Articles | Volume 10, issue 5
https://doi.org/10.5194/tc-10-2291-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-10-2291-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Effects of bryophyte and lichen cover on permafrost soil temperature at large scale
Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, 11418 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden
Altug Ekici
Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, 11418 Stockholm, Sweden
Earth System Sciences, Laver Building, University of Exeter, Exeter, UK
Uni Research Climate, Bjerknes Centre for Climate Research, Bergen, Norway
Christian Beer
Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, 11418 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden
Related authors
Youssef Saadaoui, Christian Beer, Peter Mueller, Friederike Neiske, Joscha N. Becker, Annette Eschenbach, and Philipp Porada
EGUsphere, https://doi.org/10.5194/egusphere-2024-1756, https://doi.org/10.5194/egusphere-2024-1756, 2024
Short summary
Short summary
Estuarine marshes are vital for capturing carbon and benefiting the climate. Our research explored how plant-microbe interactions affect carbon cycling, focusing on traits like root oxygen loss. Using a model, we found that accounting for these trait variations significantly changes carbon balance estimates. This suggests that including plant diversity in ecosystem models improves predictions about carbon dynamics in estuarine marshes, highlighting their importance in climate regulation.
Yunyao Ma, Bettina Weber, Alexandra Kratz, José Raggio, Claudia Colesie, Maik Veste, Maaike Y. Bader, and Philipp Porada
Biogeosciences, 20, 2553–2572, https://doi.org/10.5194/bg-20-2553-2023, https://doi.org/10.5194/bg-20-2553-2023, 2023
Short summary
Short summary
We found that the modelled annual carbon balance of biocrusts is strongly affected by both the environment (mostly air temperature and CO2 concentration) and physiology, such as temperature response of respiration. However, the relative impacts of these drivers vary across regions with different climates. Uncertainty in driving factors may lead to unrealistic carbon balance estimates, particularly in temperate climates, and may be explained by seasonal variation of physiology due to acclimation.
Suman Halder, Susanne K. M. Arens, Kai Jensen, Tais W. Dahl, and Philipp Porada
Geosci. Model Dev., 15, 2325–2343, https://doi.org/10.5194/gmd-15-2325-2022, https://doi.org/10.5194/gmd-15-2325-2022, 2022
Short summary
Short summary
A dynamic vegetation model, designed to estimate potential impacts of early vascular vegetation, namely, lycopsids, on the biogeochemical cycle at a local scale. Lycopsid Model (LYCOm) estimates the productivity and physiological properties of lycopsids across a broad climatic range along with natural selection, which is then utilized to adjudge their weathering potential. It lays the foundation for estimation of their impacts during their long evolutionary history starting from the Ordovician.
Félix Pellerin, Philipp Porada, and Inga Hense
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-55, https://doi.org/10.5194/esd-2020-55, 2020
Revised manuscript not accepted
Short summary
Short summary
While several biological processes are similar among terrestrial and marine ecosystems, their representation in Earth System Models may differ. By comparing the terrestrial and marine modules of 17 Earth System Models, we found multiple evidences of unjustified differences in processes representation. These inconsistencies may lead to wrong predictions about the role of biosphere in the climate system and skew our perception of the relative influence of each ecosystem on climate.
Philipp Porada, Alexandra Tamm, Jose Raggio, Yafang Cheng, Axel Kleidon, Ulrich Pöschl, and Bettina Weber
Biogeosciences, 16, 2003–2031, https://doi.org/10.5194/bg-16-2003-2019, https://doi.org/10.5194/bg-16-2003-2019, 2019
Short summary
Short summary
The trace gases NO and HONO are crucial for atmospheric chemistry. It has been suggested that biological soil crusts in drylands contribute substantially to global NO and HONO emissions, based on empirical upscaling of laboratory and field observations. Here we apply an alternative, process-based modeling approach to predict these emissions. We find that biological soil crusts emit globally significant amounts of NO and HONO, which also vary depending on the type of biological soil crust.
Stefano Manzoni, Petr Čapek, Philipp Porada, Martin Thurner, Mattias Winterdahl, Christian Beer, Volker Brüchert, Jan Frouz, Anke M. Herrmann, Björn D. Lindahl, Steve W. Lyon, Hana Šantrůčková, Giulia Vico, and Danielle Way
Biogeosciences, 15, 5929–5949, https://doi.org/10.5194/bg-15-5929-2018, https://doi.org/10.5194/bg-15-5929-2018, 2018
Short summary
Short summary
Carbon fixed by plants and phytoplankton through photosynthesis is ultimately stored in soils and sediments or released to the atmosphere during decomposition of dead biomass. Carbon-use efficiency is a useful metric to quantify the fate of carbon – higher efficiency means higher storage and lower release to the atmosphere. Here we summarize many definitions of carbon-use efficiency and study how this metric changes from organisms to ecosystems and from terrestrial to aquatic environments.
Christian Beer, Philipp Porada, Altug Ekici, and Matthias Brakebusch
The Cryosphere, 12, 741–757, https://doi.org/10.5194/tc-12-741-2018, https://doi.org/10.5194/tc-12-741-2018, 2018
Short summary
Short summary
Idealized model experiments demonstrate that, in addition to a gradual climate change, changing daily to weekly variability of meteorological variables and extreme events will also have an impact on mean annual ground temperature in high-latitude permafrost areas. In fact, results of the land surface model experiments show that the projected increase of variability of meteorological variables leads to cooler permafrost soil in contrast to an otherwise soil warming in response to climate change.
Sarah E. Chadburn, Gerhard Krinner, Philipp Porada, Annett Bartsch, Christian Beer, Luca Belelli Marchesini, Julia Boike, Altug Ekici, Bo Elberling, Thomas Friborg, Gustaf Hugelius, Margareta Johansson, Peter Kuhry, Lars Kutzbach, Moritz Langer, Magnus Lund, Frans-Jan W. Parmentier, Shushi Peng, Ko Van Huissteden, Tao Wang, Sebastian Westermann, Dan Zhu, and Eleanor J. Burke
Biogeosciences, 14, 5143–5169, https://doi.org/10.5194/bg-14-5143-2017, https://doi.org/10.5194/bg-14-5143-2017, 2017
Short summary
Short summary
Earth system models (ESMs) are our main tools for understanding future climate. The Arctic is important for the future carbon cycle, particularly due to the large carbon stocks in permafrost. We evaluated the performance of the land component of three major ESMs at Arctic tundra sites, focusing on the fluxes and stocks of carbon.
