Articles | Volume 11, issue 5
The Cryosphere, 11, 2089–2109, 2017
https://doi.org/10.5194/tc-11-2089-2017
The Cryosphere, 11, 2089–2109, 2017
https://doi.org/10.5194/tc-11-2089-2017
Research article
06 Sep 2017
Research article | 06 Sep 2017

Coupled land surface–subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra

Anh Phuong Tran et al.

Related authors

A distributed temperature profiling system for vertically and laterally dense acquisition of soil and snow temperature
Baptiste Dafflon, Stijn Wielandt, John Lamb, Patrick McClure, Ian Shirley, Sebastian Uhlemann, Chen Wang, Sylvain Fiolleau, Carlotta Brunetti, Franklin H. Akins, John Fitzpatrick, Samuel Pullman, Robert Busey, Craig Ulrich, John Peterson, and Susan S. Hubbard
The Cryosphere, 16, 719–736, https://doi.org/10.5194/tc-16-719-2022,https://doi.org/10.5194/tc-16-719-2022, 2022
Short summary
Watershed zonation through hillslope clustering for tractably quantifying above- and below-ground watershed heterogeneity and functions
Haruko M. Wainwright, Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, Michelle E. Newcomer, Baptiste Dafflon, Erica R. Siirila-Woodburn, Burke J. Minsley, Kenneth H. Williams, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 26, 429–444, https://doi.org/10.5194/hess-26-429-2022,https://doi.org/10.5194/hess-26-429-2022, 2022
Short summary
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021,https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Spatial Patterns of Snow Distribution for Improved Earth System Modelling in the Arctic
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, and Cathy J. Wilson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-341,https://doi.org/10.5194/tc-2021-341, 2021
Revised manuscript under review for TC
Short summary
Estimation of depth-resolved profiles of soil thermal diffusivity from temperature time series and uncertainty quantification
Carlotta Brunetti, John Lamb, Stijn Wielandt, Sebastian Uhlemann, Ian Shirley, Patrick McClure, and Baptiste Dafflon
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-68,https://doi.org/10.5194/esurf-2021-68, 2021
Revised manuscript under review for ESurf
Short summary

Related subject area

Data Assimilation
Assimilation of sea ice thickness derived from CryoSat-2 along-track freeboard measurements into the Met Office's Forecast Ocean Assimilation Model (FOAM)
Emma K. Fiedler, Matthew J. Martin, Ed Blockley, Davi Mignac, Nicolas Fournier, Andy Ridout, Andrew Shepherd, and Rachel Tilling
The Cryosphere, 16, 61–85, https://doi.org/10.5194/tc-16-61-2022,https://doi.org/10.5194/tc-16-61-2022, 2022
Short summary
A Bayesian approach towards daily pan-Arctic sea ice freeboard estimates from combined CryoSat-2 and Sentinel-3 satellite observations
William Gregory, Isobel R. Lawrence, and Michel Tsamados
The Cryosphere, 15, 2857–2871, https://doi.org/10.5194/tc-15-2857-2021,https://doi.org/10.5194/tc-15-2857-2021, 2021
Short summary
Estimating parameters in a sea ice model using an ensemble Kalman filter
Yong-Fei Zhang, Cecilia M. Bitz, Jeffrey L. Anderson, Nancy S. Collins, Timothy J. Hoar, Kevin D. Raeder, and Edward Blanchard-Wrigglesworth
The Cryosphere, 15, 1277–1284, https://doi.org/10.5194/tc-15-1277-2021,https://doi.org/10.5194/tc-15-1277-2021, 2021
Short summary
DeepBedMap: a deep neural network for resolving the bed topography of Antarctica
Wei Ji Leong and Huw Joseph Horgan
The Cryosphere, 14, 3687–3705, https://doi.org/10.5194/tc-14-3687-2020,https://doi.org/10.5194/tc-14-3687-2020, 2020
Short summary
Assimilation of surface observations in a transient marine ice sheet model using an ensemble Kalman filter
Fabien Gillet-Chaulet
The Cryosphere, 14, 811–832, https://doi.org/10.5194/tc-14-811-2020,https://doi.org/10.5194/tc-14-811-2020, 2020
Short summary

Cited articles

Archie, G. E.: The electrical resistivity log as an aid in determining some reservoir characteristics, Society of Petroleum Engineers, T. AIME, 146, 54–62, 1942.
Arcone, S. A., Lawson, D. E., Delaney, A. J., Strasser, J. C., and Strasser, J. D.: Ground-penetrating radar reflection profiling of groundwater and bedrock in an area of discontinuous permafrost, Geophysics, 63, 1573–1584, 1998.
Busch, S., Weihermüller, L., Huisman, J. A., Steelman, C. M., Endres, A. L., Vereecken, H., and Kruk, J.: Coupled hydrogeophysical inversion of time-lapse surface GPR data to estimate hydraulic properties of a layered subsurface, Water Resour. Res., 49, 8480–8494, 2013.
Camporese, M., Cassiani, G., Deiana, R., Salandin, P., and Binley, A.: Coupled and uncoupled hydrogeophysical inversions using ensemble Kalman filter assimilation of ERT-monitored tracer test data, Water Resour. Res., 51, 3277–3291, 2015.
Chen, A., Parsekian, A. D., Schaefer, K., Jafarov, E., Panda, S., Liu, L., Zhang, T., and Zebker, H.: Ground-penetrating radar-derived measurements of active-layer thickness on the landscape scale with sparse calibration at toolik and happy valley, Alaska, Geophysics, 81, H9–H19, 2016.
Download
Short summary
Soil organics carbon (SOC) and its influence on terrestrial ecosystem feedbacks to global warming in permafrost regions are particularly important for the prediction of future climate variation. Our study proposes a new surface–subsurface, joint deterministic–stochastic hydrological–thermal–geophysical inversion approach and documents the benefit of including multiple types of data to estimate the vertical profile of SOC content and its influence on hydrological–thermal dynamics.