rosemary Willatt, Vishnu Nandan, and Glen E. Liston
The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021, https://doi.org/10.5194/tc-15-2429-2021, 2021
Short summary
Short summary
We re-estimate pan-Arctic sea ice thickness (SIT) values by combining data from the Envisat and CryoSat-2 missions with data from a new, reanalysis-driven snow model. Because a decreasing amount of ice is being hidden below the waterline by the weight of overlying snow, we argue that SIT may be declining faster than previously calculated in some regions. Because the snow product varies from year to year, our new SIT calculations also display much more year-to-year variability.
Rasmus T. Tonboe, Vishnu Nandan, John Yackel, Stefan Kern, Leif Toudal Pedersen, and Julienne Stroeve
The Cryosphere, 15, 1811–1822, https://doi.org/10.5194/tc-15-1811-2021, https://doi.org/10.5194/tc-15-1811-2021, 2021
Short summary
Short summary
A relationship between the Ku-band radar scattering horizon and snow depth is found using a radar scattering model. This relationship has implications for (1) the use of snow climatology in the conversion of satellite radar freeboard into sea ice thickness and (2) the impact of variability in measured snow depth on the derived ice thickness. For both 1 and 2, the impact of using a snow climatology versus the actual snow depth is relatively small.
Lu Zhou, Julienne Stroeve, Shiming Xu, Alek Petty, Rachel Tilling, Mai Winstrup, Philip Rostosky, Isobel R. Lawrence, Glen E. Liston, Andy Ridout, Michel Tsamados, and Vishnu Nandan
The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021, https://doi.org/10.5194/tc-15-345-2021, 2021
Short summary
Short summary
Snow on sea ice plays an important role in the Arctic climate system. Large spatial and temporal discrepancies among the eight snow depth products are analyzed together with their seasonal variability and long-term trends. These snow products are further compared against various ground-truth observations. More analyses on representation error of sea ice parameters are needed for systematic comparison and fusion of airborne, in situ and remote sensing observations.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Robbie D. C. Mallett, Isobel R. Lawrence, Julienne C. Stroeve, Jack C. Landy, and Michel Tsamados
The Cryosphere, 14, 251–260, https://doi.org/10.5194/tc-14-251-2020, https://doi.org/10.5194/tc-14-251-2020, 2020
Short summary
Short summary
Soils store large carbon and are important for global warming. We do not know what factors are important for soil carbon storage in the alpine Andes and how they work. We studied how rainfall affects soil carbon storage related to soil structure. We found soil structure is not important, but soil carbon storage and stability controlled by rainfall are dependent on rocks under the soils. The results indicate that we should pay attention to the rocks when studying soil carbon storage in the Andes.
Philipp Anhaus, Lars H. Smedsrud, Marius Årthun, and Fiammetta Straneo
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-35, https://doi.org/10.5194/tc-2019-35, 2019
Revised manuscript not accepted
Short summary
Short summary
Atlantic Water flows towards the Arctic and under floating glaciers on Greenland. Observations in a rift on the 79 North Glacier show presence of such water with temperature of 1 °C at 600 m. We simulate how this warm water melts the floating ice. Melt rates are largest where the glacier starts floating, are smaller where the water rises, and increase linearly with rising ocean temperature. Our results improve the understanding of ocean processes driving melting of floating glaciers.
Winfried Hoke, Tina Swierczynski, Peter Braesicke, Karin Lochte, Len Shaffrey, Martin Drews, Hilppa Gregow, Ralf Ludwig, Jan Even Øie Nilsen, Elisa Palazzi, Gianmaria Sannino, Lars Henrik Smedsrud, and ECRA network
Adv. Geosci., 46, 1–10, https://doi.org/10.5194/adgeo-46-1-2019, https://doi.org/10.5194/adgeo-46-1-2019, 2019
Short summary
Short summary
The European Climate Research Alliance is a bottom-up association of European research institutions helping to facilitate the development of climate change research, combining the capacities of national research institutions and inducing closer ties between existing national research initiatives, projects and infrastructures. This article briefly introduces the network's structure and organisation, as well as project management issues and prospects.
Isobel R. Lawrence, Michel C. Tsamados, Julienne C. Stroeve, Thomas W. K. Armitage, and Andy L. Ridout
The Cryosphere, 12, 3551–3564, https://doi.org/10.5194/tc-12-3551-2018, https://doi.org/10.5194/tc-12-3551-2018, 2018
Short summary
Short summary
In this paper we estimate the thickness of snow cover on Arctic sea ice from space. We use data from two radar altimeter satellites, AltiKa and CryoSat-2, that have been operating synchronously since 2013. We produce maps of monthly average snow depth for the four growth seasons (October to April): 2012–2013, 2013–2014, 2014–2015, and 2015–2016. Snow depth estimates are essential for the accurate retrieval of sea ice thickness from satellite altimetry.
Julienne C. Stroeve, David Schroder, Michel Tsamados, and Daniel Feltham
The Cryosphere, 12, 1791–1809, https://doi.org/10.5194/tc-12-1791-2018, https://doi.org/10.5194/tc-12-1791-2018, 2018
Short summary
Short summary
This paper looks at the impact of the warm winter and anomalously low number of total freezing degree days during winter 2016/2017 on thermodynamic ice growth and overall thickness anomalies. The approach relies on evaluation of satellite data (CryoSat-2) and model output. While there is a negative feedback between rapid ice growth for thin ice, with thermodynamic ice growth increasing over time, since 2012 that relationship is changing, in part because the freeze-up is happening later.
Alek A. Petty, Julienne C. Stroeve, Paul R. Holland, Linette N. Boisvert, Angela C. Bliss, Noriaki Kimura, and Walter N. Meier
The Cryosphere, 12, 433–452, https://doi.org/10.5194/tc-12-433-2018, https://doi.org/10.5194/tc-12-433-2018, 2018
Short summary
Short summary
There was significant scientific and media attention surrounding Arctic sea ice in 2016, due primarily to the record-warm air temperatures and low sea ice conditions observed at the start of the year. Here we quantify and assess the record-low monthly sea ice cover in winter, spring and fall, and the lack of record-low sea ice conditions in summer. We explore the primary drivers of these monthly sea ice states and explore the implications for improved summer sea ice forecasting.
Julienne C. Stroeve, John R. Mioduszewski, Asa Rennermalm, Linette N. Boisvert, Marco Tedesco, and David Robinson
The Cryosphere, 11, 2363–2381, https://doi.org/10.5194/tc-11-2363-2017, https://doi.org/10.5194/tc-11-2363-2017, 2017
Short summary
Short summary
As the sea ice has declined strongly in recent years there has been a corresponding increase in Greenland melting. While both are likely a result of changes in atmospheric circulation patterns that favor summer melt, this study evaluates whether or not sea ice reductions around the Greenland ice sheet are having an influence on Greenland summer melt through enhanced sensible and latent heat transport from open water areas onto the ice sheet.