We show that the next steps for model improvement are to better represent vegetation dynamics, to include mosses and to improve below-ground carbon cycle processes.
Philipp Porada, Ulrich Pöschl, Axel Kleidon, Christian Beer, and Bettina Weber
Biogeosciences, 14, 1593–1602, https://doi.org/10.5194/bg-14-1593-2017, https://doi.org/10.5194/bg-14-1593-2017, 2017
Short summary
Short summary
Lichens and bryophytes have been shown to release nitrous oxide, which is a strong greenhouse gas and atmospheric ozone-depleting agent. Here we apply a process-based computer model of lichens and bryophytes at the global scale, to estimate growth and respiration of the organisms. By relating respiration to nitrous oxide release, we simulate global nitrous oxide emissions of 0.27 (0.19–0.35) Tg yr−1. Moreover, we quantify different sources of uncertainty in nitrous oxide emission rates.
Christian Beer, Philipp Porada, Altug Ekici, and Matthias Brakebusch
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-210, https://doi.org/10.5194/tc-2016-210, 2016
Preprint withdrawn
Short summary
Short summary
Models suggest thawing permafrost in future due to climate change. In addition to warming, day-to-day variability of air temperature and precipitation is projected to increase. In an idealized theoretical model experiment we show that such changing short-term variability will reduce soil warming as a consequence of air warming by up to 1 K due to effects on snow and moss insulating layers. This shows the need of a mechanistic representation of such layers in Earth system models.
C. Buendía, S. Arens, T. Hickler, S. I. Higgins, P. Porada, and A. Kleidon
Biogeosciences, 11, 3661–3683, https://doi.org/10.5194/bg-11-3661-2014, https://doi.org/10.5194/bg-11-3661-2014, 2014
A. Kleidon, M. Renner, and P. Porada
Hydrol. Earth Syst. Sci., 18, 2201–2218, https://doi.org/10.5194/hess-18-2201-2014, https://doi.org/10.5194/hess-18-2201-2014, 2014
P. Porada, B. Weber, W. Elbert, U. Pöschl, and A. Kleidon
Biogeosciences, 10, 6989–7033, https://doi.org/10.5194/bg-10-6989-2013, https://doi.org/10.5194/bg-10-6989-2013, 2013
Youssef Saadaoui, Christian Beer, Peter Mueller, Friederike Neiske, Joscha N. Becker, Annette Eschenbach, and Philipp Porada
EGUsphere, https://doi.org/10.5194/egusphere-2024-1756, https://doi.org/10.5194/egusphere-2024-1756, 2024
Short summary
Short summary
Estuarine marshes are vital for capturing carbon and benefiting the climate. Our research explored how plant-microbe interactions affect carbon cycling, focusing on traits like root oxygen loss. Using a model, we found that accounting for these trait variations significantly changes carbon balance estimates. This suggests that including plant diversity in ecosystem models improves predictions about carbon dynamics in estuarine marshes, highlighting their importance in climate regulation.
Christian Beer
EGUsphere, https://doi.org/10.5194/egusphere-2024-1504, https://doi.org/10.5194/egusphere-2024-1504, 2024
Short summary
Short summary
Fauna and flora respires carbon dioxide into the atmosphere, which is a major carbon flux into the atmosphere. The underlying biochemical processes are complex, and we generalize them either assuming a first order chemical reaction of carbon and oxygen to carbon dioxide, or assuming enzymatic reactions. Here, we show that these assumptions lead to large differences in estimating the carbon-climate feedback until 2100 and the remaining carbon budget to keep warming below 2 degrees C.
Yunyao Ma, Bettina Weber, Alexandra Kratz, José Raggio, Claudia Colesie, Maik Veste, Maaike Y. Bader, and Philipp Porada
Biogeosciences, 20, 2553–2572, https://doi.org/10.5194/bg-20-2553-2023, https://doi.org/10.5194/bg-20-2553-2023, 2023
Short summary
Short summary
We found that the modelled annual carbon balance of biocrusts is strongly affected by both the environment (mostly air temperature and CO2 concentration) and physiology, such as temperature response of respiration. However, the relative impacts of these drivers vary across regions with different climates. Uncertainty in driving factors may lead to unrealistic carbon balance estimates, particularly in temperate climates, and may be explained by seasonal variation of physiology due to acclimation.
Suman Halder, Susanne K. M. Arens, Kai Jensen, Tais W. Dahl, and Philipp Porada
Geosci. Model Dev., 15, 2325–2343, https://doi.org/10.5194/gmd-15-2325-2022, https://doi.org/10.5194/gmd-15-2325-2022, 2022
Short summary
Short summary
A dynamic vegetation model, designed to estimate potential impacts of early vascular vegetation, namely, lycopsids, on the biogeochemical cycle at a local scale. Lycopsid Model (LYCOm) estimates the productivity and physiological properties of lycopsids across a broad climatic range along with natural selection, which is then utilized to adjudge their weathering potential. It lays the foundation for estimation of their impacts during their long evolutionary history starting from the Ordovician.
Félix Pellerin, Philipp Porada, and Inga Hense
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-55, https://doi.org/10.5194/esd-2020-55, 2020
Revised manuscript not accepted
Short summary
Short summary
While several biological processes are similar among terrestrial and marine ecosystems, their representation in Earth System Models may differ. By comparing the terrestrial and marine modules of 17 Earth System Models, we found multiple evidences of unjustified differences in processes representation. These inconsistencies may lead to wrong predictions about the role of biosphere in the climate system and skew our perception of the relative influence of each ecosystem on climate.
Altug Ekici, Hanna Lee, David M. Lawrence, Sean C. Swenson, and Catherine Prigent
Geosci. Model Dev., 12, 5291–5300, https://doi.org/10.5194/gmd-12-5291-2019, https://doi.org/10.5194/gmd-12-5291-2019, 2019
Short summary
Short summary
Ice-rich permafrost thaw can create expanding thermokarst lakes as well as shrinking large wetlands. Such processes can have major biogeochemical implications and feedbacks to climate systems by altering the pathways and rates of permafrost carbon release. We developed a new model parameterization that allows a direct representation of surface water dynamics with subsidence. Our results show increased surface water fractions around western Siberian plains and northeastern territories of Canada.
