Articles | Volume 10, issue 6
The Cryosphere, 10, 2821–2829, 2016
https://doi.org/10.5194/tc-10-2821-2016
The Cryosphere, 10, 2821–2829, 2016
https://doi.org/10.5194/tc-10-2821-2016
Research article
18 Nov 2016
Research article | 18 Nov 2016

Monitoring the temperature-dependent elastic and anelastic properties in isotropic polycrystalline ice using resonant ultrasound spectroscopy

Matthew J. Vaughan et al.

Related authors

Ultrasonic and seismic constraints on crystallographic preferred orientations of the Priestley Glacier shear margin, Antarctica
Franz Lutz, David J. Prior, Holly Still, M. Hamish Bowman, Bia Boucinhas, Lisa Craw, Sheng Fan, Daeyeong Kim, Robert Mulvaney, Rilee E. Thomas, and Christina L. Hulbe
The Cryosphere, 16, 3313–3329, https://doi.org/10.5194/tc-16-3313-2022,https://doi.org/10.5194/tc-16-3313-2022, 2022
Short summary
Can changes in deformation regimes be inferred from crystallographic preferred orientations in polar ice?
Maria-Gema Llorens, Albert Griera, Paul D. Bons, Ilka Weikusat, David J. Prior, Enrique Gomez-Rivas, Tamara de Riese, Ivone Jimenez-Munt, Daniel García-Castellanos, and Ricardo A. Lebensohn
The Cryosphere, 16, 2009–2024, https://doi.org/10.5194/tc-16-2009-2022,https://doi.org/10.5194/tc-16-2009-2022, 2022
Short summary
Seismic monitoring of the Auckland Volcanic Field during New Zealand's COVID-19 lockdown
Kasper van Wijk, Calum J. Chamberlain, Thomas Lecocq, and Koen Van Noten
Solid Earth, 12, 363–373, https://doi.org/10.5194/se-12-363-2021,https://doi.org/10.5194/se-12-363-2021, 2021
Short summary
Full crystallographic orientation (c and a axes) of warm, coarse-grained ice in a shear-dominated setting: a case study, Storglaciären, Sweden
Morgan E. Monz, Peter J. Hudleston, David J. Prior, Zachary Michels, Sheng Fan, Marianne Negrini, Pat J. Langhorne, and Chao Qi
The Cryosphere, 15, 303–324, https://doi.org/10.5194/tc-15-303-2021,https://doi.org/10.5194/tc-15-303-2021, 2021
Short summary
Temperature and strain controls on ice deformation mechanisms: insights from the microstructures of samples deformed to progressively higher strains at −10, −20 and −30 °C
Sheng Fan, Travis F. Hager, David J. Prior, Andrew J. Cross, David L. Goldsby, Chao Qi, Marianne Negrini, and John Wheeler
The Cryosphere, 14, 3875–3905, https://doi.org/10.5194/tc-14-3875-2020,https://doi.org/10.5194/tc-14-3875-2020, 2020
Short summary

Related subject area

Ice Physics
Ultrasonic and seismic constraints on crystallographic preferred orientations of the Priestley Glacier shear margin, Antarctica
Franz Lutz, David J. Prior, Holly Still, M. Hamish Bowman, Bia Boucinhas, Lisa Craw, Sheng Fan, Daeyeong Kim, Robert Mulvaney, Rilee E. Thomas, and Christina L. Hulbe
The Cryosphere, 16, 3313–3329, https://doi.org/10.5194/tc-16-3313-2022,https://doi.org/10.5194/tc-16-3313-2022, 2022
Short summary
Modeling enhanced firn densification due to strain softening
Falk M. Oraschewski and Aslak Grinsted
The Cryosphere, 16, 2683–2700, https://doi.org/10.5194/tc-16-2683-2022,https://doi.org/10.5194/tc-16-2683-2022, 2022
Short summary
Polarimetric radar reveals the spatial distribution of ice fabric at domes and divides in East Antarctica
M. Reza Ershadi, Reinhard Drews, Carlos Martín, Olaf Eisen, Catherine Ritz, Hugh Corr, Julia Christmann, Ole Zeising, Angelika Humbert, and Robert Mulvaney
The Cryosphere, 16, 1719–1739, https://doi.org/10.5194/tc-16-1719-2022,https://doi.org/10.5194/tc-16-1719-2022, 2022
Short summary
Thermal structure of the Amery Ice Shelf from borehole observations and simulations
Yu Wang, Chen Zhao, Rupert Gladstone, Ben Galton-Fenzi, and Roland Warner
The Cryosphere, 16, 1221–1245, https://doi.org/10.5194/tc-16-1221-2022,https://doi.org/10.5194/tc-16-1221-2022, 2022
Short summary
A probabilistic model for fracture events of Petermann ice islands under the influence of atmospheric and oceanic conditions
Reza Zeinali-Torbati, Ian D. Turnbull, Rocky S. Taylor, and Derek Mueller
The Cryosphere, 15, 5601–5621, https://doi.org/10.5194/tc-15-5601-2021,https://doi.org/10.5194/tc-15-5601-2021, 2021
Short summary

Cited articles

Aki, K. and Richards, P. G.: Quantitative Seismology, 2nd Edn., University Science Books, Sausalito, California, USA, 2002.
Bass, R., Rossberg, D., and Ziegler, G.: Die elastischen konstanten des Eises, Z. Phys., 149, 199–203, 1957.
Bentley, C. R.: Seismic anisotropy in the West Antarctic Ice Sheet, Wiley Online Library, Hoboken, New Jersey, USA, 1971.
Bentley, C. R.: Seismic-wave velocities in anisotropic ice: A comparison of measured and calculated values in and around the deep drill hole at Byrd Station, Antarctica, J. Geophys. Res., 77, 4406–4420, 1972.
Bentley, C. R. and Kohnen, H.: Seismic refraction measurements of internal-friction in Antarctic ice, J. Geophys. Res., 81, 1519–1526, https://doi.org/10.1029/JB081i008p01519, 1976.
Download
Short summary
The physical properties of ice are of interest in the study of the dynamics of sea ice, glaciers, and ice sheets. We used resonant ultrasound spectroscopy to estimate the effects of temperature on the elastic and anelastic characteristics of polycrystalline ice, which control the propagation of sound waves. This information helps calibrate seismic data, in order to determine regional-scale ice properties, improving our ability to predict ice sheet behaviour in response to climate change.