Dirk Notz, Alexandra Jahn, Marika Holland, Elizabeth Hunke, François Massonnet, Julienne Stroeve, Bruno Tremblay, and Martin Vancoppenolle
Geosci. Model Dev., 9, 3427–3446, https://doi.org/10.5194/gmd-9-3427-2016, https://doi.org/10.5194/gmd-9-3427-2016, 2016
Short summary
Short summary
The large-scale evolution of sea ice is both an indicator and a driver of climate changes. Hence, a realistic simulation of sea ice is key for a realistic simulation of the climate system of our planet. To assess and to improve the realism of sea-ice simulations, we present here a new protocol for climate-model output that allows for an in-depth analysis of the simulated evolution of sea ice.
Julienne C. Stroeve, Stephanie Jenouvrier, G. Garrett Campbell, Christophe Barbraud, and Karine Delord
The Cryosphere, 10, 1823–1843, https://doi.org/10.5194/tc-10-1823-2016, https://doi.org/10.5194/tc-10-1823-2016, 2016
Short summary
Short summary
Sea ice variability within the marginal ice zone and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore mapping their spatial extent as well as seasonal and interannual variability is essential for understanding how current and future changes in these biologically active regions may impact the Antarctic marine ecosystem. Assessments are complicated, however, by which sea ice algorithm is used, with impacts on interpretations on seabird populations.
T. Krumpen, R. Gerdes, C. Haas, S. Hendricks, A. Herber, V. Selyuzhenok, L. Smedsrud, and G. Spreen
The Cryosphere, 10, 523–534, https://doi.org/10.5194/tc-10-523-2016, https://doi.org/10.5194/tc-10-523-2016, 2016
Short summary
Short summary
We present an extensive data set of ground-based and airborne electromagnetic ice thickness measurements covering Fram Strait in summer between 2001 and 2012. An investigation of back trajectories of surveyed sea ice using satellite-based sea ice motion data allows us to examine the connection between thickness variability, ice age and source area. In addition, we determine across and along strait gradients in ice thickness and associated volume fluxes.
Marco Tedesco, Sarah Doherty, Xavier Fettweis, Patrick Alexander, Jeyavinoth Jeyaratnam, and Julienne Stroeve
The Cryosphere, 10, 477–496, https://doi.org/10.5194/tc-10-477-2016, https://doi.org/10.5194/tc-10-477-2016, 2016
Short summary
Short summary
Summer surface albedo over Greenland decreased at a rate of 0.02 per decade between 1996 and 2012. The decrease is due to snow grain growth, the expansion of bare ice areas, and trends in light-absorbing impurities on snow and ice surfaces. Neither aerosol models nor in situ observations indicate increasing trends in impurities in the atmosphere over Greenland. Albedo projections through to the end of the century under different warming scenarios consistently point to continued darkening.
M. H. Halvorsen, L. H. Smedsrud, R. Zhang, and K. Kloster
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-4205-2015, https://doi.org/10.5194/tcd-9-4205-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
A new and updated timeseries of Fram Strait sea ice area export from 1979 - 2013 shows an overall increase until today. Spring and summer ice area export increases more (14% per decade) than in autumn and winter, and these export anomalies have a large influence on the following September mean ice extent.
J. Stroeve, A. Barrett, M. Serreze, and A. Schweiger
The Cryosphere, 8, 1839–1854, https://doi.org/10.5194/tc-8-1839-2014, https://doi.org/10.5194/tc-8-1839-2014, 2014
M. Zygmuntowska, P. Rampal, N. Ivanova, and L. H. Smedsrud
The Cryosphere, 8, 705–720, https://doi.org/10.5194/tc-8-705-2014, https://doi.org/10.5194/tc-8-705-2014, 2014
V. A. Alexeev, V. V. Ivanov, R. Kwok, and L. H. Smedsrud
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-245-2013, https://doi.org/10.5194/tcd-7-245-2013, 2013
Revised manuscript not accepted
Related subject area
Sea Ice
Seasonal evolution of the sea ice floe size distribution in the Beaufort Sea from 2 decades of MODIS data
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Why is summertime Arctic sea ice drift speed projected to decrease?
Impact of atmospheric rivers on Arctic sea ice variations
The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020
Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow
Spatial characteristics of frazil streaks in the Terra Nova Bay Polynya from high-resolution visible satellite imagery
Modelling the evolution of Arctic multiyear sea ice over 2000–2018
A quasi-objective single-buoy approach for understanding Lagrangian coherent structures and sea ice dynamics
Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Analysis of microseismicity in sea ice with deep learning and Bayesian inference: application to high-resolution thickness monitoring
A collection of wet beam models for wave–ice interaction
First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data
Probabilistic spatiotemporal seasonal sea ice presence forecasting using sequence-to-sequence learning and ERA5 data in the Hudson Bay region
Predictability of Arctic sea ice drift in coupled climate models
Recovering and monitoring the thickness, density, and elastic properties of sea ice from seismic noise recorded in Svalbard
Influences of changing sea ice and snow thicknesses on simulated Arctic winter heat fluxes
Reassessing seasonal sea ice predictability of the Pacific-Arctic sector using a Markov model
A new state-dependent parameterization for the free drift of sea ice
Arctic sea ice sensitivity to lateral melting representation in a coupled climate model
Retrieval and parameterisation of sea-ice bulk density from airborne multi-sensor measurements
A generalized stress correction scheme for the Maxwell elasto-brittle rheology: impact on the fracture angles and deformations
Wave dispersion and dissipation in landfast ice: comparison of observations against models
The influence of snow on sea ice as assessed from simulations of CESM2
Meltwater sources and sinks for multiyear Arctic sea ice in summer
An X-ray micro-tomographic study of the pore space, permeability and percolation threshold of young sea ice
Calibration of sea ice drift forecasts using random forest algorithms
Multiscale variations in Arctic sea ice motion and links to atmospheric and oceanic conditions
The flexural strength of bonded ice
Interannual variability in Transpolar Drift summer sea ice thickness and potential impact of Atlantification
An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models
Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products
Surface-based Ku- and Ka-band polarimetric radar for sea ice studies
Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations
Satellite-based sea ice thickness changes in the Laptev Sea from 2002 to 2017: comparison to mooring observations
Modeling the annual cycle of daily Antarctic sea ice extent
Changes of the Arctic marginal ice zone during the satellite era
An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC)
Accuracy and inter-analyst agreement of visually estimated sea ice concentrations in Canadian Ice Service ice charts using single-polarization RADARSAT-2
Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks
Variability scaling and consistency in airborne and satellite altimetry measurements of Arctic sea ice
Sea ice volume variability and water temperature in the Greenland Sea
Sea ice export through the Fram Strait derived from a combined model and satellite data set
Estimating early-winter Antarctic sea ice thickness from deformed ice morphology
On the multi-fractal scaling properties of sea ice deformation
Brief communication: Pancake ice floe size distribution during the winter expansion of the Antarctic marginal ice zone
What historical landfast ice observations tell us about projected ice conditions in Arctic archipelagoes and marginal seas under anthropogenic forcing
Interannual sea ice thickness variability in the Bay of Bothnia
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024, https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary
Short summary
Arctic sea ice cover evolves seasonally from large plates separated by long, linear leads in the winter to a mosaic of smaller sea ice floes in the summer. Here, we present a new image segmentation algorithm applied to thousands of images and identify over 9 million individual pieces of ice. We observe the characteristics of the floes and how they evolve throughout the summer as the ice breaks up.
