Research article 11 Dec 2017
Research article | 11 Dec 2017
Relationships between Arctic sea ice drift and strength modelled by NEMO-LIM3.6
David Docquier et al.
Related authors
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
Short summary
We compare the mass budget of the Arctic sea ice in a number of the latest climate models. New output has been defined that allows us to compare the processes of sea ice growth and loss in a more detailed way than has previously been possible. We find that that the models are strikingly similar in terms of the major processes causing the annual growth and loss of Arctic sea ice and that the budget terms respond in a broadly consistent way as the climate warms during the 21st century.
Veronika Eyring, Lisa Bock, Axel Lauer, Mattia Righi, Manuel Schlund, Bouwe Andela, Enrico Arnone, Omar Bellprat, Björn Brötz, Louis-Philippe Caron, Nuno Carvalhais, Irene Cionni, Nicola Cortesi, Bas Crezee, Edouard L. Davin, Paolo Davini, Kevin Debeire, Lee de Mora, Clara Deser, David Docquier, Paul Earnshaw, Carsten Ehbrecht, Bettina K. Gier, Nube Gonzalez-Reviriego, Paul Goodman, Stefan Hagemann, Steven Hardiman, Birgit Hassler, Alasdair Hunter, Christopher Kadow, Stephan Kindermann, Sujan Koirala, Nikolay Koldunov, Quentin Lejeune, Valerio Lembo, Tomas Lovato, Valerio Lucarini, François Massonnet, Benjamin Müller, Amarjiit Pandde, Núria Pérez-Zanón, Adam Phillips, Valeriu Predoi, Joellen Russell, Alistair Sellar, Federico Serva, Tobias Stacke, Ranjini Swaminathan, Verónica Torralba, Javier Vegas-Regidor, Jost von Hardenberg, Katja Weigel, and Klaus Zimmermann
Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020, https://doi.org/10.5194/gmd-13-3383-2020, 2020
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility.
Leandro Ponsoni, François Massonnet, David Docquier, Guillian Van Achter, and Thierry Fichefet
The Cryosphere, 14, 2409–2428, https://doi.org/10.5194/tc-14-2409-2020, https://doi.org/10.5194/tc-14-2409-2020, 2020
Short summary
Short summary
The continuous melting of the Arctic sea ice observed in the last decades has a significant impact at global and regional scales. To understand the amplitude and consequences of this impact, the monitoring of the total sea ice volume is crucial. However, in situ monitoring in such a harsh environment is hard to perform and far too expensive. This study shows that four well-placed sampling locations are sufficient to explain about 70 % of the inter-annual changes in the pan-Arctic sea ice volume.
Leandro Ponsoni, François Massonnet, Thierry Fichefet, Matthieu Chevallier, and David Docquier
The Cryosphere, 13, 521–543, https://doi.org/10.5194/tc-13-521-2019, https://doi.org/10.5194/tc-13-521-2019, 2019
Short summary
Short summary
The Arctic is a main component of the Earth's climate system. It is fundamental to understand the behavior of Arctic sea ice coverage over time and in space due to many factors, e.g., shipping lanes, the travel and tourism industry, hunting and fishing activities, mineral resource extraction, and the potential impact on the weather in midlatitude regions. In this work we use observations and results from models to understand how variations in the sea ice thickness change over time and in space.
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
Short summary
We compare the mass budget of the Arctic sea ice in a number of the latest climate models. New output has been defined that allows us to compare the processes of sea ice growth and loss in a more detailed way than has previously been possible. We find that that the models are strikingly similar in terms of the major processes causing the annual growth and loss of Arctic sea ice and that the budget terms respond in a broadly consistent way as the climate warms during the 21st century.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Almut Arneth, Thomas Arsouze, Tommi Bergmann, Raffaele Bernadello, Souhail Bousetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, Francois Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O’Donnell, Pirrka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-446, https://doi.org/10.5194/gmd-2020-446, 2021
Preprint under review for GMD
Short summary
Short summary
The Earth System Model EC-Earth3 is documented here. Key performance metrics show physical behaviour and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Qian Shi, Qinghua Yang, Longjiang Mu, Jinfei Wang, François Massonnet, and Matthew R. Mazloff
The Cryosphere, 15, 31–47, https://doi.org/10.5194/tc-15-31-2021, https://doi.org/10.5194/tc-15-31-2021, 2021
Short summary
Short summary
The ice thickness from four state-of-the-art reanalyses (GECCO2, SOSE, NEMO-EnKF and GIOMAS) are evaluated against that from remote sensing and in situ observations in the Weddell Sea, Antarctica. Most of the reanalyses can reproduce ice thickness in the central and eastern Weddell Sea but failed to capture the thick and deformed ice in the western Weddell Sea. These results demonstrate the possibilities and limitations of using current sea-ice reanalysis in Antarctic climate research.
Tian Tian, Shuting Yang, Mehdi Pasha Karami, François Massonnet, Tim Kruschke, and Torben Koenigk
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-331, https://doi.org/10.5194/gmd-2020-331, 2020
Preprint under review for GMD
Short summary
Short summary
Three decadal prediction experiments with EC-Earth3 are performed to investigate the impact of ocean, sea ice concentration and thickness initialization, respectively. We find that the persistence of perennial thick ice in the central Arctic can affect the sea ice predictability in its adjacent waters via advection process or wind, despite those regions can be seasonally ice free during recent two decades. This has implication for the coming decades as the thinning of Arctic sea ice continues.
Guillian Van Achter, Leandro Ponsoni, François Massonnet, Thierry Fichefet, and Vincent Legat
The Cryosphere, 14, 3479–3486, https://doi.org/10.5194/tc-14-3479-2020, https://doi.org/10.5194/tc-14-3479-2020, 2020
Short summary
Short summary
We document the spatio-temporal internal variability of Arctic sea ice thickness and its changes under anthropogenic forcing, which is key to understanding, and eventually predicting, the evolution of sea ice in response to climate change.
The patterns of sea ice thickness variability remain more or less stable during pre-industrial, historical and future periods, despite non-stationarity on short timescales. These patterns start to change once Arctic summer ice-free events occur, after 2050.
Christoph Kittel, Charles Amory, Cécile Agosta, Nicolas C. Jourdain, Stefan Hofer, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Charlotte Lang, Thierry Fichefet, and Xavier Fettweis
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-291, https://doi.org/10.5194/tc-2020-291, 2020
Revised manuscript accepted for TC
Short summary
Short summary
The future surface mass balance (SMB) of the Antarctic ice sheet (AIS) will influence the ice dynamics and the contribution of the ice sheet to the sea-level rise. We investigate the AIS sensitivity to different warmings using physical and statistical downscallings of CMIP5 and CMIP6 models. Our results highlight a contrasting effect between the grounded ice sheet (where the SMB is projected to increase) and ice shelves (where the future SMB depends on the emission scenario).
Eduardo Moreno-Chamarro, Pablo Ortega, and François Massonnet
Geosci. Model Dev., 13, 4773–4787, https://doi.org/10.5194/gmd-13-4773-2020, https://doi.org/10.5194/gmd-13-4773-2020, 2020
Short summary
Short summary
Climate models need to capture sea ice complexity to represent it realistically. Here we assess how distributing sea ice in discrete thickness categories impacts how sea ice variability is simulated in the NEMO3.6–LIM3 model. Simulations and satellite observations are compared by using k-means clustering of sea ice concentration in winter and summer between 1979 and 2014 at both poles. Little improvements in the modeled sea ice lead us to recommend using the standard number of five categories.
Veronika Eyring, Lisa Bock, Axel Lauer, Mattia Righi, Manuel Schlund, Bouwe Andela, Enrico Arnone, Omar Bellprat, Björn Brötz, Louis-Philippe Caron, Nuno Carvalhais, Irene Cionni, Nicola Cortesi, Bas Crezee, Edouard L. Davin, Paolo Davini, Kevin Debeire, Lee de Mora, Clara Deser, David Docquier, Paul Earnshaw, Carsten Ehbrecht, Bettina K. Gier, Nube Gonzalez-Reviriego, Paul Goodman, Stefan Hagemann, Steven Hardiman, Birgit Hassler, Alasdair Hunter, Christopher Kadow, Stephan Kindermann, Sujan Koirala, Nikolay Koldunov, Quentin Lejeune, Valerio Lembo, Tomas Lovato, Valerio Lucarini, François Massonnet, Benjamin Müller, Amarjiit Pandde, Núria Pérez-Zanón, Adam Phillips, Valeriu Predoi, Joellen Russell, Alistair Sellar, Federico Serva, Tobias Stacke, Ranjini Swaminathan, Verónica Torralba, Javier Vegas-Regidor, Jost von Hardenberg, Katja Weigel, and Klaus Zimmermann
Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020, https://doi.org/10.5194/gmd-13-3383-2020, 2020
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility.
