Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.713 IF 4.713
  • IF 5-year value: 4.927 IF 5-year
    4.927
  • CiteScore value: 8.0 CiteScore
    8.0
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 2.353 SJR 2.353
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 53 h5-index 53
Volume 11, issue 6
The Cryosphere, 11, 2919–2942, 2017
https://doi.org/10.5194/tc-11-2919-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Interactions between climate change and the Cryosphere: SVALI,...

The Cryosphere, 11, 2919–2942, 2017
https://doi.org/10.5194/tc-11-2919-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 13 Dec 2017

Research article | 13 Dec 2017

Effects of snow grain shape on climate simulations: sensitivity tests with the Norwegian Earth System Model

Petri Räisänen et al.

Related authors

Aerosol optical depth comparison between GAW-PFR and AERONET-Cimel radiometers from long-term (2005–2015) 1 min synchronous measurements
Emilio Cuevas, Pedro Miguel Romero-Campos, Natalia Kouremeti, Stelios Kazadzis, Petri Räisänen, Rosa Delia García, Africa Barreto, Carmen Guirado-Fuentes, Ramón Ramos, Carlos Toledano, Fernando Almansa, and Julian Gröbner
Atmos. Meas. Tech., 12, 4309–4337, https://doi.org/10.5194/amt-12-4309-2019,https://doi.org/10.5194/amt-12-4309-2019, 2019
Short summary
Role of climate model dynamics in estimated climate responses to anthropogenic aerosols
Kalle Nordling, Hannele Korhonen, Petri Räisänen, Muzaffer Ege Alper, Petteri Uotila, Declan O'Donnell, and Joonas Merikanto
Atmos. Chem. Phys., 19, 9969–9987, https://doi.org/10.5194/acp-19-9969-2019,https://doi.org/10.5194/acp-19-9969-2019, 2019
Short summary
Anthropogenic aerosol forcing – insights from multiple estimates from aerosol-climate models with reduced complexity
Stephanie Fiedler, Stefan Kinne, Wan Ting Katty Huang, Petri Räisänen, Declan O'Donnell, Nicolas Bellouin, Philip Stier, Joonas Merikanto, Twan van Noije, Risto Makkonen, and Ulrike Lohmann
Atmos. Chem. Phys., 19, 6821–6841, https://doi.org/10.5194/acp-19-6821-2019,https://doi.org/10.5194/acp-19-6821-2019, 2019
The regional climate model REMO (v2015) coupled with the 1-D freshwater lake model FLake (v1): Fenno-Scandinavian climate and lakes
Joni-Pekka Pietikäinen, Tiina Markkanen, Kevin Sieck, Daniela Jacob, Johanna Korhonen, Petri Räisänen, Yao Gao, Jaakko Ahola, Hannele Korhonen, Ari Laaksonen, and Jussi Kaurola
Geosci. Model Dev., 11, 1321–1342, https://doi.org/10.5194/gmd-11-1321-2018,https://doi.org/10.5194/gmd-11-1321-2018, 2018
Short summary
The HIRLAM fast radiation scheme for mesoscale numerical weather prediction models
Laura Rontu, Emily Gleeson, Petri Räisänen, Kristian Pagh Nielsen, Hannu Savijärvi, and Bent Hansen Sass
Adv. Sci. Res., 14, 195–215, https://doi.org/10.5194/asr-14-195-2017,https://doi.org/10.5194/asr-14-195-2017, 2017
Short summary

Related subject area

Numerical Modelling
Satellite-retrieved sea ice concentration uncertainty and its effect on modelling wave evolution in marginal ice zones
Takehiko Nose, Takuji Waseda, Tsubasa Kodaira, and Jun Inoue
The Cryosphere, 14, 2029–2052, https://doi.org/10.5194/tc-14-2029-2020,https://doi.org/10.5194/tc-14-2029-2020, 2020
Short summary
Ocean-forced evolution of the Amundsen Sea catchment, West Antarctica, by 2100
Alanna V. Alevropoulos-Borrill, Isabel J. Nias, Antony J. Payne, Nicholas R. Golledge, and Rory J. Bingham
The Cryosphere, 14, 1245–1258, https://doi.org/10.5194/tc-14-1245-2020,https://doi.org/10.5194/tc-14-1245-2020, 2020
Multi-physics ensemble snow modelling in the western Himalaya
David M. W. Pritchard, Nathan Forsythe, Greg O'Donnell, Hayley J. Fowler, and Nick Rutter
The Cryosphere, 14, 1225–1244, https://doi.org/10.5194/tc-14-1225-2020,https://doi.org/10.5194/tc-14-1225-2020, 2020
Short summary
Parameter sensitivity analysis of dynamic ice sheet models – numerical computations
Gong Cheng and Per Lötstedt
The Cryosphere, 14, 673–691, https://doi.org/10.5194/tc-14-673-2020,https://doi.org/10.5194/tc-14-673-2020, 2020
Short summary
Deep learning applied to glacier evolution modelling
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, Clovis Galiez, Thomas Condom, and Eric Sauquet
The Cryosphere, 14, 565–584, https://doi.org/10.5194/tc-14-565-2020,https://doi.org/10.5194/tc-14-565-2020, 2020
Short summary

Cited articles

Aoki, T., Aoki, T., Fukabori, M., Hachikubo, A., Tachibana, Y., and Nishio, F.: Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface, J. Geophys. Res., 105, 10219–10236, https://doi.org/10.1029/1999JD901122, 2000.
Aoki, T., Kuchiki, K., Niwano, M., Kodama, Y., Hosaka, M., and Tanaka, T.: Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models, J. Geophys. Res., 116, D11114, https://doi.org/10.1029/2010JD015507, 2011.
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjansson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013.
Bitz, C. M., Shell, K. M., Gent, P. R., Bailey, D. A., Danabasoglu, G., Armour, K. C., Holland, M. M., and Kiehl, J. T.: Climate sensitivity of the Community Climate System Model, version 4, J. Climate, 25, 3053–3070, https://doi.org/10.1175/JCLI-D-11-00290.1, 2012.
Briegleb, B. P. and Light, B.: A delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model, NCAR Technical Note NCAR/TN-472+STR, https://doi.org/10.5065/D6B27S71, 2007.
Publications Copernicus
Download
Short summary
While snow grains are non-spherical, spheres are often assumed in radiation calculations. Here, we replace spherical snow grains with non-spherical snow grains in a climate model. This leads to a somewhat higher snow albedo (by 0.02–0.03), increased snow and sea ice cover, and a distinctly colder climate (by over 1 K in the global mean). It also impacts the radiative effects of aerosols in snow. Overall, this work highlights the important role of snow albedo parameterization for climate models.
While snow grains are non-spherical, spheres are often assumed in radiation calculations. Here,...
Citation