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024, https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
Short summary
The study brings to light the suitability of CICE for seasonal prediction being contingent on several factors, such as initial conditions like sea ice coverage and thickness, as well as atmospheric and oceanic conditions including oceanic currents and sea surface temperature. We show there is potential to improve seasonal forecasting by using a more reliable sea ice thickness initialization. Thus, data assimilation of sea ice thickness is highly relevant for advancing seasonal prediction skills.
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024, https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Short summary
The HiDEM code has been developed for analyzing the fracture and fragmentation of brittle materials and has been extensively applied to glacier calving. Here, we report on the adaptation of the code to sea-ice dynamics and breakup. The code demonstrates the capability to simulate sea-ice dynamics on a 100 km scale with an unprecedented resolution. We argue that codes of this type may become useful for improving forecasts of sea-ice dynamics.
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024, https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary
Short summary
Brinicles are tubular ice structures that grow under the sea ice in cold regions. This happens because the salty water going downwards from the sea ice is colder than the seawater. We have successfully recreated an analogue of these structures in our laboratory. Three methods were used, producing different results. In this paper, we explain how to use these methods and study the behaviour of the brinicles created when changing the flow of water and study the importance for natural brinicles.
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024, https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Short summary
Over the long term, the speed at which sea ice in the Arctic moves has been increasing during all seasons. However, nearly all climate models project that sea ice motion will decrease during summer. This study aims to understand the mechanisms responsible for these projected decreases in summertime sea ice motion. We find that models produce changes in winds and ocean surface tilt which cause the sea ice to slow down, and it is realistic to expect such changes to also occur in the real world.
Linghan Li, Forest Cannon, Matthew R. Mazloff, Aneesh C. Subramanian, Anna M. Wilson, and Fred Martin Ralph
The Cryosphere, 18, 121–137, https://doi.org/10.5194/tc-18-121-2024, https://doi.org/10.5194/tc-18-121-2024, 2024
Short summary
Short summary
We investigate how the moisture transport through atmospheric rivers influences Arctic sea ice variations using hourly atmospheric ERA5 for 1981–2020 at 0.25° × 0.25° resolution. We show that individual atmospheric rivers initiate rapid sea ice decrease through surface heat flux and winds. We find that the rate of change in sea ice concentration has significant anticorrelation with moisture, northward wind and turbulent heat flux on weather timescales almost everywhere in the Arctic Ocean.
Fanyi Zhang, Ruibo Lei, Mengxi Zhai, Xiaoping Pang, and Na Li
The Cryosphere, 17, 4609–4628, https://doi.org/10.5194/tc-17-4609-2023, https://doi.org/10.5194/tc-17-4609-2023, 2023
Short summary
Short summary
Atmospheric circulation anomalies lead to high Arctic sea ice outflow in winter 2020, causing heavy ice conditions in the Barents–Greenland seas, subsequently impeding the sea surface temperature warming. This suggests that the winter–spring Arctic sea ice outflow can be considered a predictor of changes in sea ice and other marine environmental conditions in the Barents–Greenland seas, which could help to improve our understanding of the physical connections between them.
MacKenzie E. Jewell, Jennifer K. Hutchings, and Cathleen A. Geiger
The Cryosphere, 17, 3229–3250, https://doi.org/10.5194/tc-17-3229-2023, https://doi.org/10.5194/tc-17-3229-2023, 2023
Short summary
Short summary
Sea ice repeatedly fractures near a prominent Alaskan headland as winds move ice along the coast, challenging predictions of sea ice drift. We find winds from high-pressure systems drive these fracturing events, and the Alaskan coastal boundary modifies the resultant ice drift. This observational study shows how wind patterns influence sea ice motion near coasts in winter. Identified relations between winds, ice drift, and fracturing provide effective test cases for dynamic sea ice models.
Katarzyna Bradtke and Agnieszka Herman
The Cryosphere, 17, 2073–2094, https://doi.org/10.5194/tc-17-2073-2023, https://doi.org/10.5194/tc-17-2073-2023, 2023
Short summary
Short summary
The frazil streaks are one of the visible signs of complex interactions between the mixed-layer dynamics and the forming sea ice. Using high-resolution visible satellite imagery we characterize their spatial properties, relationship with the meteorological forcing, and role in modifying wind-wave growth in the Terra Nova Bay Polynya. We provide a simple statistical tool for estimating the extent and ice coverage of the region of high ice production under given wind speed and air temperature.
Heather Regan, Pierre Rampal, Einar Ólason, Guillaume Boutin, and Anton Korosov
The Cryosphere, 17, 1873–1893, https://doi.org/10.5194/tc-17-1873-2023, https://doi.org/10.5194/tc-17-1873-2023, 2023
Short summary
Short summary
Multiyear ice (MYI), sea ice that survives the summer, is more resistant to changes than younger ice in the Arctic, so it is a good indicator of sea ice resilience. We use a model with a new way of tracking MYI to assess the contribution of different processes affecting MYI. We find two important years for MYI decline: 2007, when dynamics are important, and 2012, when melt is important. These affect MYI volume and area in different ways, which is important for the interpretation of observations.
Nikolas O. Aksamit, Randall K. Scharien, Jennifer K. Hutchings, and Jennifer V. Lukovich
The Cryosphere, 17, 1545–1566, https://doi.org/10.5194/tc-17-1545-2023, https://doi.org/10.5194/tc-17-1545-2023, 2023
Short summary
Short summary
Coherent flow patterns in sea ice have a significant influence on sea ice fracture and refreezing. We can better understand the state of sea ice, and its influence on the atmosphere and ocean, if we understand these structures. By adapting recent developments in chaotic dynamical systems, we are able to approximate ice stretching surrounding individual ice buoys. This illuminates the state of sea ice at much higher resolution and allows us to see previously invisible ice deformation patterns.
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023, https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Short summary
Information on sea ice surface topography is important for studies of sea ice as well as for ship navigation through ice. The ICESat-2 satellite senses the sea ice surface with six laser beams. To examine the accuracy of these measurements, we carried out a temporally coincident helicopter flight along the same ground track as the satellite and measured the sea ice surface topography with a laser scanner. This showed that ICESat-2 can see even bumps of only few meters in the sea ice cover.
Ludovic Moreau, Léonard Seydoux, Jérôme Weiss, and Michel Campillo
The Cryosphere, 17, 1327–1341, https://doi.org/10.5194/tc-17-1327-2023, https://doi.org/10.5194/tc-17-1327-2023, 2023
Short summary
Short summary
In the perspective of an upcoming seasonally ice-free Arctic, understanding the dynamics of sea ice in the changing climate is a major challenge in oceanography and climatology. It is therefore essential to monitor sea ice properties with fine temporal and spatial resolution. In this paper, we show that icequakes recorded on sea ice can be processed with artificial intelligence to produce accurate maps of sea ice thickness with high temporal and spatial resolutions.