Leandro Ponsoni, François Massonnet, David Docquier, Guillian Van Achter, and Thierry Fichefet
The Cryosphere, 14, 2409–2428, https://doi.org/10.5194/tc-14-2409-2020, https://doi.org/10.5194/tc-14-2409-2020, 2020
Short summary
Short summary
The continuous melting of the Arctic sea ice observed in the last decades has a significant impact at global and regional scales. To understand the amplitude and consequences of this impact, the monitoring of the total sea ice volume is crucial. However, in situ monitoring in such a harsh environment is hard to perform and far too expensive. This study shows that four well-placed sampling locations are sufficient to explain about 70 % of the inter-annual changes in the pan-Arctic sea ice volume.
François Massonnet, Martin Ménégoz, Mario Acosta, Xavier Yepes-Arbós, Eleftheria Exarchou, and Francisco J. Doblas-Reyes
Geosci. Model Dev., 13, 1165–1178, https://doi.org/10.5194/gmd-13-1165-2020, https://doi.org/10.5194/gmd-13-1165-2020, 2020
Short summary
Short summary
Earth system models (ESMs) are one of the cornerstones of modern climate science. They are usually run on high-performance computers (HPCs). Whether the choice of HPC can affect the model results is a question of importance for optimizing the design of scientific studies. Here, we introduce a protocol for testing the replicability of the EC-Earth3 ESM across different HPCs. We find the simulation results to be replicable only if specific precautions are taken at the compilation stage.
François Massonnet, Antoine Barthélemy, Koffi Worou, Thierry Fichefet, Martin Vancoppenolle, Clément Rousset, and Eduardo Moreno-Chamarro
Geosci. Model Dev., 12, 3745–3758, https://doi.org/10.5194/gmd-12-3745-2019, https://doi.org/10.5194/gmd-12-3745-2019, 2019
Short summary
Short summary
Sea ice thickness varies considerably on spatial scales of several meters. However, contemporary climate models cannot resolve such scales yet. This is why sea ice models used in climate models include an ice thickness distribution (ITD) to account for this unresolved variability. Here, we explore with the ocean–sea ice model NEMO3.6-LIM3 the sensitivity of simulated mean Arctic and Antarctic sea ice states to the way the ITD is discretized.
Christoph Heinze, Veronika Eyring, Pierre Friedlingstein, Colin Jones, Yves Balkanski, William Collins, Thierry Fichefet, Shuang Gao, Alex Hall, Detelina Ivanova, Wolfgang Knorr, Reto Knutti, Alexander Löw, Michael Ponater, Martin G. Schultz, Michael Schulz, Pier Siebesma, Joao Teixeira, George Tselioudis, and Martin Vancoppenolle
Earth Syst. Dynam., 10, 379–452, https://doi.org/10.5194/esd-10-379-2019, https://doi.org/10.5194/esd-10-379-2019, 2019
Short summary
Short summary
Earth system models for producing climate projections under given forcings include additional processes and feedbacks that traditional physical climate models do not consider. We present an overview of climate feedbacks for key Earth system components and discuss the evaluation of these feedbacks. The target group for this article includes generalists with a background in natural sciences and an interest in climate change as well as experts working in interdisciplinary climate research.
Leandro Ponsoni, François Massonnet, Thierry Fichefet, Matthieu Chevallier, and David Docquier
The Cryosphere, 13, 521–543, https://doi.org/10.5194/tc-13-521-2019, https://doi.org/10.5194/tc-13-521-2019, 2019
Short summary
Short summary
The Arctic is a main component of the Earth's climate system. It is fundamental to understand the behavior of Arctic sea ice coverage over time and in space due to many factors, e.g., shipping lanes, the travel and tourism industry, hunting and fishing activities, mineral resource extraction, and the potential impact on the weather in midlatitude regions. In this work we use observations and results from models to understand how variations in the sea ice thickness change over time and in space.
Marion Lebrun, Martin Vancoppenolle, Gurvan Madec, and François Massonnet
The Cryosphere, 13, 79–96, https://doi.org/10.5194/tc-13-79-2019, https://doi.org/10.5194/tc-13-79-2019, 2019
Short summary
Short summary
The present analysis shows that the increase in the Arctic ice-free season duration will be asymmetrical, with later autumn freeze-up contributing about twice as much as earlier spring retreat. This feature is robustly found in a hierarchy of climate models and is consistent with a simple mechanism: solar energy is absorbed more efficiently than it can be released in non-solar form and should emerge out of variability within the next few decades.
Christoph Kittel, Charles Amory, Cécile Agosta, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Coraline Wyard, Thierry Fichefet, and Xavier Fettweis
The Cryosphere, 12, 3827–3839, https://doi.org/10.5194/tc-12-3827-2018, https://doi.org/10.5194/tc-12-3827-2018, 2018
Short summary
Short summary
Regional climate models (RCMs) used to estimate the surface mass balance (SMB) of Antarctica depend on boundary forcing fields including sea surface conditions. Here, we assess the sensitivity of the Antarctic SMB to perturbations in sea surface conditions with the RCM MAR using unchanged atmospheric conditions. Significant SMB anomalies are found for SSC perturbations in the range of CMIP5 global climate model biases.
Paul J. Kushner, Lawrence R. Mudryk, William Merryfield, Jaison T. Ambadan, Aaron Berg, Adéline Bichet, Ross Brown, Chris Derksen, Stephen J. Déry, Arlan Dirkson, Greg Flato, Christopher G. Fletcher, John C. Fyfe, Nathan Gillett, Christian Haas, Stephen Howell, Frédéric Laliberté, Kelly McCusker, Michael Sigmond, Reinel Sospedra-Alfonso, Neil F. Tandon, Chad Thackeray, Bruno Tremblay, and Francis W. Zwiers
The Cryosphere, 12, 1137–1156, https://doi.org/10.5194/tc-12-1137-2018, https://doi.org/10.5194/tc-12-1137-2018, 2018
Short summary
Short summary
Here, the Canadian research network CanSISE uses state-of-the-art observations of snow and sea ice to assess how Canada's climate model and climate prediction systems capture variability in snow, sea ice, and related climate parameters. We find that the system performs well, accounting for observational uncertainty (especially for snow), model uncertainty, and chaotic climate variability. Even for variables like sea ice, where improvement is needed, useful prediction tools can be developed.
Heiko Goelzer, Philippe Huybrechts, Marie-France Loutre, and Thierry Fichefet
Clim. Past, 12, 2195–2213, https://doi.org/10.5194/cp-12-2195-2016, https://doi.org/10.5194/cp-12-2195-2016, 2016
Short summary
Short summary
We simulate the climate, ice sheet, and sea-level evolution during the Last Interglacial (~ 130 to 115 kyr BP), the most recent warm period in Earth’s history. Our Earth system model includes components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. Our simulation is in good agreement with available data reconstructions and gives important insights into the dominant mechanisms that caused ice sheet changes in the past.
Dirk Notz, Alexandra Jahn, Marika Holland, Elizabeth Hunke, François Massonnet, Julienne Stroeve, Bruno Tremblay, and Martin Vancoppenolle
Geosci. Model Dev., 9, 3427–3446, https://doi.org/10.5194/gmd-9-3427-2016, https://doi.org/10.5194/gmd-9-3427-2016, 2016
Short summary
Short summary
The large-scale evolution of sea ice is both an indicator and a driver of climate changes. Hence, a realistic simulation of sea ice is key for a realistic simulation of the climate system of our planet. To assess and to improve the realism of sea-ice simulations, we present here a new protocol for climate-model output that allows for an in-depth analysis of the simulated evolution of sea ice.
Heiko Goelzer, Philippe Huybrechts, Marie-France Loutre, and Thierry Fichefet
Clim. Past, 12, 1721–1737, https://doi.org/10.5194/cp-12-1721-2016, https://doi.org/10.5194/cp-12-1721-2016, 2016
Short summary
Short summary
We have modelled the climate evolution from 135 to 120 kyr BP with an Earth system model to study the onset of the Last Interglacial warm period. Ice sheet changes and associated freshwater fluxes in both hemispheres constitute an important forcing in the simulations. Freshwater fluxes from the melting Antarctic ice sheet are found to lead to an oceanic cold event in the Southern Ocean as evidenced in some ocean sediment cores, which may be used to constrain the timing of ice sheet retreat.