Philipp Porada, Alexandra Tamm, Jose Raggio, Yafang Cheng, Axel Kleidon, Ulrich Pöschl, and Bettina Weber
Biogeosciences, 16, 2003–2031, https://doi.org/10.5194/bg-16-2003-2019, https://doi.org/10.5194/bg-16-2003-2019, 2019
Short summary
Short summary
The trace gases NO and HONO are crucial for atmospheric chemistry. It has been suggested that biological soil crusts in drylands contribute substantially to global NO and HONO emissions, based on empirical upscaling of laboratory and field observations. Here we apply an alternative, process-based modeling approach to predict these emissions. We find that biological soil crusts emit globally significant amounts of NO and HONO, which also vary depending on the type of biological soil crust.
Thomas Schneider von Deimling, Thomas Kleinen, Gustaf Hugelius, Christian Knoblauch, Christian Beer, and Victor Brovkin
Clim. Past, 14, 2011–2036, https://doi.org/10.5194/cp-14-2011-2018, https://doi.org/10.5194/cp-14-2011-2018, 2018
Short summary
Short summary
Past cold ice age temperatures and the subsequent warming towards the Holocene had large consequences for soil organic carbon (SOC) stored in perennially frozen grounds. Using an Earth system model we show how the spread in areas affected by permafrost have changed under deglacial warming, along with changes in SOC accumulation. Our model simulations suggest phases of circum-Arctic permafrost SOC gain and losses, with a net increase in SOC between the last glacial maximum and the pre-industrial.
Stefano Manzoni, Petr Čapek, Philipp Porada, Martin Thurner, Mattias Winterdahl, Christian Beer, Volker Brüchert, Jan Frouz, Anke M. Herrmann, Björn D. Lindahl, Steve W. Lyon, Hana Šantrůčková, Giulia Vico, and Danielle Way
Biogeosciences, 15, 5929–5949, https://doi.org/10.5194/bg-15-5929-2018, https://doi.org/10.5194/bg-15-5929-2018, 2018
Short summary
Short summary
Carbon fixed by plants and phytoplankton through photosynthesis is ultimately stored in soils and sediments or released to the atmosphere during decomposition of dead biomass. Carbon-use efficiency is a useful metric to quantify the fate of carbon – higher efficiency means higher storage and lower release to the atmosphere. Here we summarize many definitions of carbon-use efficiency and study how this metric changes from organisms to ecosystems and from terrestrial to aquatic environments.
Karel Castro-Morales, Thomas Kleinen, Sonja Kaiser, Sönke Zaehle, Fanny Kittler, Min Jung Kwon, Christian Beer, and Mathias Göckede
Biogeosciences, 15, 2691–2722, https://doi.org/10.5194/bg-15-2691-2018, https://doi.org/10.5194/bg-15-2691-2018, 2018
Short summary
Short summary
We present year-round methane emissions from wetlands in Northeast Siberia that were simulated with a land surface model. Ground-based flux measurements from the same area were used for evaluation of the model results, finding a best agreement with the observations in the summertime emissions that take place in this region predominantly through plants. During winter, methane emissions through the snow contribute 4 % of the total annual methane budget, but these are still underestimated.
Christian Beer, Philipp Porada, Altug Ekici, and Matthias Brakebusch
The Cryosphere, 12, 741–757, https://doi.org/10.5194/tc-12-741-2018, https://doi.org/10.5194/tc-12-741-2018, 2018
Short summary
Short summary
Idealized model experiments demonstrate that, in addition to a gradual climate change, changing daily to weekly variability of meteorological variables and extreme events will also have an impact on mean annual ground temperature in high-latitude permafrost areas. In fact, results of the land surface model experiments show that the projected increase of variability of meteorological variables leads to cooler permafrost soil in contrast to an otherwise soil warming in response to climate change.
Sarah E. Chadburn, Gerhard Krinner, Philipp Porada, Annett Bartsch, Christian Beer, Luca Belelli Marchesini, Julia Boike, Altug Ekici, Bo Elberling, Thomas Friborg, Gustaf Hugelius, Margareta Johansson, Peter Kuhry, Lars Kutzbach, Moritz Langer, Magnus Lund, Frans-Jan W. Parmentier, Shushi Peng, Ko Van Huissteden, Tao Wang, Sebastian Westermann, Dan Zhu, and Eleanor J. Burke
Biogeosciences, 14, 5143–5169, https://doi.org/10.5194/bg-14-5143-2017, https://doi.org/10.5194/bg-14-5143-2017, 2017
Short summary
Short summary
Earth system models (ESMs) are our main tools for understanding future climate. The Arctic is important for the future carbon cycle, particularly due to the large carbon stocks in permafrost. We evaluated the performance of the land component of three major ESMs at Arctic tundra sites, focusing on the fluxes and stocks of carbon.
We show that the next steps for model improvement are to better represent vegetation dynamics, to include mosses and to improve below-ground carbon cycle processes.
Eleanor J. Burke, Altug Ekici, Ye Huang, Sarah E. Chadburn, Chris Huntingford, Philippe Ciais, Pierre Friedlingstein, Shushi Peng, and Gerhard Krinner
Biogeosciences, 14, 3051–3066, https://doi.org/10.5194/bg-14-3051-2017, https://doi.org/10.5194/bg-14-3051-2017, 2017
Short summary
Short summary
There are large reserves of carbon within the permafrost which might be released to the atmosphere under global warming. Our models suggest this release may cause an additional global temperature increase of 0.005 to 0.2°C by the year 2100 and 0.01 to 0.34°C by the year 2300. Under climate mitigation scenarios this is between 1.5 and 9 % (by 2100) and between 6 and 16 % (by 2300) of the global mean temperature change. There is a large uncertainty associated with these results.