Sasan Tavakoli and Alexander V. Babanin
The Cryosphere, 17, 939–958, https://doi.org/10.5194/tc-17-939-2023, https://doi.org/10.5194/tc-17-939-2023, 2023
Short summary
Short summary
We have tried to develop some new wave–ice interaction models by considering two different types of forces, one of which emerges in the ice and the other of which emerges in the water. We have checked the ability of the models in the reconstruction of wave–ice interaction in a step-wise manner. The accuracy level of the models is acceptable, and it will be interesting to check whether they can be used in wave climate models or not.
Christian Melsheimer, Gunnar Spreen, Yufang Ye, and Mohammed Shokr
The Cryosphere, 17, 105–126, https://doi.org/10.5194/tc-17-105-2023, https://doi.org/10.5194/tc-17-105-2023, 2023
Short summary
Short summary
It is necessary to know the type of Antarctic sea ice present – first-year ice (grown in one season) or multiyear ice (survived one summer melt) – to understand and model its evolution, as the ice types behave and react differently. We have adapted and extended an existing method (originally for the Arctic), and now, for the first time, daily maps of Antarctic sea ice types can be derived from microwave satellite data. This will allow a new data set from 2002 well into the future to be built.
Nazanin Asadi, Philippe Lamontagne, Matthew King, Martin Richard, and K. Andrea Scott
The Cryosphere, 16, 3753–3773, https://doi.org/10.5194/tc-16-3753-2022, https://doi.org/10.5194/tc-16-3753-2022, 2022
Short summary
Short summary
Machine learning approaches are deployed to provide accurate daily spatial maps of sea ice presence probability based on ERA5 data as input. Predictions are capable of predicting freeze-up/breakup dates within a 7 d period at specific locations of interest to shipping operators and communities. Forecasts of the proposed method during the breakup season have skills comparing to Climate Normal and sea ice concentration forecasts from a leading subseasonal-to-seasonal forecasting system.
Simon Felix Reifenberg and Helge Friedrich Goessling
The Cryosphere, 16, 2927–2946, https://doi.org/10.5194/tc-16-2927-2022, https://doi.org/10.5194/tc-16-2927-2022, 2022
Short summary
Short summary
Using model simulations, we analyze the impact of chaotic error growth on Arctic sea ice drift predictions. Regarding forecast uncertainty, our results suggest that it matters in which season and where ice drift forecasts are initialized and that both factors vary with the model in use. We find ice velocities to be slightly more predictable than near-surface wind, a main driver of ice drift. This is relevant for future developments of ice drift forecasting systems.
Agathe Serripierri, Ludovic Moreau, Pierre Boue, Jérôme Weiss, and Philippe Roux
The Cryosphere, 16, 2527–2543, https://doi.org/10.5194/tc-16-2527-2022, https://doi.org/10.5194/tc-16-2527-2022, 2022
Short summary
Short summary
As a result of global warming, the sea ice is disappearing at a much faster rate than predicted by climate models. To better understand and predict its ongoing decline, we deployed 247 geophones on the fast ice in Van Mijen Fjord in Svalbard, Norway, in March 2019. The analysis of these data provided a precise daily evolution of the sea-ice parameters at this location with high spatial and temporal resolution and accuracy. The results obtained are consistent with the observations made in situ.
Laura L. Landrum and Marika M. Holland
The Cryosphere, 16, 1483–1495, https://doi.org/10.5194/tc-16-1483-2022, https://doi.org/10.5194/tc-16-1483-2022, 2022
Short summary
Short summary
High-latitude Arctic wintertime sea ice and snow insulate the relatively warmer ocean from the colder atmosphere. As the climate warms, wintertime Arctic conductive heat fluxes increase even when the sea ice concentrations remain high. Simulations from the Community Earth System Model Large Ensemble (CESM1-LE) show how sea ice and snow thicknesses, as well as the distribution of these thicknesses, significantly impact large-scale calculations of wintertime surface heat budgets in the Arctic.
Yunhe Wang, Xiaojun Yuan, Haibo Bi, Mitchell Bushuk, Yu Liang, Cuihua Li, and Haijun Huang
The Cryosphere, 16, 1141–1156, https://doi.org/10.5194/tc-16-1141-2022, https://doi.org/10.5194/tc-16-1141-2022, 2022
Short summary
Short summary
We develop a regional linear Markov model consisting of four modules with seasonally dependent variables in the Pacific sector. The model retains skill for detrended sea ice extent predictions for up to 7-month lead times in the Bering Sea and the Sea of Okhotsk. The prediction skill, as measured by the percentage of grid points with significant correlations (PGS), increased by 75 % in the Bering Sea and 16 % in the Sea of Okhotsk relative to the earlier pan-Arctic model.
Charles Brunette, L. Bruno Tremblay, and Robert Newton
The Cryosphere, 16, 533–557, https://doi.org/10.5194/tc-16-533-2022, https://doi.org/10.5194/tc-16-533-2022, 2022
Short summary
Short summary
Sea ice motion is a versatile parameter for monitoring the Arctic climate system. In this contribution, we use data from drifting buoys, winds, and ice thickness to parameterize the motion of sea ice in a free drift regime – i.e., flowing freely in response to the forcing from the winds and ocean currents. We show that including a dependence on sea ice thickness and taking into account a climatology of the surface ocean circulation significantly improves the accuracy of sea ice motion estimates.
Madison M. Smith, Marika Holland, and Bonnie Light
The Cryosphere, 16, 419–434, https://doi.org/10.5194/tc-16-419-2022, https://doi.org/10.5194/tc-16-419-2022, 2022
Short summary
Short summary
Climate models represent the atmosphere, ocean, sea ice, and land with equations of varying complexity and are important tools for understanding changes in global climate. Here, we explore how realistic variations in the equations describing how sea ice melt occurs at the edges (called lateral melting) impact ice and climate. We find that these changes impact the progression of the sea-ice–albedo feedback in the Arctic and so make significant changes to the predicted Arctic sea ice.
Arttu Jutila, Stefan Hendricks, Robert Ricker, Luisa von Albedyll, Thomas Krumpen, and Christian Haas
The Cryosphere, 16, 259–275, https://doi.org/10.5194/tc-16-259-2022, https://doi.org/10.5194/tc-16-259-2022, 2022
Short summary
Short summary
Sea-ice thickness retrieval from satellite altimeters relies on assumed sea-ice density values because density cannot be measured from space. We derived bulk densities for different ice types using airborne laser, radar, and electromagnetic induction sounding measurements. Compared to previous studies, we found high bulk density values due to ice deformation and younger ice cover. Using sea-ice freeboard, we derived a sea-ice bulk density parameterisation that can be applied to satellite data.
Mathieu Plante and L. Bruno Tremblay
The Cryosphere, 15, 5623–5638, https://doi.org/10.5194/tc-15-5623-2021, https://doi.org/10.5194/tc-15-5623-2021, 2021
Short summary
Short summary
We propose a generalized form for the damage parameterization such that super-critical stresses can return to the yield with different final sub-critical stress states. In uniaxial compression simulations, the generalization improves the orientation of sea ice fractures and reduces the growth of numerical errors. Shear and convergence deformations however remain predominant along the fractures, contrary to observations, and this calls for modification of the post-fracture viscosity formulation.