C. Rousset, M. Vancoppenolle, G. Madec, T. Fichefet, S. Flavoni, A. Barthélemy, R. Benshila, J. Chanut, C. Levy, S. Masson, and F. Vivier
Geosci. Model Dev., 8, 2991–3005, https://doi.org/10.5194/gmd-8-2991-2015, https://doi.org/10.5194/gmd-8-2991-2015, 2015
Short summary
Short summary
LIM3.6 presented in this paper is the last release of the Louvain-la-Neuve sea ice model, and will be used for the next climate model intercomparison project (CMIP6). The model's robustness, versatility and sophistication have been improved.
M. F. Loutre, T. Fichefet, H. Goosse, P. Huybrechts, H. Goelzer, and E. Capron
Clim. Past, 10, 1541–1565, https://doi.org/10.5194/cp-10-1541-2014, https://doi.org/10.5194/cp-10-1541-2014, 2014
P. J. Hezel, T. Fichefet, and F. Massonnet
The Cryosphere, 8, 1195–1204, https://doi.org/10.5194/tc-8-1195-2014, https://doi.org/10.5194/tc-8-1195-2014, 2014
V. Zunz, H. Goosse, and F. Massonnet
The Cryosphere, 7, 451–468, https://doi.org/10.5194/tc-7-451-2013, https://doi.org/10.5194/tc-7-451-2013, 2013
Related subject area
Sea Ice
An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models
Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products
Surface-based Ku- and Ka-band polarimetric radar for sea ice studies
Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations
Satellite-based sea ice thickness changes in the Laptev Sea from 2002 to 2017: comparison to mooring observations
Modeling the annual cycle of daily Antarctic sea ice extent
Changes of the Arctic marginal ice zone during the satellite era
An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC)
Accuracy and inter-analyst agreement of visually estimated sea ice concentrations in Canadian Ice Service ice charts using single-polarization RADARSAT-2
Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks
Variability scaling and consistency in airborne and satellite altimetry measurements of Arctic sea ice
Sea ice volume variability and water temperature in the Greenland Sea
Sea ice export through the Fram Strait derived from a combined model and satellite data set
Estimating early-winter Antarctic sea ice thickness from deformed ice morphology
On the multi-fractal scaling properties of sea ice deformation
Brief communication: Pancake ice floe size distribution during the winter expansion of the Antarctic marginal ice zone
What historical landfast ice observations tell us about projected ice conditions in Arctic archipelagoes and marginal seas under anthropogenic forcing
Interannual sea ice thickness variability in the Bay of Bothnia
Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness
Brief communication: Solar radiation management not as effective as CO2 mitigation for Arctic sea ice loss in hitting the 1.5 and 2 °C COP climate targets
Reflective properties of melt ponds on sea ice
The color of melt ponds on Arctic sea ice
On the retrieval of sea ice thickness and snow depth using concurrent laser altimetry and L-band remote sensing data
A network model for characterizing brine channels in sea ice
Impact of rheology on probabilistic forecasts of sea ice trajectories: application for search and rescue operations in the Arctic
Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models
Mechanisms influencing seasonal to inter-annual prediction skill of sea ice extent in the Arctic Ocean in MIROC
Floe-size distributions in laboratory ice broken by waves
The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows
Consistent biases in Antarctic sea ice concentration simulated by climate models
Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes
How much should we believe correlations between Arctic cyclones and sea ice extent?
Optical properties of sea ice doped with black carbon – an experimental and radiative-transfer modelling comparison
Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave–ice model
Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge
Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover and fast ice decay
Sea ice assimilation into a coupled ocean–sea ice model using its adjoint
Modelling radiative transfer through ponded first-year Arctic sea ice with a plane-parallel model
Brief communication: Increasing shortwave absorption over the Arctic Ocean is not balanced by trends in the Antarctic
Wave–ice interactions in the neXtSIM sea-ice model
Ice bridges and ridges in the Maxwell-EB sea ice rheology
Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: toward an improved Envisat freeboard retrieval
Open-source sea ice drift algorithm for Sentinel-1 SAR imagery using a combination of feature tracking and pattern matching
Method to characterize directional changes in Arctic sea ice drift and associated deformation due to synoptic atmospheric variations using Lagrangian dispersion statistics
A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data
Sea-ice deformation in a coupled ocean–sea-ice model and in satellite remote sensing data
Impacts of freshwater changes on Antarctic sea ice in an eddy-permitting sea-ice–ocean model
A simple model for the evolution of melt pond coverage on permeable Arctic sea ice
Brief communication: Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model
Interactions between Antarctic sea ice and large-scale atmospheric modes in CMIP5 models
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
Short summary
We compare the mass budget of the Arctic sea ice in a number of the latest climate models. New output has been defined that allows us to compare the processes of sea ice growth and loss in a more detailed way than has previously been possible. We find that that the models are strikingly similar in terms of the major processes causing the annual growth and loss of Arctic sea ice and that the budget terms respond in a broadly consistent way as the climate warms during the 21st century.
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, Alvaro Ivanoff, and Sahra Kacimi
The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021, https://doi.org/10.5194/tc-15-821-2021, 2021
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Leandro Ponsoni, François Massonnet, David Docquier, Guillian Van Achter, and Thierry Fichefet
The Cryosphere, 14, 2409–2428, https://doi.org/10.5194/tc-14-2409-2020, https://doi.org/10.5194/tc-14-2409-2020, 2020
Short summary
Short summary
The continuous melting of the Arctic sea ice observed in the last decades has a significant impact at global and regional scales. To understand the amplitude and consequences of this impact, the monitoring of the total sea ice volume is crucial. However, in situ monitoring in such a harsh environment is hard to perform and far too expensive. This study shows that four well-placed sampling locations are sufficient to explain about 70 % of the inter-annual changes in the pan-Arctic sea ice volume.
H. Jakob Belter, Thomas Krumpen, Stefan Hendricks, Jens Hoelemann, Markus A. Janout, Robert Ricker, and Christian Haas
The Cryosphere, 14, 2189–2203, https://doi.org/10.5194/tc-14-2189-2020, https://doi.org/10.5194/tc-14-2189-2020, 2020
Short summary
Short summary
The validation of satellite sea ice thickness (SIT) climate data records with newly acquired moored sonar SIT data shows that satellite products provide modal rather than mean SIT in the Laptev Sea region. This tendency of satellite-based SIT products to underestimate mean SIT needs to be considered for investigations of sea ice volume transports. Validation of satellite SIT in the first-year-ice-dominated Laptev Sea will support algorithm development for more reliable SIT records in the Arctic.
Mark S. Handcock and Marilyn N. Raphael
The Cryosphere, 14, 2159–2172, https://doi.org/10.5194/tc-14-2159-2020, https://doi.org/10.5194/tc-14-2159-2020, 2020
Short summary
Short summary
Traditional methods of calculating the annual cycle of sea ice extent disguise the variation of amplitude and timing (phase) of the advance and retreat of the ice. We present a multiscale model that explicitly allows them to vary, resulting in a much improved representation of the cycle. We show that phase is the dominant contributor to the variability in the cycle and that the anomalous decay of Antarctic sea ice in 2016 was due largely to a change of phase.
Rebecca J. Rolph, Daniel L. Feltham, and David Schröder
The Cryosphere, 14, 1971–1984, https://doi.org/10.5194/tc-14-1971-2020, https://doi.org/10.5194/tc-14-1971-2020, 2020
Short summary
Short summary
It is well known that the Arctic sea ice extent is declining, and it is often assumed that the marginal ice zone (MIZ), the area of partial sea ice cover, is consequently increasing. However, we find no trend in the MIZ extent during the last 40 years from observations that is consistent with a widening of the MIZ as it moves northward. Differences of MIZ extent between different satellite retrievals are too large to provide a robust basis to verify model simulations of MIZ extent.
Mark A. Tschudi, Walter N. Meier, and J. Scott Stewart
The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020, https://doi.org/10.5194/tc-14-1519-2020, 2020
Short summary
Short summary
A new version of a set of data products that contain the velocity of sea ice and the age of this ice has been developed. We provide a history of the product development and discuss the improvements to the algorithms that create these products. We find that changes in sea ice motion and age show a significant shift in the Arctic ice cover, from a pack with a high concentration of older ice to a sea ice cover dominated by younger ice, which is more susceptible to summer melt.