Philipp Porada, Ulrich Pöschl, Axel Kleidon, Christian Beer, and Bettina Weber
Biogeosciences, 14, 1593–1602, https://doi.org/10.5194/bg-14-1593-2017, https://doi.org/10.5194/bg-14-1593-2017, 2017
Short summary
Short summary
Lichens and bryophytes have been shown to release nitrous oxide, which is a strong greenhouse gas and atmospheric ozone-depleting agent. Here we apply a process-based computer model of lichens and bryophytes at the global scale, to estimate growth and respiration of the organisms. By relating respiration to nitrous oxide release, we simulate global nitrous oxide emissions of 0.27 (0.19–0.35) Tg yr−1. Moreover, we quantify different sources of uncertainty in nitrous oxide emission rates.
Eleanor J. Burke, Sarah E. Chadburn, and Altug Ekici
Geosci. Model Dev., 10, 959–975, https://doi.org/10.5194/gmd-10-959-2017, https://doi.org/10.5194/gmd-10-959-2017, 2017
Short summary
Short summary
There is a large amount of relatively inert organic carbon locked into permafrost soils. In a warming climate the permafrost will thaw and this organic carbon will become vulnerable to decomposition. This process is not typically included within Earth system models (ESMs). This paper describes the development of a vertically resolved soil organic carbon decomposition model which, in the future, can be included within the UKESM to quantify the response of the climate to permafrost carbon loss.
Sonja Kaiser, Mathias Göckede, Karel Castro-Morales, Christian Knoblauch, Altug Ekici, Thomas Kleinen, Sebastian Zubrzycki, Torsten Sachs, Christian Wille, and Christian Beer
Geosci. Model Dev., 10, 333–358, https://doi.org/10.5194/gmd-10-333-2017, https://doi.org/10.5194/gmd-10-333-2017, 2017
Short summary
Short summary
A new consistent, process-based methane module that is integrated with permafrost processes is presented. It was developed within a global land surface scheme and evaluated at a polygonal tundra site in Samoylov, Russia. The calculated methane emissions show fair agreement with field data and capture detailed differences between the explicitly modelled gas transport processes and in the gas dynamics under varying soil water and temperature conditions during seasons and on different microsites.
Christian Beer, Philipp Porada, Altug Ekici, and Matthias Brakebusch
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-210, https://doi.org/10.5194/tc-2016-210, 2016
Preprint withdrawn
Short summary
Short summary
Models suggest thawing permafrost in future due to climate change. In addition to warming, day-to-day variability of air temperature and precipitation is projected to increase. In an idealized theoretical model experiment we show that such changing short-term variability will reduce soil warming as a consequence of air warming by up to 1 K due to effects on snow and moss insulating layers. This shows the need of a mechanistic representation of such layers in Earth system models.
Stefan Hagemann, Tanja Blome, Altug Ekici, and Christian Beer
Earth Syst. Dynam., 7, 611–625, https://doi.org/10.5194/esd-7-611-2016, https://doi.org/10.5194/esd-7-611-2016, 2016
Short summary
Short summary
The present study analyses how cold-region physical soil processes, especially freezing of soil water, impact large-scale hydrology and climate over Northern Hemisphere high-latitude land areas. For this analysis, an atmosphere–land global climate model was used. It is shown that including these processes in the model leads to improved discharge in spring and a positive land–atmosphere feedback to precipitation over the high latitudes that has previously not been noted for the high latitudes.
A. Ekici, S. Chadburn, N. Chaudhary, L. H. Hajdu, A. Marmy, S. Peng, J. Boike, E. Burke, A. D. Friend, C. Hauck, G. Krinner, M. Langer, P. A. Miller, and C. Beer
The Cryosphere, 9, 1343–1361, https://doi.org/10.5194/tc-9-1343-2015, https://doi.org/10.5194/tc-9-1343-2015, 2015
Short summary
Short summary
This paper compares the performance of different land models in estimating soil thermal regimes at distinct cold region landscape types. Comparing models with different processes reveal the importance of surface insulation (snow/moss layer) and soil internal processes (heat/water transfer). The importance of model processes also depend on site conditions such as high/low snow cover, dry/wet soil types.
C. Buendía, S. Arens, T. Hickler, S. I. Higgins, P. Porada, and A. Kleidon
Biogeosciences, 11, 3661–3683, https://doi.org/10.5194/bg-11-3661-2014, https://doi.org/10.5194/bg-11-3661-2014, 2014
A. Kleidon, M. Renner, and P. Porada
Hydrol. Earth Syst. Sci., 18, 2201–2218, https://doi.org/10.5194/hess-18-2201-2014, https://doi.org/10.5194/hess-18-2201-2014, 2014
A. Ekici, C. Beer, S. Hagemann, J. Boike, M. Langer, and C. Hauck
Geosci. Model Dev., 7, 631–647, https://doi.org/10.5194/gmd-7-631-2014, https://doi.org/10.5194/gmd-7-631-2014, 2014
P. Porada, B. Weber, W. Elbert, U. Pöschl, and A. Kleidon
Biogeosciences, 10, 6989–7033, https://doi.org/10.5194/bg-10-6989-2013, https://doi.org/10.5194/bg-10-6989-2013, 2013
Related subject area
Numerical Modelling
Sensitivity of the future evolution of the Wilkes Subglacial Basin ice sheet to grounding-line melt parameterizations
Modelling snowpack on ice surfaces with the ORCHIDEE land surface model: application to the Greenland ice sheet
Application of a regularised Coulomb sliding law to Jakobshavn Isbræ, western Greenland
Brief communication: Stalagmite damage by cave ice flow quantitatively assessed by fluid–structure interaction simulations
Exploring the decision-making process in model development: focus on the Arctic snowpack
Exploring the potential of forest snow modeling at the tree and snowpack layer scale
Simulating lake ice phenology using a coupled atmosphere–lake model at Nam Co, a typical deep alpine lake on the Tibetan Plateau
Modelling the effect of free convection on permafrost melting rates in frozen rock clefts
How many parameters are needed to represent polar sea ice surface patterns and heterogeneity?