Joey J. Voermans, Qingxiang Liu, Aleksey Marchenko, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Takuji Waseda, Takehiko Nose, Tsubasa Kodaira, Jingkai Li, and Alexander V. Babanin
The Cryosphere, 15, 5557–5575, https://doi.org/10.5194/tc-15-5557-2021, https://doi.org/10.5194/tc-15-5557-2021, 2021
Short summary
Short summary
We have shown through field experiments that the amount of wave energy dissipated in landfast ice, sea ice attached to land, is much larger than in broken ice. By comparing our measurements against predictions of contemporary wave–ice interaction models, we determined which models can explain our observations and which cannot. Our results will improve our understanding of how waves and ice interact and how we can model such interactions to better forecast waves and ice in the polar regions.
Marika M. Holland, David Clemens-Sewall, Laura Landrum, Bonnie Light, Donald Perovich, Chris Polashenski, Madison Smith, and Melinda Webster
The Cryosphere, 15, 4981–4998, https://doi.org/10.5194/tc-15-4981-2021, https://doi.org/10.5194/tc-15-4981-2021, 2021
Short summary
Short summary
As the most reflective and most insulative natural material, snow has important climate effects. For snow on sea ice, its high reflectivity reduces ice melt. However, its high insulating capacity limits ice growth. These counteracting effects make its net influence on sea ice uncertain. We find that with increasing snow, sea ice in both hemispheres is thicker and more extensive. However, the drivers of this response are different in the two hemispheres due to different climate conditions.
Don Perovich, Madison Smith, Bonnie Light, and Melinda Webster
The Cryosphere, 15, 4517–4525, https://doi.org/10.5194/tc-15-4517-2021, https://doi.org/10.5194/tc-15-4517-2021, 2021
Short summary
Short summary
During summer, Arctic sea ice melts on its surface and bottom and lateral edges. Some of this fresh meltwater is stored on the ice surface in features called melt ponds. The rest flows into the ocean. The meltwater flowing into the upper ocean affects ice growth and melt, upper ocean properties, and ocean ecosystems. Using field measurements, we found that the summer meltwater was equal to an 80 cm thick layer; 85 % of this meltwater flowed into the ocean and 15 % was stored in melt ponds.
Sönke Maus, Martin Schneebeli, and Andreas Wiegmann
The Cryosphere, 15, 4047–4072, https://doi.org/10.5194/tc-15-4047-2021, https://doi.org/10.5194/tc-15-4047-2021, 2021
Short summary
Short summary
As the hydraulic permeability of sea ice is difficult to measure, observations are sparse. The present work presents numerical simulations of the permeability of young sea ice based on a large set of 3D X-ray tomographic images. It extends the relationship between permeability and porosity available so far down to brine porosities near the percolation threshold of a few per cent. Evaluation of pore scales and 3D connectivity provides novel insight into the percolation behaviour of sea ice.
Cyril Palerme and Malte Müller
The Cryosphere, 15, 3989–4004, https://doi.org/10.5194/tc-15-3989-2021, https://doi.org/10.5194/tc-15-3989-2021, 2021
Short summary
Short summary
Methods have been developed for calibrating sea ice drift forecasts from an operational prediction system using machine learning algorithms. These algorithms use predictors from sea ice concentration observations during the initialization of the forecasts, sea ice and wind forecasts, and some geographical information. Depending on the calibration method, the mean absolute error is reduced between 3.3 % and 8.0 % for the direction and between 2.5 % and 7.1 % for the speed of sea ice drift.
Dongyang Fu, Bei Liu, Yali Qi, Guo Yu, Haoen Huang, and Lilian Qu
The Cryosphere, 15, 3797–3811, https://doi.org/10.5194/tc-15-3797-2021, https://doi.org/10.5194/tc-15-3797-2021, 2021
Short summary
Short summary
Our results show three main sea ice drift patterns have different multiscale variation characteristics. The oscillation period of the third sea ice transport pattern is longer than the other two, and the ocean environment has a more significant influence on it due to the different regulatory effects of the atmosphere and ocean environment on sea ice drift patterns on various scales. Our research can provide a basis for the study of Arctic sea ice dynamics parameterization in numerical models.
Andrii Murdza, Arttu Polojärvi, Erland M. Schulson, and Carl E. Renshaw
The Cryosphere, 15, 2957–2967, https://doi.org/10.5194/tc-15-2957-2021, https://doi.org/10.5194/tc-15-2957-2021, 2021
Short summary
Short summary
The strength of refrozen floes or piles of ice rubble is an important factor in assessing ice-structure interactions, as well as the integrity of an ice cover itself. The results of this paper provide unique data on the tensile strength of freeze bonds and are the first measurements to be reported. The provided information can lead to a better understanding of the behavior of refrozen ice floes and better estimates of the strength of an ice rubble pile.
H. Jakob Belter, Thomas Krumpen, Luisa von Albedyll, Tatiana A. Alekseeva, Gerit Birnbaum, Sergei V. Frolov, Stefan Hendricks, Andreas Herber, Igor Polyakov, Ian Raphael, Robert Ricker, Sergei S. Serovetnikov, Melinda Webster, and Christian Haas
The Cryosphere, 15, 2575–2591, https://doi.org/10.5194/tc-15-2575-2021, https://doi.org/10.5194/tc-15-2575-2021, 2021
Short summary
Short summary
Summer sea ice thickness observations based on electromagnetic induction measurements north of Fram Strait show a 20 % reduction in mean and modal ice thickness from 2001–2020. The observed variability is caused by changes in drift speeds and consequential variations in sea ice age and number of freezing-degree days. Increased ocean heat fluxes measured upstream in the source regions of Arctic ice seem to precondition ice thickness, which is potentially still measurable more than a year later.
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
Short summary
We compare the mass budget of the Arctic sea ice in a number of the latest climate models. New output has been defined that allows us to compare the processes of sea ice growth and loss in a more detailed way than has previously been possible. We find that that the models are strikingly similar in terms of the major processes causing the annual growth and loss of Arctic sea ice and that the budget terms respond in a broadly consistent way as the climate warms during the 21st century.
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, Alvaro Ivanoff, and Sahra Kacimi
The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021, https://doi.org/10.5194/tc-15-821-2021, 2021
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Leandro Ponsoni, François Massonnet, David Docquier, Guillian Van Achter, and Thierry Fichefet
The Cryosphere, 14, 2409–2428, https://doi.org/10.5194/tc-14-2409-2020, https://doi.org/10.5194/tc-14-2409-2020, 2020
Short summary
Short summary
The continuous melting of the Arctic sea ice observed in the last decades has a significant impact at global and regional scales. To understand the amplitude and consequences of this impact, the monitoring of the total sea ice volume is crucial. However, in situ monitoring in such a harsh environment is hard to perform and far too expensive. This study shows that four well-placed sampling locations are sufficient to explain about 70 % of the inter-annual changes in the pan-Arctic sea ice volume.
H. Jakob Belter, Thomas Krumpen, Stefan Hendricks, Jens Hoelemann, Markus A. Janout, Robert Ricker, and Christian Haas
The Cryosphere, 14, 2189–2203, https://doi.org/10.5194/tc-14-2189-2020, https://doi.org/10.5194/tc-14-2189-2020, 2020
Short summary
Short summary
The validation of satellite sea ice thickness (SIT) climate data records with newly acquired moored sonar SIT data shows that satellite products provide modal rather than mean SIT in the Laptev Sea region. This tendency of satellite-based SIT products to underestimate mean SIT needs to be considered for investigations of sea ice volume transports. Validation of satellite SIT in the first-year-ice-dominated Laptev Sea will support algorithm development for more reliable SIT records in the Arctic.