Angela Cheng, Barbara Casati, Adrienne Tivy, Tom Zagon, Jean-François Lemieux, and L. Bruno Tremblay
The Cryosphere, 14, 1289–1310, https://doi.org/10.5194/tc-14-1289-2020, https://doi.org/10.5194/tc-14-1289-2020, 2020
Short summary
Short summary
Sea ice charts by the Canadian Ice Service (CIS) contain visually estimated ice concentration produced by analysts. The accuracy of manually derived ice concentrations is not well understood. The subsequent uncertainty of ice charts results in downstream uncertainties for ice charts users, such as models and climatology studies, and when used as a verification source for automated sea ice classifiers. This study quantifies the level of accuracy and inter-analyst agreement for ice charts by CIS.
Young Jun Kim, Hyun-Cheol Kim, Daehyeon Han, Sanggyun Lee, and Jungho Im
The Cryosphere, 14, 1083–1104, https://doi.org/10.5194/tc-14-1083-2020, https://doi.org/10.5194/tc-14-1083-2020, 2020
Short summary
Short summary
In this study, we proposed a novel 1-month sea ice concentration (SIC) prediction model with eight predictors using a deep-learning approach, convolutional neural networks (CNNs). The proposed CNN model was evaluated and compared with the two baseline approaches, random-forest and simple-regression models, resulting in better performance. This study also examined SIC predictions for two extreme cases in 2007 and 2012 in detail and the influencing factors through a sensitivity analysis.
Shiming Xu, Lu Zhou, and Bin Wang
The Cryosphere, 14, 751–767, https://doi.org/10.5194/tc-14-751-2020, https://doi.org/10.5194/tc-14-751-2020, 2020
Short summary
Short summary
Sea ice thickness parameters are key to polar climate change studies and forecasts. Airborne and satellite measurements provide complementary observational capabilities. The study analyzes the variability in freeboard and snow depth measurements and its changes with scale in Operation IceBridge, CryoVEx, CryoSat-2 and ICESat. Consistency between airborne and satellite data is checked. Analysis calls for process-oriented attribution of variability and covariability features of these parameters.
Valeria Selyuzhenok, Igor Bashmachnikov, Robert Ricker, Anna Vesman, and Leonid Bobylev
The Cryosphere, 14, 477–495, https://doi.org/10.5194/tc-14-477-2020, https://doi.org/10.5194/tc-14-477-2020, 2020
Short summary
Short summary
This study explores a link between the long-term variations in the integral sea ice volume in the Greenland Sea and oceanic processes. We link the changes in the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) regional sea ice volume with the mixed layer, depth and upper-ocean heat content derived using the ARMOR dataset.
Chao Min, Longjiang Mu, Qinghua Yang, Robert Ricker, Qian Shi, Bo Han, Renhao Wu, and Jiping Liu
The Cryosphere, 13, 3209–3224, https://doi.org/10.5194/tc-13-3209-2019, https://doi.org/10.5194/tc-13-3209-2019, 2019
Short summary
Short summary
Sea ice volume export through the Fram Strait has been studied using varied methods, however, mostly in winter months. Here we report sea ice volume estimates that extend over summer seasons. A recent developed sea ice thickness dataset, in which CryoSat-2 and SMOS sea ice thickness together with SSMI/SSMIS sea ice concentration are assimilated, is used and evaluated in the paper. Results show our estimate is more reasonable than that calculated by satellite data only.
M. Jeffrey Mei, Ted Maksym, Blake Weissling, and Hanumant Singh
The Cryosphere, 13, 2915–2934, https://doi.org/10.5194/tc-13-2915-2019, https://doi.org/10.5194/tc-13-2915-2019, 2019
Short summary
Short summary
Sea ice thickness is hard to measure directly, and current datasets are very limited to sporadically conducted drill lines. However, surface elevation is much easier to measure. Converting surface elevation to ice thickness requires making assumptions about snow depth and density, which leads to large errors (and may not generalize to new datasets). A deep learning method is presented that uses the surface morphology as a direct predictor of sea ice thickness, with testing errors of < 20 %.
Pierre Rampal, Véronique Dansereau, Einar Olason, Sylvain Bouillon, Timothy Williams, Anton Korosov, and Abdoulaye Samaké
The Cryosphere, 13, 2457–2474, https://doi.org/10.5194/tc-13-2457-2019, https://doi.org/10.5194/tc-13-2457-2019, 2019
Short summary
Short summary
In this article, we look at how the Arctic sea ice cover, as a solid body, behaves on different temporal and spatial scales. We show that the numerical model neXtSIM uses a new approach to simulate the mechanics of sea ice and reproduce the characteristics of how sea ice deforms, as observed by satellite. We discuss the importance of this model performance in the context of simulating climate processes taking place in polar regions, like the exchange of energy between the ocean and atmosphere.
Alberto Alberello, Miguel Onorato, Luke Bennetts, Marcello Vichi, Clare Eayrs, Keith MacHutchon, and Alessandro Toffoli
The Cryosphere, 13, 41–48, https://doi.org/10.5194/tc-13-41-2019, https://doi.org/10.5194/tc-13-41-2019, 2019
Short summary
Short summary
Existing observations do not provide quantitative descriptions of the floe size distribution for pancake ice floes. This is important during the Antarctic winter sea ice expansion, when hundreds of kilometres of ice cover around the Antarctic continent are composed of pancake floes (D = 0.3–3 m). Here, a new set of images from the Antarctic marginal ice zone is used to measure the shape of individual pancakes for the first time and to infer their size distribution.
Frédéric Laliberté, Stephen E. L. Howell, Jean-François Lemieux, Frédéric Dupont, and Ji Lei
The Cryosphere, 12, 3577–3588, https://doi.org/10.5194/tc-12-3577-2018, https://doi.org/10.5194/tc-12-3577-2018, 2018
Short summary
Short summary
Ice that forms over marginal seas often gets anchored and becomes landfast. Landfast ice is fundamental to the local ecosystems, is of economic importance as it leads to hazardous seafaring conditions and is also a choice hunting ground for both the local population and large predators. Using observations and climate simulations, this study shows that, especially in the Canadian Arctic, landfast ice might be more resilient to climate change than is generally thought.
Iina Ronkainen, Jonni Lehtiranta, Mikko Lensu, Eero Rinne, Jari Haapala, and Christian Haas
The Cryosphere, 12, 3459–3476, https://doi.org/10.5194/tc-12-3459-2018, https://doi.org/10.5194/tc-12-3459-2018, 2018
Short summary
Short summary
We quantify the sea ice thickness variability in the Bay of Bothnia using various observational data sets. For the first time we use helicopter and shipborne electromagnetic soundings to study changes in drift ice of the Bay of Bothnia. Our results show that the interannual variability of ice thickness is larger in the drift ice zone than in the fast ice zone. Furthermore, the mean thickness of heavily ridged ice near the coast can be several times larger than that of fast ice.
Edward W. Blockley and K. Andrew Peterson
The Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018, https://doi.org/10.5194/tc-12-3419-2018, 2018
Short summary
Short summary
Arctic sea-ice prediction on seasonal time scales is becoming increasingly more relevant to society but the predictive capability of forecasting systems is low. Several studies suggest initialization of sea-ice thickness (SIT) could improve the skill of seasonal prediction systems. Here for the first time we test the impact of SIT initialization in the Met Office's GloSea coupled prediction system using CryoSat-2 data. We show significant improvements to Arctic extent and ice edge location.
Jeff K. Ridley and Edward W. Blockley
The Cryosphere, 12, 3355–3360, https://doi.org/10.5194/tc-12-3355-2018, https://doi.org/10.5194/tc-12-3355-2018, 2018
Short summary
Short summary
The climate change conference held in Paris in 2016 made a commitment to limiting global-mean warming since the pre-industrial era to well below 2 °C and to pursue efforts to limit the warming to 1.5 °C. Since global warming is already at 1 °C, the 1.5 °C can only be achieved at considerable cost. It is thus important to assess the risks associated with the higher target. This paper shows that the decline of Arctic sea ice, and associated impacts, can only be halted with the 1.5 °C target.
Aleksey Malinka, Eleonora Zege, Larysa Istomina, Georg Heygster, Gunnar Spreen, Donald Perovich, and Chris Polashenski
The Cryosphere, 12, 1921–1937, https://doi.org/10.5194/tc-12-1921-2018, https://doi.org/10.5194/tc-12-1921-2018, 2018
Short summary
Short summary
Melt ponds occupy a large part of the Arctic sea ice in summer and strongly affect the radiative budget of the atmosphere–ice–ocean system. The melt pond reflectance is modeled in the framework of the radiative transfer theory and validated with field observations. It improves understanding of melting sea ice and enables better parameterization of the surface in Arctic atmospheric remote sensing (clouds, aerosols, trace gases) and re-evaluating Arctic climatic feedbacks at a new accuracy level.