Antarctic sensitivity to oceanic melting parameterizations
Analytical solutions for the advective–diffusive ice column in the presence of strain heating
Ice viscosity governs hydraulic fracture that causes rapid drainage of supraglacial lakes
Microstructure-based modelling of snow mechanics: experimental evaluation of the cone penetration test
Snow redistribution in an intermediate-complexity snow hydrology modelling framework
Increasing numerical stability of mountain valley glacier simulations: implementation and testing of free-surface stabilization in Elmer/Ice
Analyzing the sensitivity of a blowing snow model (SnowPappus) to precipitation forcing, blowing snow, and spatial resolution
Quantifying the Buttressing Contribution of Sea Ice to Crane Glacier
Exploring non-Gaussian sea ice characteristics via observing system simulation experiments
Past and future of the Arctic sea ice in High-Resolution Model Intercomparison Project (HighResMIP) climate models
Biases in ice sheet models from missing noise-induced drift
A new glacier thickness and bed map for Svalbard
Multi-physics ensemble modelling of Arctic tundra snowpack properties
A 3D glacier dynamics–line plume model to estimate the frontal ablation of Hansbreen, Svalbard
Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic
Using Icepack to reproduce ice mass balance buoy observations in landfast ice: improvements from the mushy-layer thermodynamics
Modeling the timing of Patagonian Ice Sheet retreat in the Chilean Lake District from 22–10 ka
Understanding the influence of ocean waves on Arctic sea ice simulation: a modeling study with an atmosphere–ocean–wave–sea ice coupled model
Sea ice cover in the Copernicus Arctic Regional Reanalysis
Regime shifts in Arctic terrestrial hydrology manifested from impacts of climate warming
Smoothed particle hydrodynamics implementation of the standard viscous–plastic sea-ice model and validation in simple idealized experiments
Coupled thermo–geophysical inversion for permafrost monitoring
Using specularity content to evaluate eight geothermal heat flow maps of Totten Glacier
Surging of a Hudson Strait-scale ice stream: subglacial hydrology matters but the process details mostly do not
Impact of the Nares Strait sea ice arches on the long-term stability of the Petermann Glacier ice shelf
Coupling between ice flow and subglacial hydrology enhances marine ice-sheet retreat
Regularization and L-curves in ice sheet inverse models: a case study in the Filchner–Ronne catchment
Quantifying the uncertainty in the Eurasian ice-sheet geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6)
Simulating ice segregation and thaw consolidation in permafrost environments with the CryoGrid community model
Reconciling ice dynamics and bed topography with a versatile and fast ice thickness inversion
The stability of present-day Antarctic grounding lines – Part 2: Onset of irreversible retreat of Amundsen Sea glaciers under current climate on centennial timescales cannot be excluded
The stability of present-day Antarctic grounding lines – Part 1: No indication of marine ice sheet instability in the current geometry
Phase-field models of floe fracture in sea ice
Exploring the ability of the variable-resolution Community Earth System Model to simulate cryospheric–hydrological variables in High Mountain Asia
Investigating the thermal state of permafrost with Bayesian inverse modeling of heat transfer
Modelling the development and decay of cryoconite holes in northwestern Greenland
The effect of partial dissolution on sea-ice chemical transport: a combined model–observational study using poly- and perfluoroalkylated substances (PFASs)
Deep learning subgrid-scale parametrisations for short-term forecasting of sea-ice dynamics with a Maxwell elasto-brittle rheology
Modelling ice mélange based on the viscous-plastic sea-ice rheology
Representation of soil hydrology in permafrost regions may explain large part of inter-model spread in simulated Arctic and subarctic climate
Impact of atmospheric forcing uncertainties on Arctic and Antarctic sea ice simulations in CMIP6 OMIP models
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024, https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Short summary
Our research delves into the future evolution of Antarctica's Wilkes Subglacial Basin (WSB) and its potential contribution to sea level rise, focusing on how basal melt is implemented at the grounding line in ice flow models. Our findings suggest that these implementation methods can significantly impact the magnitude of future ice loss projections. Under a high-emission scenario, the WSB ice sheet could undergo massive and rapid retreat between 2200 and 2300.
Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, Nina Raoult, Xavier Fettweis, and Philippe Conesa
The Cryosphere, 18, 5067–5099, https://doi.org/10.5194/tc-18-5067-2024, https://doi.org/10.5194/tc-18-5067-2024, 2024
Short summary
Short summary
The evolution of the Greenland ice sheet is highly dependent on surface melting and therefore on the processes operating at the snow–atmosphere interface and within the snow cover. Here we present new developments to apply a snow model to the Greenland ice sheet. The performance of this model is analysed in terms of its ability to simulate ablation processes. Our analysis shows that the model performs well when compared with the MAR regional polar atmospheric model.
Matt Trevers, Antony J. Payne, and Stephen L. Cornford
The Cryosphere, 18, 5101–5115, https://doi.org/10.5194/tc-18-5101-2024, https://doi.org/10.5194/tc-18-5101-2024, 2024
Short summary
Short summary
The form of the friction law which determines the speed of ice sliding over the bedrock remains a major source of uncertainty in ice sheet model projections of future sea level rise. Jakobshavn Isbræ, the fastest-flowing glacier in Greenland, which has undergone significant changes in the last few decades, is an ideal case for testing sliding laws. We find that a regularised Coulomb friction law reproduces the large seasonal and inter-annual flow speed variations most accurately.
Alexander H. Jarosch, Paul Hofer, and Christoph Spötl
The Cryosphere, 18, 4811–4816, https://doi.org/10.5194/tc-18-4811-2024, https://doi.org/10.5194/tc-18-4811-2024, 2024
Short summary
Short summary
Mechanical damage to stalagmites is commonly observed in mid-latitude caves. In this study we investigate ice flow along the cave bed as a possible mechanism for stalagmite damage. Utilizing models which simulate forces created by ice flow, we study the structural integrity of different stalagmite geometries. Our results suggest that structural failure of stalagmites caused by ice flow is possible, albeit unlikely.
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024, https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary
Short summary
Computer models, like those used in climate change studies, are written by modellers who have to decide how best to construct the models in order to satisfy the purpose they serve. Using snow modelling as an example, we examine the process behind the decisions to understand what motivates or limits modellers in their decision-making. We find that the context in which research is undertaken is often more crucial than scientific limitations. We argue for more transparency in our research practice.
Giulia Mazzotti, Jari-Pekka Nousu, Vincent Vionnet, Tobias Jonas, Rafife Nheili, and Matthieu Lafaysse
The Cryosphere, 18, 4607–4632, https://doi.org/10.5194/tc-18-4607-2024, https://doi.org/10.5194/tc-18-4607-2024, 2024
Short summary
Short summary
As many boreal and alpine forests have seasonal snow, models are needed to predict forest snow under future environmental conditions. We have created a new forest snow model by combining existing, very detailed model components for the canopy and the snowpack. We applied it to forests in Switzerland and Finland and showed how complex forest cover leads to a snowpack layering that is very variable in space and time because different processes prevail at different locations in the forest.