Mark S. Handcock and Marilyn N. Raphael
The Cryosphere, 14, 2159–2172, https://doi.org/10.5194/tc-14-2159-2020, https://doi.org/10.5194/tc-14-2159-2020, 2020
Short summary
Short summary
Traditional methods of calculating the annual cycle of sea ice extent disguise the variation of amplitude and timing (phase) of the advance and retreat of the ice. We present a multiscale model that explicitly allows them to vary, resulting in a much improved representation of the cycle. We show that phase is the dominant contributor to the variability in the cycle and that the anomalous decay of Antarctic sea ice in 2016 was due largely to a change of phase.
Rebecca J. Rolph, Daniel L. Feltham, and David Schröder
The Cryosphere, 14, 1971–1984, https://doi.org/10.5194/tc-14-1971-2020, https://doi.org/10.5194/tc-14-1971-2020, 2020
Short summary
Short summary
It is well known that the Arctic sea ice extent is declining, and it is often assumed that the marginal ice zone (MIZ), the area of partial sea ice cover, is consequently increasing. However, we find no trend in the MIZ extent during the last 40 years from observations that is consistent with a widening of the MIZ as it moves northward. Differences of MIZ extent between different satellite retrievals are too large to provide a robust basis to verify model simulations of MIZ extent.
Mark A. Tschudi, Walter N. Meier, and J. Scott Stewart
The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020, https://doi.org/10.5194/tc-14-1519-2020, 2020
Short summary
Short summary
A new version of a set of data products that contain the velocity of sea ice and the age of this ice has been developed. We provide a history of the product development and discuss the improvements to the algorithms that create these products. We find that changes in sea ice motion and age show a significant shift in the Arctic ice cover, from a pack with a high concentration of older ice to a sea ice cover dominated by younger ice, which is more susceptible to summer melt.
Angela Cheng, Barbara Casati, Adrienne Tivy, Tom Zagon, Jean-François Lemieux, and L. Bruno Tremblay
The Cryosphere, 14, 1289–1310, https://doi.org/10.5194/tc-14-1289-2020, https://doi.org/10.5194/tc-14-1289-2020, 2020
Short summary
Short summary
Sea ice charts by the Canadian Ice Service (CIS) contain visually estimated ice concentration produced by analysts. The accuracy of manually derived ice concentrations is not well understood. The subsequent uncertainty of ice charts results in downstream uncertainties for ice charts users, such as models and climatology studies, and when used as a verification source for automated sea ice classifiers. This study quantifies the level of accuracy and inter-analyst agreement for ice charts by CIS.
Young Jun Kim, Hyun-Cheol Kim, Daehyeon Han, Sanggyun Lee, and Jungho Im
The Cryosphere, 14, 1083–1104, https://doi.org/10.5194/tc-14-1083-2020, https://doi.org/10.5194/tc-14-1083-2020, 2020
Short summary
Short summary
In this study, we proposed a novel 1-month sea ice concentration (SIC) prediction model with eight predictors using a deep-learning approach, convolutional neural networks (CNNs). The proposed CNN model was evaluated and compared with the two baseline approaches, random-forest and simple-regression models, resulting in better performance. This study also examined SIC predictions for two extreme cases in 2007 and 2012 in detail and the influencing factors through a sensitivity analysis.
Shiming Xu, Lu Zhou, and Bin Wang
The Cryosphere, 14, 751–767, https://doi.org/10.5194/tc-14-751-2020, https://doi.org/10.5194/tc-14-751-2020, 2020
Short summary
Short summary
Sea ice thickness parameters are key to polar climate change studies and forecasts. Airborne and satellite measurements provide complementary observational capabilities. The study analyzes the variability in freeboard and snow depth measurements and its changes with scale in Operation IceBridge, CryoVEx, CryoSat-2 and ICESat. Consistency between airborne and satellite data is checked. Analysis calls for process-oriented attribution of variability and covariability features of these parameters.
Valeria Selyuzhenok, Igor Bashmachnikov, Robert Ricker, Anna Vesman, and Leonid Bobylev
The Cryosphere, 14, 477–495, https://doi.org/10.5194/tc-14-477-2020, https://doi.org/10.5194/tc-14-477-2020, 2020
Short summary
Short summary
This study explores a link between the long-term variations in the integral sea ice volume in the Greenland Sea and oceanic processes. We link the changes in the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) regional sea ice volume with the mixed layer, depth and upper-ocean heat content derived using the ARMOR dataset.
Chao Min, Longjiang Mu, Qinghua Yang, Robert Ricker, Qian Shi, Bo Han, Renhao Wu, and Jiping Liu
The Cryosphere, 13, 3209–3224, https://doi.org/10.5194/tc-13-3209-2019, https://doi.org/10.5194/tc-13-3209-2019, 2019
Short summary
Short summary
Sea ice volume export through the Fram Strait has been studied using varied methods, however, mostly in winter months. Here we report sea ice volume estimates that extend over summer seasons. A recent developed sea ice thickness dataset, in which CryoSat-2 and SMOS sea ice thickness together with SSMI/SSMIS sea ice concentration are assimilated, is used and evaluated in the paper. Results show our estimate is more reasonable than that calculated by satellite data only.
M. Jeffrey Mei, Ted Maksym, Blake Weissling, and Hanumant Singh
The Cryosphere, 13, 2915–2934, https://doi.org/10.5194/tc-13-2915-2019, https://doi.org/10.5194/tc-13-2915-2019, 2019
Short summary
Short summary
Sea ice thickness is hard to measure directly, and current datasets are very limited to sporadically conducted drill lines. However, surface elevation is much easier to measure. Converting surface elevation to ice thickness requires making assumptions about snow depth and density, which leads to large errors (and may not generalize to new datasets). A deep learning method is presented that uses the surface morphology as a direct predictor of sea ice thickness, with testing errors of < 20 %.
Pierre Rampal, Véronique Dansereau, Einar Olason, Sylvain Bouillon, Timothy Williams, Anton Korosov, and Abdoulaye Samaké
The Cryosphere, 13, 2457–2474, https://doi.org/10.5194/tc-13-2457-2019, https://doi.org/10.5194/tc-13-2457-2019, 2019
Short summary
Short summary
In this article, we look at how the Arctic sea ice cover, as a solid body, behaves on different temporal and spatial scales. We show that the numerical model neXtSIM uses a new approach to simulate the mechanics of sea ice and reproduce the characteristics of how sea ice deforms, as observed by satellite. We discuss the importance of this model performance in the context of simulating climate processes taking place in polar regions, like the exchange of energy between the ocean and atmosphere.