Peng Lu, Matti Leppäranta, Bin Cheng, Zhijun Li, Larysa Istomina, and Georg Heygster
The Cryosphere, 12, 1331–1345, https://doi.org/10.5194/tc-12-1331-2018, https://doi.org/10.5194/tc-12-1331-2018, 2018
Short summary
Short summary
It is the first time that the color of melt ponds on Arctic sea ice was quantitatively and thoroughly investigated. We answer the question of why the color of melt ponds can change and what the physical and optical reasons are that lead to such changes. More importantly, melt-pond color was provided as potential data in determining ice thickness, especially under the summer conditions when other methods such as remote sensing are unavailable.
Lu Zhou, Shiming Xu, Jiping Liu, and Bin Wang
The Cryosphere, 12, 993–1012, https://doi.org/10.5194/tc-12-993-2018, https://doi.org/10.5194/tc-12-993-2018, 2018
Short summary
Short summary
This work proposes a new data synergy method for the retrieval of sea ice thickness and snow depth by using colocating L-band passive remote sensing and active laser altimetry. Physical models are adopted for the retrieval, including L-band radiation model and buoyancy relationship. Covariability of snow depth and total freeboard is further utilized to mitigate resolution differences and improve retrievability. The method can be applied to future campaigns including ICESat-2 and WCOM.
Ross M. Lieblappen, Deip D. Kumar, Scott D. Pauls, and Rachel W. Obbard
The Cryosphere, 12, 1013–1026, https://doi.org/10.5194/tc-12-1013-2018, https://doi.org/10.5194/tc-12-1013-2018, 2018
Short summary
Short summary
We imaged first-year sea ice using micro-computed tomography to visualize, capture, and quantify the 3-D complex structure of salt water channels weaving through sea ice. From these data, we then built a mathematical network to better understand the pathways transporting heat, gases, and salts between the ocean and the atmosphere. Powered with this structural knowledge, we can create new modeled brine channels for a given sea ice depth and temperature that accurately mimic field conditions.
Matthias Rabatel, Pierre Rampal, Alberto Carrassi, Laurent Bertino, and Christopher K. R. T. Jones
The Cryosphere, 12, 935–953, https://doi.org/10.5194/tc-12-935-2018, https://doi.org/10.5194/tc-12-935-2018, 2018
Short summary
Short summary
Large deviations still exist between sea ice forecasts and observations because of both missing physics in models and uncertainties on model inputs. We investigate how the new sea ice model neXtSIM is sensitive to uncertainties in the winds. We highlight and quantify the role of the internal forces in the ice on this sensitivity and show that neXtSIM is better at predicting sea ice drift than a free-drift (without internal forces) ice model and is a skilful tool for search and rescue operations.
Friedrich Richter, Matthias Drusch, Lars Kaleschke, Nina Maaß, Xiangshan Tian-Kunze, and Susanne Mecklenburg
The Cryosphere, 12, 921–933, https://doi.org/10.5194/tc-12-921-2018, https://doi.org/10.5194/tc-12-921-2018, 2018
Short summary
Short summary
L-band (1.4 GHz) brightness temperatures from ESA's Soil Moisture and Ocean Salinity SMOS mission have been used to derive thin sea ice thickness. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems reducing the data latency and providing a more consistent first guess. We studied the forward (observation) operator that translates geophysical sea ice parameters from the ECMWF Ocean ReAnalysis Pilot 5 (ORAP5) into brightness temperatures.
Jun Ono, Hiroaki Tatebe, Yoshiki Komuro, Masato I. Nodzu, and Masayoshi Ishii
The Cryosphere, 12, 675–683, https://doi.org/10.5194/tc-12-675-2018, https://doi.org/10.5194/tc-12-675-2018, 2018
Short summary
Short summary
Sea ice in the Arctic Ocean has experienced rapid decline since the beginning of satellite observations. To assess the predictability of sea ice extent (SIE) in the Arctic Ocean and to clarify the underlying physical processes, we conducted prediction experiments using an initialized climate model (MIROC5). The present study suggests that subsurface ocean heat content originating from the North Atlantic contributes to the skillful prediction of winter SIE at lead times up to 11 months.
Agnieszka Herman, Karl-Ulrich Evers, and Nils Reimer
The Cryosphere, 12, 685–699, https://doi.org/10.5194/tc-12-685-2018, https://doi.org/10.5194/tc-12-685-2018, 2018
Short summary
Short summary
In regions close to the ice edge, sea ice is composed of many separate ice floes of different sizes and shapes. Strong fragmentation is caused mainly by ice breaking by waves coming from the open ocean. At present, this process, although recognized as important for many other physical processes, is not well understood. In this study we present results of a laboratory study of ice breaking by waves, and we provide interpretation of those results that may guide analysis of other similar datasets.
Alek A. Petty, Julienne C. Stroeve, Paul R. Holland, Linette N. Boisvert, Angela C. Bliss, Noriaki Kimura, and Walter N. Meier
The Cryosphere, 12, 433–452, https://doi.org/10.5194/tc-12-433-2018, https://doi.org/10.5194/tc-12-433-2018, 2018
Short summary
Short summary
There was significant scientific and media attention surrounding Arctic sea ice in 2016, due primarily to the record-warm air temperatures and low sea ice conditions observed at the start of the year. Here we quantify and assess the record-low monthly sea ice cover in winter, spring and fall, and the lack of record-low sea ice conditions in summer. We explore the primary drivers of these monthly sea ice states and explore the implications for improved summer sea ice forecasting.
Lettie A. Roach, Samuel M. Dean, and James A. Renwick
The Cryosphere, 12, 365–383, https://doi.org/10.5194/tc-12-365-2018, https://doi.org/10.5194/tc-12-365-2018, 2018
Short summary
Short summary
This paper evaluates Antarctic sea ice simulated by global climate models against satellite observations. We find biases in high-concentration and low-concentration sea ice that are consistent across the population of 40 models, in spite of the differences in physics between different models. Targeted model experiments show that biases in low-concentration sea ice can be significantly reduced by enhanced lateral melt, a result that may be valuable for sea ice model development.
David W. Rees Jones and Andrew J. Wells
The Cryosphere, 12, 25–38, https://doi.org/10.5194/tc-12-25-2018, https://doi.org/10.5194/tc-12-25-2018, 2018
Short summary
Short summary
Frazil or granular ice grows rapidly from turbulent water cooled beneath its freezing temperature. We analyse numerical models of a population of ice crystals to provide insight into the treatment of frazil ice in large-scale models and hence in the environment. We determine critical conditions for explosively rapid frazil growth. We show that frazil-ice processes impact whether a plume of ice shelf water beneath an Antarctic ice shelf intrudes at depth or reaches the end of the shelf.
Jamie G. L. Rae, Alexander D. Todd, Edward W. Blockley, and Jeff K. Ridley
The Cryosphere, 11, 3023–3034, https://doi.org/10.5194/tc-11-3023-2017, https://doi.org/10.5194/tc-11-3023-2017, 2017
Short summary
Short summary
Several studies have highlighted links between Arctic summer storms and September sea ice extent in observations. Here we use model and reanalysis data to investigate the sensitivity of such links to the analytical methods used, in order to determine their robustness. The links were found to depend on the resolution of the model and dataset, the method used to identify storms and the time period used in the analysis. We therefore recommend caution when interpreting the results of such studies.
Amelia A. Marks, Maxim L. Lamare, and Martin D. King
The Cryosphere, 11, 2867–2881, https://doi.org/10.5194/tc-11-2867-2017, https://doi.org/10.5194/tc-11-2867-2017, 2017
Short summary
Short summary
Arctic sea ice extent is declining rapidly. Prediction of sea ice trends relies on sea ice models that need to be evaluated with real data. A realistic sea ice environment is created in a laboratory by the Royal Holloway sea ice simulator and is used to show a sea ice model can replicate measured properties of sea ice, e.g. reflectance. Black carbon, a component of soot found in atmospheric pollution, is also experimentally shown to reduce the sea ice reflectance, which could exacerbate melting.
Agnieszka Herman
The Cryosphere, 11, 2711–2725, https://doi.org/10.5194/tc-11-2711-2017, https://doi.org/10.5194/tc-11-2711-2017, 2017
Short summary
Short summary
It is often assumed that ocean waves break sea ice into floes with sizes depending on wavelength. The results of this modeling study (in agreement with some earlier observations and models) suggest that this is not the case; instead the sizes of ice floes produced by wave breaking depend only on ice thickness and mechanical properties. This may have important consequences for predicting sea ice response to oceanic and atmospheric forcing in regions where sea ice is influenced by waves.