Xu Zhou, Binbin Wang, Xiaogang Ma, Zhu La, and Kun Yang
The Cryosphere, 18, 4589–4605, https://doi.org/10.5194/tc-18-4589-2024, https://doi.org/10.5194/tc-18-4589-2024, 2024
Short summary
Short summary
The simulation of the ice phenology of Nam Co by WRF is investigated. Compared with the default model, improving the key lake schemes, such as water surface roughness length for heat fluxes and the shortwave radiation transfer for lake ice, can better simulate the lake ice phenology. The still existing errors in the spatial patterns of lake ice phenology imply that challenges still exist in modelling key lake and non-lake physics such as grid-scale water circulation and snow-related processes.
Amir Sedaghatkish, Frédéric Doumenc, Pierre-Yves Jeannin, and Marc Luetscher
The Cryosphere, 18, 4531–4546, https://doi.org/10.5194/tc-18-4531-2024, https://doi.org/10.5194/tc-18-4531-2024, 2024
Short summary
Short summary
We developed a model to simulate the natural convection of water within frozen rock crevices subject to daily warming in mountain permafrost regions. Traditional models relying on conduction and latent heat flux typically overlook free convection. The results reveal that free convection can significantly accelerate the melting rate by an order of magnitude compared to conduction-based models. Our results are important for assessing the impact of climate change on mountain infrastructure.
Joseph Fogarty, Elie Bou-Zeid, Mitchell Bushuk, and Linette Boisvert
The Cryosphere, 18, 4335–4354, https://doi.org/10.5194/tc-18-4335-2024, https://doi.org/10.5194/tc-18-4335-2024, 2024
Short summary
Short summary
We hypothesize that using a broad set of surface characterization metrics for polar sea ice surfaces will lead to more accurate representations in general circulation models. However, the first step is to identify the minimum set of metrics required. We show via numerical simulations that sea ice surface patterns can play a crucial role in determining boundary layer structures. We then statistically analyze a set of high-resolution sea ice surface images to obtain this minimal set of parameters.
Antonio Juarez-Martinez, Javier Blasco, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4257–4283, https://doi.org/10.5194/tc-18-4257-2024, https://doi.org/10.5194/tc-18-4257-2024, 2024
Short summary
Short summary
We present sea level projections for Antarctica in the context of ISMIP6-2300 with several forcings but extend the simulations to 2500, showing that more than 3 m of sea level contribution could be reached. We also test the sensitivity on a basal melting parameter and determine the timing of the loss of ice in the west region. All the simulations were carried out with the ice sheet model Yelmo.
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4215–4232, https://doi.org/10.5194/tc-18-4215-2024, https://doi.org/10.5194/tc-18-4215-2024, 2024
Short summary
Short summary
Our study tries to understand how the ice temperature evolves in a large mass as in the case of Antarctica. We found a relation that tells us the ice temperature at any point. These results are important because they also determine how the ice moves. In general, ice moves due to slow deformation (as if pouring honey from a jar). Nevertheless, in some regions the ice base warms enough and melts. The liquid water then serves as lubricant and the ice slides and its velocity increases rapidly.
Tim Hageman, Jessica Mejía, Ravindra Duddu, and Emilio Martínez-Pañeda
The Cryosphere, 18, 3991–4009, https://doi.org/10.5194/tc-18-3991-2024, https://doi.org/10.5194/tc-18-3991-2024, 2024
Short summary
Short summary
Due to surface melting, meltwater lakes seasonally form on the surface of glaciers. These lakes drive hydrofractures that rapidly transfer water to the base of ice sheets. This paper presents a computational method to capture the complicated hydrofracturing process. Our work reveals that viscous ice rheology has a great influence on the short-term propagation of fractures, enabling fast lake drainage, whereas thermal effects (frictional heating, conduction, and freezing) have little influence.
Clémence Herny, Pascal Hagenmuller, Guillaume Chambon, Isabel Peinke, and Jacques Roulle
The Cryosphere, 18, 3787–3805, https://doi.org/10.5194/tc-18-3787-2024, https://doi.org/10.5194/tc-18-3787-2024, 2024
Short summary
Short summary
This paper presents the evaluation of a numerical discrete element method (DEM) by simulating cone penetration tests in different snow samples. The DEM model demonstrated a good ability to reproduce the measured mechanical behaviour of the snow, namely the force evolution on the cone and the grain displacement field. Systematic sensitivity tests showed that the mechanical response depends not only on the microstructure of the sample but also on the mechanical parameters of grain contacts.
Louis Quéno, Rebecca Mott, Paul Morin, Bertrand Cluzet, Giulia Mazzotti, and Tobias Jonas
The Cryosphere, 18, 3533–3557, https://doi.org/10.5194/tc-18-3533-2024, https://doi.org/10.5194/tc-18-3533-2024, 2024
Short summary
Short summary
Snow redistribution by wind and avalanches strongly influences snow hydrology in mountains. This study presents a novel modelling approach to best represent these processes in an operational context. The evaluation of the simulations against airborne snow depth measurements showed remarkable improvement in the snow distribution in mountains of the eastern Swiss Alps, with a representation of snow accumulation and erosion areas, suggesting promising benefits for operational snow melt forecasts.
André Löfgren, Thomas Zwinger, Peter Råback, Christian Helanow, and Josefin Ahlkrona
The Cryosphere, 18, 3453–3470, https://doi.org/10.5194/tc-18-3453-2024, https://doi.org/10.5194/tc-18-3453-2024, 2024
Short summary
Short summary
This paper investigates a stabilization method for free-surface flows in the context of glacier simulations. Previous applications of the stabilization on ice flows have only considered simple ice-sheet benchmark problems; in particular the method had not been tested on real-world glacier domains. This work addresses this shortcoming by demonstrating that the stabilization works well also in this case and increases stability and robustness without negatively impacting computation times.