Alberto Alberello, Miguel Onorato, Luke Bennetts, Marcello Vichi, Clare Eayrs, Keith MacHutchon, and Alessandro Toffoli
The Cryosphere, 13, 41–48, https://doi.org/10.5194/tc-13-41-2019, https://doi.org/10.5194/tc-13-41-2019, 2019
Short summary
Short summary
Existing observations do not provide quantitative descriptions of the floe size distribution for pancake ice floes. This is important during the Antarctic winter sea ice expansion, when hundreds of kilometres of ice cover around the Antarctic continent are composed of pancake floes (D = 0.3–3 m). Here, a new set of images from the Antarctic marginal ice zone is used to measure the shape of individual pancakes for the first time and to infer their size distribution.
Frédéric Laliberté, Stephen E. L. Howell, Jean-François Lemieux, Frédéric Dupont, and Ji Lei
The Cryosphere, 12, 3577–3588, https://doi.org/10.5194/tc-12-3577-2018, https://doi.org/10.5194/tc-12-3577-2018, 2018
Short summary
Short summary
Ice that forms over marginal seas often gets anchored and becomes landfast. Landfast ice is fundamental to the local ecosystems, is of economic importance as it leads to hazardous seafaring conditions and is also a choice hunting ground for both the local population and large predators. Using observations and climate simulations, this study shows that, especially in the Canadian Arctic, landfast ice might be more resilient to climate change than is generally thought.
Iina Ronkainen, Jonni Lehtiranta, Mikko Lensu, Eero Rinne, Jari Haapala, and Christian Haas
The Cryosphere, 12, 3459–3476, https://doi.org/10.5194/tc-12-3459-2018, https://doi.org/10.5194/tc-12-3459-2018, 2018
Short summary
Short summary
We quantify the sea ice thickness variability in the Bay of Bothnia using various observational data sets. For the first time we use helicopter and shipborne electromagnetic soundings to study changes in drift ice of the Bay of Bothnia. Our results show that the interannual variability of ice thickness is larger in the drift ice zone than in the fast ice zone. Furthermore, the mean thickness of heavily ridged ice near the coast can be several times larger than that of fast ice.
Cited articles
Björk, G. and Söderkvist, J.: Dependence of the Arctic Ocean ice thickness distribution on the poleward energy flux in the atmosphere, J. Geophys. Res.-Oceans, 107, 3173, https://doi.org/10.1029/2000JC000723, 2002.
Cappelen, J.: Weather observations from Greenland 1958–2013, Observation data with description, Tech. Rep., DMI Technical Report 14-08, Danish Meteorological Institute, Copenhagen, 2014.
Chapman, W. L. and Walsh, J. E.: Arctic and Southern Ocean Sea Ice Concentrations, Boulder, Colorado USA: National Snow and Ice Data Center, https://doi.org/10.7265/N5057CVT (last access: 20 January 1996), 1991.
Comiso, J. C.: Large decadal decline of the Arctic multiyear ice cover, J. Clim., 25, 1176–1193, 2012.
Daniault, N., Mercier, H., and Lherminier, P.: The 1992–2009 transport variability of the East Greenland-Irminger Current at 60° N, Geophys. Res. Lett., 38, L07601, https://doi.org/10.1029/2011GL046863, 2011.
de Steur, L., Hansen, E., Mauritzen, C., Beszczynska-Möller, A., and Fahrbach, E.: Impact of recirculation on the East Greenland Current in Fram Strait: Results from moored current meter measurements between 1997 and 2009, Deep-Sea Res. Pt. I, 92, 26–40, 2014.
Francis, J. A., Hunter, E., Key, J. R., and Wang X.: Clues to variability in Arctic minimum sea ice extent, Geophys. Res. Lett., 32, L21501, https://doi.org/10.1029/2005GL024376, 2005.
Fučkar, A., Guemas, V., Johnson, N. C., Massonnet, F., and Doblas-Reyes, F. J.: Clusters of interannual sea ice variability in the northern hemisphere, Clim. Dynam., 47, 1527–1543, https://doi.org/10.1007/s00382-015-2917-2, 2016.
Graversen, R. G., Mauritsen, T., Drijfhout, S., Tjernström, M., and Mårtensson, S.: Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007, Clim. Dynam., 36, 11–12, https://doi.org/10.1007/s00382-010-0809-z, 2103-2112, 2011.
Hakkinen, S., Proshutinsky, A., and Ashik, I.: Sea ice drift in the Arctic since the 1950s, Geophys. Res. Lett., 35, L19704, https://doi.org/10.1029/2008GL034791, 2008.
Hansen, E., Gerland, S., Granskog, M., Pavlova, O., Renner, A., Haapala, J., Løyning, T., and Tschudi, M.: Thinning of Arctic sea ice observed in Fram Strait: 1990–2011, J. Geophys. Res.-Oceans, 118, 5202–5221, https://doi.org/10.1002/jgrc.20393, 2013.
Hilmer, M. and Jung, T.: Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic sea ice export, Geophys. Res. Lett., 27, 989–992, 2000.
Hutchings, J. K. and Perovich, D. K.: Preconditioning of the 2007 sea-ice melt in the eastern Beaufort Sea, Arctic Ocean, Ann. Glaciol., 56, 94–98, https://doi.org/10.3189/2015AoG69A006, 2015.
Isachsen, P. E., La Casce, J., Mauritzen, C., and Häkkinen, S.: Wind driven variability of the large-scale recirculating flow in the Nordic Seas and Arctic Ocean, J. Phys. Oceanogr., 33, 2534–2550, 2003.
Kay, J. E., Holland, M. M., and Jahn, A.: Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world, Geophys. Res. Lett., 38, L15708, https://doi.org/10.1029/2011GL048008, 2011.
Kloster, K. and Sandven, S.: Ice Motion and Ice Area Flux in the Fram Strait at 79-81N, Technical Report, 322d, Nansen Environmental and Remote Sensing Center, Bergen, Norway, https://www.nersc.no/sites/www.nersc.no/files/NERSC-TecRep-322d(2015).pdf, 2015.
Krumpen, T., Gerdes, R., Haas, C., Hendricks, S., Herber, A., Selyuzhenok, V., Smedsrud, L., and Spreen, G.: Recent summer sea ice thickness surveys in Fram Strait and associated ice volume fluxes, The Cryosphere, 10, 523–534, https://doi.org/10.5194/tc-10-523-2016, 2016
Kwok, R.: Outflow of Arctic Ocean sea ice into the Greenland and Barents Seas: 1979–2007, J. Clim., 22, 2438–2457, 2009.
Kwok, R. and Cunningham, G. F.: Contribution of melt in the Beaufort Sea to the decline in Arctic multiyear sea ice coverage: 1993–2009, Geophys. Res. Lett., 37, L20501, https://doi.org/10.1029/2010GL044678, 2010.
Kwok, R., Spreen, G., and Pang, S.: Arctic sea ice circulation and drift speed: Decadal trends and ocean currents, J. Geophys. Res.-Oceans, 118, 2408–2425, 2013.
Landy, J. C., Ehn, J. K., and Barber, D. G.: Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10714–10720, https://doi.org/10.1002/2015GL066712, 2015.
Langehaug, H. R., Geyer, F., Smedsrud, L. H., and Gao, Y.: Arctic sea ice decline and ice export in the CMIP5 historical simulations, Ocean Model., 71, 114–126, https://doi.org/10.1016/j.ocemod.2012.12.006, 2013.