Ron Kwok, Nathan T. Kurtz, Ludovic Brucker, Alvaro Ivanoff, Thomas Newman, Sinead L. Farrell, Joshua King, Stephen Howell, Melinda A. Webster, John Paden, Carl Leuschen, Joseph A. MacGregor, Jacqueline Richter-Menge, Jeremy Harbeck, and Mark Tschudi
The Cryosphere, 11, 2571–2593, https://doi.org/10.5194/tc-11-2571-2017, https://doi.org/10.5194/tc-11-2571-2017, 2017
Short summary
Short summary
Since 2009, the ultra-wideband snow radar on Operation IceBridge has acquired data in annual campaigns conducted during the Arctic and Antarctic springs. Existing snow depth retrieval algorithms differ in the way the air–snow and snow–ice interfaces are detected and localized in the radar returns and in how the system limitations are addressed. Here, we assess five retrieval algorithms by comparisons with field measurements, ground-based campaigns, and analyzed fields of snow depth.
Polona Itkin and Thomas Krumpen
The Cryosphere, 11, 2383–2391, https://doi.org/10.5194/tc-11-2383-2017, https://doi.org/10.5194/tc-11-2383-2017, 2017
Short summary
Short summary
By means of airborne sea ice thickness surveys, remote sensing data and results from a numerical model, we show that winter ice dynamic in the Laptev Sea has a preconditioning effect on local summer ice extent in addition to atmospheric processes acting on the ice cover between May and September. We conclude that the observed tendency towards an increased ice export further accelerates pack ice retreat in summer and fast ice decay.
Nikolay V. Koldunov, Armin Köhl, Nuno Serra, and Detlef Stammer
The Cryosphere, 11, 2265–2281, https://doi.org/10.5194/tc-11-2265-2017, https://doi.org/10.5194/tc-11-2265-2017, 2017
Short summary
Short summary
The paper describes one of the first attempts to use the so-called adjoint data assimilation method to bring Arctic Ocean model simulations closer to observation, especially in terms of the sea ice. It is shown that after assimilation the model bias in simulating the Arctic sea ice is considerably reduced. There is also additional improvement in the sea ice thickens representation that is not assimilated directly.
Torbjørn Taskjelle, Stephen R. Hudson, Mats A. Granskog, and Børge Hamre
The Cryosphere, 11, 2137–2148, https://doi.org/10.5194/tc-11-2137-2017, https://doi.org/10.5194/tc-11-2137-2017, 2017
Christian Katlein, Stefan Hendricks, and Jeffrey Key
The Cryosphere, 11, 2111–2116, https://doi.org/10.5194/tc-11-2111-2017, https://doi.org/10.5194/tc-11-2111-2017, 2017
Short summary
Short summary
In the public debate, increasing sea ice extent in the Antarctic is often highlighted as counter-indicative of global warming. Here we show that the slight increases in Antarctic sea ice extent are not able to counter Arctic losses. Using bipolar satellite observations, we demonstrate that even in the Antarctic polar ocean solar shortwave energy absorption is increasing in accordance with strongly increasing shortwave energy absorption in the Arctic Ocean rather than compensating Arctic losses.
Timothy D. Williams, Pierre Rampal, and Sylvain Bouillon
The Cryosphere, 11, 2117–2135, https://doi.org/10.5194/tc-11-2117-2017, https://doi.org/10.5194/tc-11-2117-2017, 2017
Short summary
Short summary
As the Arctic sea ice extent drops, more ship traffic seeks to take advantage of this, and a need for better wave and sea ice forecasts arises. One aspect of this is the location of the sea ice edge. The waves here can be quite large, but they die away as they travel into the ice. This causes momentum to be transferred from the waves to the ice, causing ice drift. However, our study found that the effect of the wind drag had more impact on the ice edge position than the waves.
Véronique Dansereau, Jérôme Weiss, Pierre Saramito, Philippe Lattes, and Edmond Coche
The Cryosphere, 11, 2033–2058, https://doi.org/10.5194/tc-11-2033-2017, https://doi.org/10.5194/tc-11-2033-2017, 2017
Short summary
Short summary
A new mechanical framework is used to model the drift of sea ice in a narrow channel between Greenland and Ellesmere Island. It is able to reproduce its main features : curved cracks, ice “bridges” that stop the flow of ice for several months of the year and some thick, strongly localized ridged ice. The simulations suggest that a mechanical weakening of the sea ice cover can shorten the lifespan of ice bridges and result in an increased export of ice through the narrow channels of the Arctic.
Kevin Guerreiro, Sara Fleury, Elena Zakharova, Alexei Kouraev, Frédérique Rémy, and Philippe Maisongrande
The Cryosphere, 11, 2059–2073, https://doi.org/10.5194/tc-11-2059-2017, https://doi.org/10.5194/tc-11-2059-2017, 2017
Short summary
Short summary
We analyse CryoSat-2 and Envisat freeboard height discrepancy over Arctic sea ice and we study the potential role of ice roughness.
Based on our results, we build a CryoSat-2-like version of Envisat freeboard height. The improved Envisat freeboard is converted to sea ice draught and compared to in situ mooring observations to demonstrate the potential of our methodology to produce accurate ice thickness estimates over the 2002–2012 period.
Stefan Muckenhuber and Stein Sandven
The Cryosphere, 11, 1835–1850, https://doi.org/10.5194/tc-11-1835-2017, https://doi.org/10.5194/tc-11-1835-2017, 2017
Short summary
Short summary
Sea ice drift has a strong impact on sea ice distribution on different temporal and spatial scales. An open-source sea ice drift algorithm for Sentinel-1 satellite imagery is introduced based on the combination of feature tracking and pattern matching. The algorithm is designed to utilise the respective advantages of the two approaches and allows drift calculation at user-defined locations.
Jennifer V. Lukovich, Cathleen A. Geiger, and David G. Barber
The Cryosphere, 11, 1707–1731, https://doi.org/10.5194/tc-11-1707-2017, https://doi.org/10.5194/tc-11-1707-2017, 2017
Short summary
Short summary
In this study we develop a framework to characterize directional changes in sea ice drift and associated deformation in response to atmospheric forcing. Lagrangian dispersion statistics applied to ice beacons deployed in a triangular configuration in the Beaufort Sea capture a shift in ice dynamical regimes and local differences in deformation. This framework contributes to diagnostic development relevant for ice hazard assessments and forecasting required by indigenous communities and industry.
Robert Ricker, Stefan Hendricks, Lars Kaleschke, Xiangshan Tian-Kunze, Jennifer King, and Christian Haas
The Cryosphere, 11, 1607–1623, https://doi.org/10.5194/tc-11-1607-2017, https://doi.org/10.5194/tc-11-1607-2017, 2017
Short summary
Short summary
We developed the first merging of CryoSat-2 and SMOS sea-ice thickness retrievals. ESA’s Earth Explorer SMOS satellite can detect thin sea ice, whereas its companion CryoSat-2, designed to observe thicker perennial sea ice, lacks sensitivity. Using these satellite missions together completes the picture of the changing Arctic sea ice and provides a more accurate and comprehensive view on the actual state of Arctic sea-ice thickness.
Gunnar Spreen, Ron Kwok, Dimitris Menemenlis, and An T. Nguyen
The Cryosphere, 11, 1553–1573, https://doi.org/10.5194/tc-11-1553-2017, https://doi.org/10.5194/tc-11-1553-2017, 2017
Verena Haid, Doroteaciro Iovino, and Simona Masina
The Cryosphere, 11, 1387–1402, https://doi.org/10.5194/tc-11-1387-2017, https://doi.org/10.5194/tc-11-1387-2017, 2017
Short summary
Short summary
Since the Antarctic sea ice extent shows a recent increase, we investigate the sea ice response to changed amount and distribution of surface freshwater addition in the Southern Ocean with the ocean–sea ice model NEMO/LIM2. We find that freshwater addition within the range of current estimates increases the ice extent, but higher amounts could have an opposing effect. The freshwater distribution is of great influence on the ice dynamics and the ice thickness is strongly influenced by it.
Predrag Popović and Dorian Abbot
The Cryosphere, 11, 1149–1172, https://doi.org/10.5194/tc-11-1149-2017, https://doi.org/10.5194/tc-11-1149-2017, 2017
Short summary
Short summary
During summer, a large portion of sea ice in the Arctic is typically covered with meltwater. We present a simple model for the evolution of melt ponds on permeable sea ice that both fits observations and allows us to understand the behavior of melt ponds in a way that is often not possible with more complex models. We use this model to show that pond coverage will increase under global warming. This work is important as melt ponds affect the overall reflectance of sea ice.
