Articles | Volume 10, issue 5
https://doi.org/10.5194/tc-10-2291-2016
https://doi.org/10.5194/tc-10-2291-2016
Research article
 | 
30 Sep 2016
Research article |  | 30 Sep 2016

Effects of bryophyte and lichen cover on permafrost soil temperature at large scale

Philipp Porada, Altug Ekici, and Christian Beer

Related authors

Exploring effects of variation in plant root traits on carbon emissions from estuarine marshes
Youssef Saadaoui, Christian Beer, Peter Mueller, Friederike Neiske, Joscha N. Becker, Annette Eschenbach, and Philipp Porada
EGUsphere, https://doi.org/10.5194/egusphere-2024-1756,https://doi.org/10.5194/egusphere-2024-1756, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Exploring environmental and physiological drivers of the annual carbon budget of biocrusts from various climatic zones with a mechanistic data-driven model
Yunyao Ma, Bettina Weber, Alexandra Kratz, José Raggio, Claudia Colesie, Maik Veste, Maaike Y. Bader, and Philipp Porada
Biogeosciences, 20, 2553–2572, https://doi.org/10.5194/bg-20-2553-2023,https://doi.org/10.5194/bg-20-2553-2023, 2023
Short summary
A dynamic local-scale vegetation model for lycopsids (LYCOm v1.0)
Suman Halder, Susanne K. M. Arens, Kai Jensen, Tais W. Dahl, and Philipp Porada
Geosci. Model Dev., 15, 2325–2343, https://doi.org/10.5194/gmd-15-2325-2022,https://doi.org/10.5194/gmd-15-2325-2022, 2022
Short summary
ESD Reviews: Evidence of multiple inconsistencies between representations of terrestrial and marine ecosystems in Earth System Models
Félix Pellerin, Philipp Porada, and Inga Hense
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-55,https://doi.org/10.5194/esd-2020-55, 2020
Revised manuscript not accepted
Short summary
Global NO and HONO emissions of biological soil crusts estimated by a process-based non-vascular vegetation model
Philipp Porada, Alexandra Tamm, Jose Raggio, Yafang Cheng, Axel Kleidon, Ulrich Pöschl, and Bettina Weber
Biogeosciences, 16, 2003–2031, https://doi.org/10.5194/bg-16-2003-2019,https://doi.org/10.5194/bg-16-2003-2019, 2019
Short summary

Related subject area

Numerical Modelling
Quantifying radiative effects of light-absorbing particle deposition on snow at the SnowMIP sites
Enrico Zorzetto, Paul Ginoux, Sergey Malyshev, and Elena Shevliakova
The Cryosphere, 19, 1313–1334, https://doi.org/10.5194/tc-19-1313-2025,https://doi.org/10.5194/tc-19-1313-2025, 2025
Short summary
A minimal machine-learning glacier mass balance model
Marijn van der Meer, Harry Zekollari, Matthias Huss, Jordi Bolibar, Kamilla Hauknes Sjursen, and Daniel Farinotti
The Cryosphere, 19, 805–826, https://doi.org/10.5194/tc-19-805-2025,https://doi.org/10.5194/tc-19-805-2025, 2025
Short summary
Improving large-scale snow albedo modeling using a climatology of light-absorbing particle deposition
Manon Gaillard, Vincent Vionnet, Matthieu Lafaysse, Marie Dumont, and Paul Ginoux
The Cryosphere, 19, 769–792, https://doi.org/10.5194/tc-19-769-2025,https://doi.org/10.5194/tc-19-769-2025, 2025
Short summary
Physically based modelling of glacier evolution under climate change in the tropical Andes
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
The Cryosphere, 19, 685–712, https://doi.org/10.5194/tc-19-685-2025,https://doi.org/10.5194/tc-19-685-2025, 2025
Short summary
Present-day mass loss rates are a precursor for West Antarctic Ice Sheet collapse
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Jorjo Bernales, Constantijn J. Berends, Willem Jan van de Berg, and Roderik S. W. van de Wal
The Cryosphere, 19, 283–301, https://doi.org/10.5194/tc-19-283-2025,https://doi.org/10.5194/tc-19-283-2025, 2025
Short summary

Cited articles

Atchley, A., Coon, E., Painter, S., Harp, D., and Wilson, C.: Influences and interactions of inundation, peat, and snow on active layer thickness, Geophys. Res. Lett., 43, 5116–5123, https://doi.org/10.1002/2016GL068550, 2016.
Bauer, I., Bhatti, J., Swanston, C., Wieder, R., and Preston, C.: Organic Matter Accumulation and Community Change at the Peatland–Upland Interface: Inferences from 14C and 210Pb Dated Profiles, Ecosystems, 12, 636–653, https://doi.org/10.1007/s10021-009-9248-2, 2009.
Beer, C., Lucht, W., Schmullius, C., and Shvidenko, A.: Small net carbon dioxide uptake by Russian forests during 1981–1999, Geophys. Res. Lett., 33, L15403, https://doi.org/10.1029/2006GL026919, 2006.
Beer, C., Fedorov, A., and Torgovkin, Y.: Permafrost temperature and active-layer thickness of Yakutia with 0.5-degree spatial resolution for model evaluation, Earth Syst. Sci. Data, 5, 305–310, https://doi.org/10.5194/essd-5-305-2013, 2013.
Beer, C., Weber, U., Tomelleri, E., Carvalhais, N., Mahecha, M., and Reichstein, M.: Harmonized European Long-Term Climate Data for Assessing the Effect of Changing Temporal Variability on Land–Atmosphere CO2 Fluxes, J. Climate, 27, 4815–4834, https://doi.org/10.1175/JCLI-D-13-00543.1, 2014.
Download
Short summary
Bryophyte and lichen cover on the forest floor at high latitudes insulates the ground and thus decreases soil temperature. This can protect permafrost soil, stabilising it against global warming. To quantify the insulating effect, we integrate a novel, process-based model of bryophyte and lichen growth into the global land surface model JSBACH. We find an average cooling effect of the bryophyte and lichen cover of 2.7 K, which implies a significant impact on soil temperature at high latitudes.
Share