Lindsay, R. and Schweiger, A.: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations, The Cryosphere, 9, 269–283, https://doi.org/10.5194/tc-9-269-2015, 2015.
Markus, T., Stroeve, J. C., and Miller, J.: Recent changes in Arctic sea ice melt onset, freezeup, and melt season length, J. Geophys. Res., 114, C12024, https://doi.org/10.1029/2009JC005436, 2009.
Nghiem, S., Rigor, I., Perovich, D., Clemente-Colón, P., Weatherly, J., and Neumann, G.: Rapid reduction of Arctic perennial sea ice, Geophys. Res. Lett., 34, L19504, https://doi.org/10.1029/2007GL031138, 2007.
Perovich, D. K., Light, B., Eicken, H., Jones, K. F., Runciman, K., and Nghiem, S. V.: Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the icealbedo feedback, Geophys. Res. Lett., 34, L19505, https://doi.org/10.1029/2007GL031480, 2007.
Rampal, P., Weiss, J., and Marsan, D.: Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007, J. Geophys. Res., 114, C05013, https://doi.org/10.1029/2008JC005066, 2009.
Rigor, I. G., Wallace, J. M., and Colony, R. L.: Response of Sea Ice to the Arctic Oscillation, J. Clim., 15, 2648–2663, 2002.
Schröder, D., Feltham, D. L., Flocco, D., and Tsamados, M.: September Arctic sea-ice minimum predicted by spring meltpond fraction, Nature Climate Change, 4, 353–357, 2014.
Serreze, M. C., Barrett, A. P., Slater, A. J., Steele, M., Zhang, J., and Trenberth, K. E.: The large-scale energy budget of the Arctic, J. Geophys. Res., 112, D11122, https://doi.org/10.1029/2006JD008230, 2007.
Smedsrud, L. H., Sirevaag, A., Kloster, K., Sorteberg, A., and Sandven, S.: Recent wind driven high sea ice area export in the Fram Strait contributes to Arctic sea ice decline, The Cryosphere, 5, 821–829, https://doi.org/10.5194/tc-5-821-2011, 2011.
Smedsrud, L. H., Esau, I., Ingvaldsen, R.B., Eldevik, T., Haugan, P.M., Li, C., Lien, V. S., Olsen, A., Omar, A. M., Otterå, O. H., Risebrobakken, B., Sandø, A. B., Semenov, V. A., and Sorokina, S. A.: The role of the Barents Sea in the Arctic climate system, Rev. Geophys., 51, 415–449, https://doi.org/10.1002/rog.20017, 2013.
Spreen, G., Kern, S., Stammer, D., and Hansen, E.: Fram Strait sea ice volume export estimated between 2003 and 2008 from satellite data, Geophys. Res. Lett., 36, L19502, https://doi.org/10.1029/2009GL039591, 2009.
Spreen, G., Kwok, R., and Menemenlis, D.: Trends in Arctic sea ice drift and role of wind forcing: 1992–2009, Geophys. Res. Lett., 38, L19502, https://doi.org/10.1029/2009GL039591, 2011.
Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., and Meier, W. N.: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations, Geoph. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676, 2012.
Stroeve, J. C., Markus, T., Boisvert, L., Miller J., and Barrett, A.: Changes in Arctic melt season and implications for sea ice loss, Geophys. Res. Lett., 41, 1216–1225, https://doi.org/10.1002/2013GL058951, 2014.
Stroeve, J. C. and Notz, D.: Insights on past and future sea-ice evolution from combining observations and models, Glob. Planet. Change 135, 119–132, https://doi.org/10.1016/j.gloplacha.2015.10.011, 2015.
Thorndike, A. and Colony, R.: Sea ice motion in response to geostrophic winds, J. Geophys. Res.-Oceans, 87, 5845–5852, 1982.
Tsukernik, M., Deser, C., Alexander M., and Tomas, R.: Atmospheric forcing of Fram Strait sea ice export: a closer look, Clim. Dynam., 35, 1349–1360, https://doi.org/10.1007/s00382-009-0647-z, 2010.
van Angelen, J. H., van den Broeke, M. R., and Kwok, R.: The Greenland Sea Jet: A mechanism for wind-driven sea ice export through Fram Strait, Geophys. Res. Lett., 38, L12805, https://doi.org/10.1029/2011GL047837, 2011.
Vihma, T.: Effects of Arctic Sea Ice Decline on Weather and Climate: A Review, Surv. Geophys., 35, 1175–1214, https://doi.org/10.1007/s10712-014-9284-0, 2014.
Walsh, J. E., Chapman, W. L., and Fetterer, F.: Gridded monthly sea ice extent and concentration, 1850 onwards, Boulder, Colorado USA, National Snow and Ice Data Center, Digital media, 2015.
Walsh, J. E., Fetterer, F., Scott Stewart, J., and Chapman, W. L.: A database for depicting Arctic sea ice variations back to 1850, Geogr. Rev., 107, 89–107, https://doi.org/10.1111/j.1931-0846.2016.12195.x, 2017.
Wang, J., Zhang, J., Watanabe, E., Ikeda, M., Mizobata, K., Walsh, J. E., Bai, X., and Wu, B.: Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent?, Geophys. Res. Lett., 36, L05706, https://doi.org/10.1029/2008GL036706, 2009.
Wettstein, J. J. and Deser, C.: Internal variability in projections of twenty-first-century Arctic sea ice loss: Role of the large-scale atmospheric circulation, J. Clim., 27, 527–550, 2014.
Widell, K., Østerhus, S., and Gammelsrød, T.: Sea ice velocity in the Fram Strait monitored by moored instruments, Geophys. Res. Lett., 30, 1982, https://doi.org/10.1029/2003GL018119, 2003.
Williams, J. Tremblay, B., and Newton, R.: Dynamic preconditioning of the September sea-ice extent minimum, J. Clim., 29, 5879–5891, https://doi.org/10.1175/JCLI-D-15-0515.1, 2016.
Wu, B., Wang, J., and Walsh, J. E.: Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion, J. Clim., 19, 210–225, 2016.
Zhang, R.: Mechanisms for low-frequency variability of summer Arctic sea ice extent, P. Natl. Acad. Sci. USA, 112, 4570–4575, 2015.
Zwally, H. J. and Gloersen, P.: Arctic sea ice surviving the summer melt: interannual variability and decreasing trend, J. Glaciol., 54, 279–296, 2008.
Zygmuntowska, M., Rampal, P., Ivanova, N., and Smedsrud, L. H.: Uncertainties in Arctic sea ice thickness and volume: new estimates and implications for trends, The Cryosphere, 8, 705–720, https://doi.org/10.5194/tc-8-705-2014, 2014.
Short summary
Export of Arctic sea ice area southwards through the Fram Strait from 1935 to 2014 is calculated based on satellite radar images and surface pressure observations. The annual mean export is 880 000 km2, representing 10 % of the Arctic sea ice area. In recent years the export has been above 1 million km2, and there are positive trends over the last 30 years. Increased ice export during spring and summer contributes to more open water in September, and this correlations has increased over time.
Export of Arctic sea ice area southwards through the Fram Strait from 1935 to 2014 is calculated...