Luke G. Bennetts, Siobhan O'Farrell, and Petteri Uotila
The Cryosphere, 11, 1035–1040, https://doi.org/10.5194/tc-11-1035-2017, https://doi.org/10.5194/tc-11-1035-2017, 2017
Short summary
Short summary
A numerical model is used to investigate how Antarctic sea ice concentration and volume are affected by increased melting caused by ocean-wave breakup of the ice. When temperatures are high enough to melt the ice, concentration and volume are reduced for ~ 100 km into the ice-covered ocean. When temperatures are low enough for ice growth, the concentration recovers, but the reduced volume persists.
Serena Schroeter, Will Hobbs, and Nathaniel L. Bindoff
The Cryosphere, 11, 789–803, https://doi.org/10.5194/tc-11-789-2017, https://doi.org/10.5194/tc-11-789-2017, 2017
Short summary
Short summary
Observed trends of Antarctic sea ice are not reproduced by global climate models. We examine observed and simulated interactions between sea ice and large-scale atmospheric variability, showing that global climate models generally capture observed interactions during the season of sea ice advance, but not during sea ice retreat. Most models overestimate the zonally symmetric influence of the dominant atmospheric mode on sea ice, while the importance of tropical variability is underestimated.
Cited articles
Comiso, J.: Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 2, available at: https://doi.org/10.5067/J6JQLS9EJ5HU (last access: 11 January 2017), 2015.
Comiso, J. C.: Characteristics of Arctic winter sea ice from satellite multispectral microwave observations, J. Geophys. Res., 91, 975–994, 1986.
Comiso, J. C., Cavalieri, D. J., Parkinson, C. L., and Gloersen, P.: Passive microwave algorithms for sea ice concentration: A comparison of two techniques, Remote Sens. Environ., 60, 357–384, 1997.
Dansereau, V., Weiss, J., Saramito, P., and Lattes, P.: A Maxwell elasto-brittle rheology for sea ice modelling, The Cryosphere, 10, 1339–1359, https://doi.org/10.5194/tc-10-1339-2016, 2016.
Döscher, R., Vihma, T., and Maksimovich, E.: Recent advances in understanding the Arctic climate system state and change from a sea ice perspective: a review, Atmos. Chem. Phys., 14, 13571–13600, https://doi.org/10.5194/acp-14-13571-2014, 2014.
Dupont, F., Higginson, S., Bourdallé-Badie, R., Lu, Y., Roy, F., Smith, G. C., Lemieux, J.-F., Garric, G., and Davidson, F.: A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic oceans, Geosci. Model Dev., 8, 1577–1594, https://doi.org/10.5194/gmd-8-1577-2015, 2015.
Dussin, R., Barnier, B., Brodeau, L., and Molines, J. M.: The making of the Drakkar Forcing Set DFS5, Tech. rep., Multiscale Ocean Modelling Team, Laboratoire de Glaciologie et Géophysique de l'Environnement, Grenoble, France, available at: https://www.drakkar-ocean.eu/forcing-the-ocean (last access: 13 June 2017), 2016.
EUMETSAT OSI SAF: Global sea ice concentration reprocessing dataset 1978–2015 (v1.2), available at: http://www.osi-saf.org/ (last access: 10 March 2016), 2015a.
EUMETSAT OSI SAF: Low resolution sea ice drift product, available at: http://www.osi-saf.org/ (last access: 16 August 2016), 2015b.
Feltham, D. L.: Sea Ice Rheology, Annu. Rev. Fluid Mech., 40, 91–112, https://doi.org/10.1146/annurev.fluid.40.111406.102151, 2008.
Gimbert, F., Jourdain, N. C., Marsan, D., Weiss, J., and Barnier, B.: Recent mechanical weakening of the Arctic sea ice cover as revealed from larger inertial oscillations, Geophys. Res. Lett., 117, C00J12, https://doi.org/10.1029/2011JC007633, 2012.
Girard, L., Bouillon, S., Weiss, J., Amitrano, D., Fichefet, T., and Legat, V.: A new modeling framework for sea-ice mechanics based on elasto-brittle rheology, Ann. Glaciol., 52, 123–132, 2011.
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fuckar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016.
Häkkinen, S. and Mellor, G. L.: Modeling the seasonal variability of a coupled Arctic ice-ocean system, J. Geophys. Res., 97, 20285–20304, https://doi.org/10.1029/92JC02037, 1992.
Häkkinen, S., Proshutinsky, A., and Ashik, I.: Sea ice drift in the Arctic since the 1950s, Geophys. Res. Lett., 35, L19704, https://doi.org/10.1029/2008GL034791, 2008.
Hibler, W. D.: A Dynamic Thermodynamic Sea Ice Model, J. Phys. Oceanogr., 9, 815–846, 1979.
Hibler, W. D. and Walsh, J. E.: On modeling seasonal and interannual fluctuations of Arctic sea ice, J. Phys. Oceanogr., 12, 1514–1523, 1982.
Ivanova, N., Pedersen, L. T., Tonboe, R. T., Kern, S., Heygster, G., Lavergne, T., Sørensen, A., Saldo, R., Dybkjær, G., Brucker, L., and Shokr, M.: Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations, The Cryosphere, 9, 1797–1817, https://doi.org/10.5194/tc-9-1797-2015, 2015.
Juricke, S. and Jung, T.: Influence of stochastic sea ice parametrization on climate and the role of atmosphere-sea ice-ocean interaction, Philos. Trans. A Math. Phys. Eng. Sci., 28, 372, https://doi.org/10.1098/rsta.2013.0283, 2014.
Juricke, S., Lemke, P., Timmerman, R., and Rackow, T.: Effects of stochastic ice strength perturbation on Arctic finite element sea ice modeling, J. Climate, 26, 3785–3802, https://doi.org/10.1175/JCLI-D-12-00388.1, 2013.
Koenigk, T., Caian, M., Nikulin, G., and Schimanke, S.: Regional Arctic sea ice variations as predictor for winter climate conditions, Clim. Dynam., 46, 317–337, https://doi.org/10.1007/s00382-015-2586-1, 2016.
Kreyscher, M., Harder, M., and Lemke, P.: First results of the Sea-Ice Model Intercomparison Project (SIMIP), Ann. Glaciol., 25, 8–11, https://doi.org/10.1017/S0260305500013719, 1997.
Krumpen, T., Gerdes, R., Haas, C., Hendricks, S., Herber, A., Selyuzhenok, V., Smedsrud, L., and Spreen, G.: Recent summer sea ice thickness surveys in Fram Strait and associated ice volume fluxes, The Cryosphere, 10, 523–534, https://doi.org/10.5194/tc-10-523-2016, 2016.
Kwok, R.: Outflow of Arctic Ocean Sea Ice into the Greenland and Barents Seas: 1979–2007, J. Climate, 22, 2438–2457, https://doi.org/10.1175/2008JCLI2819.1, 2009.
Kwok, R., Cunningham, G. F., Wensnahan, M., Rigor, I., Zwally, H. J., and Yi, D.: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008, J. Geophys. Res., 114, C07005, https://doi.org/10.1029/2009JC005312, 2009.
Kwok, R., Spreen, G., and Pang, S.: Arctic sea ice circulation and drift speed: Decadal trends and ocean currents, J. Geophys. Res., 118, 2408–2425, https://doi.org/10.1002/jgrc.20191, 2013.
Langehaug, H., Geyer, F., Smedsrud, L., and Gao, Y.: Arctic sea ice decline and ice export in the CMIP5 historical simulations, Ocean Model., 71, 114–126, 2013.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually varying air-sea flux data set, Clim. Dynam., 33, 341–364, https://doi.org/10.1007/s00382-008-0441-3, 2009.
Lavergne, T., Eastwood, S., Teffah, Z., Schyberg, H., and Breivik, L.-A.: Sea ice motion from low-resolution satellite sensors: An alternative method and its evaluation in the Arctic, J. Geophys. Res., 115, C10032, https://doi.org/10.1029/2009JC005958, 2010.
Leppäranta, M.: The drift of sea ice (Second Edition), Springer, 2011.
Lindsay, R. and Schweiger, A.: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations, The Cryosphere, 9, 269–283, https://doi.org/10.5194/tc-9-269-2015, 2015.