Ange Haddjeri, Matthieu Baron, Matthieu Lafaysse, Louis Le Toumelin, César Deschamps-Berger, Vincent Vionnet, Simon Gascoin, Matthieu Vernay, and Marie Dumont
The Cryosphere, 18, 3081–3116, https://doi.org/10.5194/tc-18-3081-2024, https://doi.org/10.5194/tc-18-3081-2024, 2024
Short summary
Short summary
Our study addresses the complex challenge of evaluating distributed alpine snow simulations with snow transport against snow depths from Pléiades stereo imagery and snow melt-out dates from Sentinel-2 and Landsat-8 satellites. Additionally, we disentangle error contributions between blowing snow, precipitation heterogeneity, and unresolved subgrid variability. Snow transport enhances the snow simulations at high elevations, while precipitation biases are the main error source in other areas.
Richard Parsons, Sainan Sun, G. Hilmar Gudmundsson, Jan Wuite, and Thomas Nagler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1499, https://doi.org/10.5194/egusphere-2024-1499, 2024
Short summary
Short summary
In 2022, sea ice in Antarctica's Larsen B embayment disintegrated, after which time an increase in the rate at which Crane Glacier discharged ice into the ocean was observed. As the sea ice was attached to the terminus of the glacier, it could provide a resistive stress against the glacier’s ice-flow, slowing down the rate of ice discharge. We used numerical modelling to quantify this resistive stress and found that the sea ice provided significant support to Crane prior to its disintegration.
Christopher Riedel and Jeffrey Anderson
The Cryosphere, 18, 2875–2896, https://doi.org/10.5194/tc-18-2875-2024, https://doi.org/10.5194/tc-18-2875-2024, 2024
Short summary
Short summary
Accurate sea ice conditions are crucial for quality sea ice projections, which have been connected to rapid warming over the Arctic. Knowing which observations to assimilate into models will help produce more accurate sea ice conditions. We found that not assimilating sea ice concentration led to more accurate sea ice states. The methods typically used to assimilate observations in our models apply assumptions to variables that are not well suited for sea ice because they are bounded variables.
Julia Selivanova, Doroteaciro Iovino, and Francesco Cocetta
The Cryosphere, 18, 2739–2763, https://doi.org/10.5194/tc-18-2739-2024, https://doi.org/10.5194/tc-18-2739-2024, 2024
Short summary
Short summary
Climate models show differences in sea ice representation in comparison to observations. Increasing the model resolution is a recognized way to improve model realism and obtain more reliable future projections. We find no strong impact of resolution on sea ice representation; it rather depends on the analysed variable and the model used. By 2050, the marginal ice zone (MIZ) becomes a dominant feature of the Arctic ice cover, suggesting a shift to a new regime similar to that in Antarctica.
Alexander A. Robel, Vincent Verjans, and Aminat A. Ambelorun
The Cryosphere, 18, 2613–2623, https://doi.org/10.5194/tc-18-2613-2024, https://doi.org/10.5194/tc-18-2613-2024, 2024
Short summary
Short summary
The average size of many glaciers and ice sheets changes when noise is added to the system. The reasons for this drift in glacier state is intrinsic to the dynamics of how ice flows and the bumpiness of the Earth's surface. We argue that not including noise in projections of ice sheet evolution over coming decades and centuries is a pervasive source of bias in these computer models, and so realistic variability in glacier and climate processes must be included in models.
Ward van Pelt and Thomas Frank
EGUsphere, https://doi.org/10.5194/egusphere-2024-1525, https://doi.org/10.5194/egusphere-2024-1525, 2024
Short summary
Short summary
Accurate information on the ice thickness of Svalbard’s glaciers is important for assessing the contribution to sea level rise in a present and future climate. However, direct observations of the glacier bed are scarce. Here, we use an inverse approach and high-resolution surface observations, to infer basal conditions. We present and analyze the new bed and thickness maps, quantify the ice volume (6,800 km3), and compare against radar data and previous studies.
Georgina Jean Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Richard Essery, Philip Marsh, Rosamund Tutton, Branden Walker, Matthieu Lafaysse, and David Pritchard
EGUsphere, https://doi.org/10.5194/egusphere-2024-1237, https://doi.org/10.5194/egusphere-2024-1237, 2024
Short summary
Short summary
Parameterisations of Arctic snow processes were implemented into the multi-physics ensemble version of SVS2-Crocus and evaluated using density and SSA measurements at an Arctic tundra site. Optimal combinations of parameterisations that improved the simulation of density and SSA were identified. Top performing ensemble members featured modifications that raise wind speeds to increase compaction in surface layers, prevent snowdrift and increase viscosity in basal layers.
José M. Muñoz-Hermosilla, Jaime Otero, Eva De Andrés, Kaian Shahateet, Francisco Navarro, and Iván Pérez-Doña
The Cryosphere, 18, 1911–1924, https://doi.org/10.5194/tc-18-1911-2024, https://doi.org/10.5194/tc-18-1911-2024, 2024
Short summary
Short summary
A large fraction of the mass loss from marine-terminating glaciers is attributed to frontal ablation. In this study, we used a 3D ice flow model of a real glacier that includes the effects of calving and submarine melting. Over a 30-month simulation, we found that the model reproduced the seasonal cycle for this glacier. Besides, the front positions were in good agreement with observations in the central part of the front, with longitudinal differences, on average, below 15 m.
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Guillaume Boutin, and Einar Ólason
The Cryosphere, 18, 1791–1815, https://doi.org/10.5194/tc-18-1791-2024, https://doi.org/10.5194/tc-18-1791-2024, 2024
Short summary
Short summary
This paper focuses on predicting Arctic-wide sea-ice thickness using surrogate modeling with deep learning. The model has a predictive power of 12 h up to 6 months. For this forecast horizon, persistence and daily climatology are systematically outperformed, a result of learned thermodynamics and advection. Consequently, surrogate modeling with deep learning proves to be effective at capturing the complex behavior of sea ice.
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Adrienne Tivy, Joey Angnatok, François Roy, Gregory Smith, Frédéric Dupont, and Adrian K. Turner
The Cryosphere, 18, 1685–1708, https://doi.org/10.5194/tc-18-1685-2024, https://doi.org/10.5194/tc-18-1685-2024, 2024
Short summary
Short summary
We use a sea ice model to reproduce ice growth observations from two buoys deployed on coastal sea ice and analyze the improvements brought by new physics that represent the presence of saline liquid water in the ice interior. We find that the new physics with default parameters degrade the model performance, with overly rapid ice growth and overly early snow flooding on top of the ice. The performance is largely improved by simple modifications to the ice growth and snow-flooding algorithms.