Lipscomb, W. H., Hunke, E. C., Maslowski, W., and Jakacki, J.: Ridging, strength, and stability in high-resolution sea ice models, J. Geophys. Res., 112, C03S91, https://doi.org/10.1029/2005JC003355, 2007.
Madec, G.: NEMO ocean engine: Note du Pôle de modélisation de l'Institut Pierre-Simon Laplace No 27, available at: http://www.nemo-ocean.eu/About-NEMO/Reference-manuals (last access: 12 April 2016), 2016.
Massonnet, F., Goosse, H., Fichefet, T., and Counillon, F.: Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman filter, J. Geophys. Res., 119, 4168–4184, https://doi.org/10.1002/2013JC009705, 2014.
Massonnet, F., Bellprat, O., Guemas, V., and Doblas-Reyes, F. J.: Using climate models to estimate the quality of global observational data sets, Science, 354, 452–455, https://doi.org/10.1126/science.aaf6369, 2016.
Notz, D.: Sea-ice extent and its trend provide limited metrics of model performance, The Cryosphere, 8, 229–243, https://doi.org/10.5194/tc-8-229-2014, 2014.
Notz, D.: How well must climate models agree with observations?, Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 373, https://doi.org/10.1098/rsta.2014.0164, 2015.
Notz, D., Jahn, A., Holland, M., Hunke, E., Massonnet, F., Stroeve, J., Tremblay, B., and Vancoppenolle, M.: The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations, Geosci. Model Dev., 9, 3427–3446, https://doi.org/10.5194/gmd-9-3427-2016, 2016.
Olason, E. and Notz, D.: Drivers of variability in Arctic sea-ice drift speed, J. Geophys. Res., 119, 5755–5775, https://doi.org/10.1002/2014JC009897, 2014.
Overland, J. E. and Pease, C. H.: Modeling ice dynamics of coastal seas, J. Geophys. Res., 93, 15619–15637, https://doi.org/10.1029/JC093iC12p15619, 1988.
Polyakov, D. V., Walsh, J. E., and Kwok, R.: Recent changes of Arctic multiyear sea ice coverage and the likely causes, B. Am. Meteorol. Soc., 93, 145–151, https://doi.org/10.1175/BAMS-D-11-00070.1, 2012.
Rampal, P., Weiss, J., Marsan, D., and Bourgoin, M.: Arctic sea ice velocity field: General circulation and turbulent-like fluctuations, J. Geophys. Res., 114, C10014, https://doi.org/10.1029/2008JC005227, 2009.
Rampal, P., Weiss, J., Dubois, C., and Campin, J.-M.: IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline, J. Geophys. Res., 116, C00D07, https://doi.org/10.1029/2011JC007110, 2011.
Rothrock, D. A.: The energetics of the plastic deformation of pack ice by ridging, J. Geophys. Res., 80, 4514–4519, https://doi.org/10.1029/JC080i033p04514, 1975.
Rothrock, D. A. and Wensnahan, M.: The accuracy of sea-ice drafts measured from U.S. Navy submarines, J. Atmos. Ocean Tech., 24, 1936–1949, https://doi.org/10.1175/JTECH2097.1, 2007.
Rothrock, D. A., Percival, D. B., and Wensnahan, M.: The decline in Arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data, J. Geophys. Res., 113, C05003, https://doi.org/10.1029/2007JC004252, 2008.
Rousset, C., Vancoppenolle, M., Madec, G., Fichefet, T., Flavoni, S., Barthélemy, A., Benshila, R., Chanut, J., Levy, C., Masson, S., and Vivier, F.: The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities, Geosci. Model Dev., 8, 2991–3005, https://doi.org/10.5194/gmd-8-2991-2015, 2015.
Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.: Uncertainty in modeled Arctic sea ice volume, J. Geophys. Res., 116, C00D06, https://doi.org/10.1029/2011JC007084, 2011.
Smedsrud, L. H., Halvorsen, M. H., Stroeve, J. C., Zhang, R., and Kloster, K.: Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years, The Cryosphere, 11, 65–79, https://doi.org/10.5194/tc-11-65-2017, 2017.
Smith, D.: Extraction of winter total sea ice concentration in the Greenland and Barents Seas from SSM/I data, Int. J. Remote Sens., 17, 2625–2646, 1996.
Spreen, G., Kern, S., Stammer, D., and Hansen, E.: Fram Strait sea ice volume export estimated between 2003 and 2008 from satellite data, Geophys. Res. Lett., 36, L19502, https://doi.org/10.1029/2009GL039591, 2009.
Spreen, G., Kwok, R., and Menemenlis, D.: Trends in Arctic sea ice drift and role of wind forcing: 1992-2009, Geophys. Res. Lett., 38, L19501, https://doi.org/10.1029/2011GL048970, 2011.
Spreen, G., Kwok, R., Menemenlis, D., and Nguyen, A. T.: Sea-ice deformation in a coupled ocean-sea-ice model and in satellite remote sensing data, The Cryosphere, 11, 1553–1573, https://doi.org/10.5194/tc-11-1553-2017, 2017.
Steele, M., Zhang, J., Rothrock, D., and Stern, H.: The force balance of sea ice in a numerical model of the Arctic Ocean, J. Geophys. Res.-Oceans, 102, 21061–21079, https://doi.org/10.1029/97JC01454, 1997.
Stroeve, J., Barrett, A., Serreze, M., and Schweiger, A.: Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness, The Cryosphere, 8, 1839–1854, https://doi.org/10.5194/tc-8-1839-2014, 2014.
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and Barrett, A. P.: The Arctic’s rapidly shrinking sea ice cover: a research synthesis, Climatic Change, 110, 1005–1027, https://doi.org/10.1007/s10584-011-0101-1, 2012.
Sumata, H., Lavergne, T., Girard-Ardhuin, F., Kimura, N., Tschudi, M. A., Kauker, F., Karcher, M., and Gerde, R.: An intercomparison of Arctic ice drift products to deduce uncertainty estimates, J. Geophys. Res., 119, 4887–4921, https://doi.org/10.1002/2013JC009724, 2014.
Szanyi, S., Lukovich, J. V., Barber, D. G., and Haller, G.: Persistent artifacts in the NSIDC ice motion data set and their implications for analysis, Geophys. Res. Lett., 43, 10800–10807, https://doi.org/10.1002/2016GL069799, 2016.
Tandon, N. F., Kushner, P. J., Docquier, D., Wettstein, J. J., and Li, C.: Reassessing sea ice drift and its relationship to long term Arctic sea ice loss in coupled climate models, J. Geophys. Res., in review, 2017.
Tremblay, L.-B. and Hakakian, M.: Estimating the Sea Ice Compressive Strength from Satellite-Derived Sea Ice Drift and NCEP Reanalysis Data, J. Phys. Oceanogr., 36, 2165–2172, https://doi.org/10.1175/JPO2954.1, 2006.
Tschudi, M., Fowler, C., Maslanik, J., Stewart, J. S., and Meier, W.: Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 3, available at: https://doi.org/10.5067/O57VAIT2AYYY (last access: 26 June 2017), 2016.
Ungermann, M., Tremblay, L. B., Martin, T., and Losch, M.: Impact of the ice strength formulation on the performance of a sea ice thickness distribution model in the Arctic, J. Geophys. Res., 122, 2090–2107, https://doi.org/10.1002/2016JC012128, 2017.
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., and Morales Maqueda, M. A.: Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation, Ocean Model., 27, 33–53, https://doi.org/10.1016/j.ocemod.2008.10.005, 2009.
Vaughan, D., Comiso, J., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and Zhang, T.: Observations: Cryosphere, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Vihma, T., Tisler, P., and Uotila, P.: Atmospheric forcing on the drift of Arctic sea ice in 1989–2009, Geophys. Res. Lett., 39, L02501, https://doi.org/10.1029/2011GL050118, 2012.
Zhang, J. and Rothrock, D. A.: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates, Mon. Weather Rev., 131, 845–861, 2003.
Zygmuntowska, M., Rampal, P., Ivanova, N., and Smedsrud, L. H.: Uncertainties in Arctic sea ice thickness and volume: new estimates and implications for trends, The Cryosphere, 8, 705–720, https://doi.org/10.5194/tc-8-705-2014, 2014.
Short summary
Our study provides a new way to evaluate the performance of a climate model regarding the interplay between sea ice motion, area and thickness in the Arctic against different observation datasets. We show that the NEMO-LIM model is good in that respect and that the relationships between the different sea ice variables are complex. The metrics we developed can be used in the framework of the Coupled Model Intercomparison Project 6 (CMIP6), which will feed the next IPCC report.
Our study provides a new way to evaluate the performance of a climate model regarding the...