Joshua Cuzzone, Matias Romero, and Shaun A. Marcott
The Cryosphere, 18, 1381–1398, https://doi.org/10.5194/tc-18-1381-2024, https://doi.org/10.5194/tc-18-1381-2024, 2024
Short summary
Short summary
We simulate the retreat history of the Patagonian Ice Sheet (PIS) across the Chilean Lake District from 22–10 ka. These results improve our understanding of the response of the PIS to deglacial warming and the patterns of deglacial ice margin retreat where gaps in the geologic record still exist, and they indicate that changes in large-scale precipitation during the last deglaciation played an important role in modulating the response of ice margin change across the PIS to deglacial warming.
Chao-Yuan Yang, Jiping Liu, and Dake Chen
The Cryosphere, 18, 1215–1239, https://doi.org/10.5194/tc-18-1215-2024, https://doi.org/10.5194/tc-18-1215-2024, 2024
Short summary
Short summary
We present a new atmosphere–ocean–wave–sea ice coupled model to study the influences of ocean waves on Arctic sea ice simulation. Our results show (1) smaller ice-floe size with wave breaking increases ice melt, (2) the responses in the atmosphere and ocean to smaller floe size partially reduce the effect of the enhanced ice melt, (3) the limited oceanic energy is a strong constraint for ice melt enhancement, and (4) ocean waves can indirectly affect sea ice through the atmosphere and the ocean.
Yurii Batrak, Bin Cheng, and Viivi Kallio-Myers
The Cryosphere, 18, 1157–1183, https://doi.org/10.5194/tc-18-1157-2024, https://doi.org/10.5194/tc-18-1157-2024, 2024
Short summary
Short summary
Atmospheric reanalyses provide consistent series of atmospheric and surface parameters in a convenient gridded form. In this paper, we study the quality of sea ice in a recently released regional reanalysis and assess its added value compared to a global reanalysis. We show that the regional reanalysis, having a more complex sea ice model, gives an improved representation of sea ice, although there are limitations indicating potential benefits in using more advanced approaches in the future.
Michael A. Rawlins and Ambarish V. Karmalkar
The Cryosphere, 18, 1033–1052, https://doi.org/10.5194/tc-18-1033-2024, https://doi.org/10.5194/tc-18-1033-2024, 2024
Short summary
Short summary
Flows of water, carbon, and materials by Arctic rivers are being altered by climate warming. We used simulations from a permafrost hydrology model to investigate future changes in quantities influencing river exports. By 2100 Arctic rivers will receive more runoff from the far north where abundant soil carbon can leach in. More water will enter them via subsurface pathways particularly in summer and autumn. An enhanced water cycle and permafrost thaw are changing river flows to coastal areas.
Oreste Marquis, Bruno Tremblay, Jean-François Lemieux, and Mohammed Islam
The Cryosphere, 18, 1013–1032, https://doi.org/10.5194/tc-18-1013-2024, https://doi.org/10.5194/tc-18-1013-2024, 2024
Short summary
Short summary
We developed a standard viscous–plastic sea-ice model based on the numerical framework called smoothed particle hydrodynamics. The model conforms to the theory within an error of 1 % in an idealized ridging experiment, and it is able to simulate stable ice arches. However, the method creates a dispersive plastic wave speed. The framework is efficient to simulate fractures and can take full advantage of parallelization, making it a good candidate to investigate sea-ice material properties.
Soňa Tomaškovičová and Thomas Ingeman-Nielsen
The Cryosphere, 18, 321–340, https://doi.org/10.5194/tc-18-321-2024, https://doi.org/10.5194/tc-18-321-2024, 2024
Short summary
Short summary
We present the results of a fully coupled modeling framework for simulating the ground thermal regime using only surface measurements to calibrate the thermal model. The heat conduction model is forced by surface ground temperature measurements and calibrated using the field measurements of time lapse apparent electrical resistivity. The resistivity-calibrated thermal model achieves a performance comparable to the traditional calibration of borehole temperature measurements.
Yan Huang, Liyun Zhao, Michael Wolovick, Yiliang Ma, and John C. Moore
The Cryosphere, 18, 103–119, https://doi.org/10.5194/tc-18-103-2024, https://doi.org/10.5194/tc-18-103-2024, 2024
Short summary
Short summary
Geothermal heat flux (GHF) is an important factor affecting the basal thermal environment of an ice sheet and crucial for its dynamics. But it is poorly defined for the Antarctic ice sheet. We simulate the basal temperature and basal melting rate with eight different GHF datasets. We use specularity content as a two-sided constraint to discriminate between local wet or dry basal conditions. Two medium-magnitude GHF distribution maps rank well, showing that most of the inland bed area is frozen.
Matthew Drew and Lev Tarasov
The Cryosphere, 17, 5391–5415, https://doi.org/10.5194/tc-17-5391-2023, https://doi.org/10.5194/tc-17-5391-2023, 2023
Short summary
Short summary
The interaction of fast-flowing regions of continental ice sheets with their beds governs how quickly they slide and therefore flow. The coupling of fast ice to its bed is controlled by the pressure of meltwater at its base. It is currently poorly understood how the physical details of these hydrologic systems affect ice speedup. Using numerical models we find, surprisingly, that they largely do not, except for the duration of the surge. This suggests that cheap models are sufficient.
Abhay Prakash, Qin Zhou, Tore Hattermann, and Nina Kirchner
The Cryosphere, 17, 5255–5281, https://doi.org/10.5194/tc-17-5255-2023, https://doi.org/10.5194/tc-17-5255-2023, 2023
Short summary
Short summary
Sea ice arch formation in the Nares Strait has shielded the Petermann Glacier ice shelf from enhanced basal melting. However, with the sustained decline of the Arctic sea ice predicted to continue, the ice shelf is likely to be exposed to a year-round mobile and thin sea ice cover. In such a scenario, our modelled results show that elevated temperatures, and more importantly, a stronger ocean circulation in the ice shelf cavity, could result in up to two-thirds increase in basal melt.
George Lu and Jonathan Kingslake
EGUsphere, https://doi.org/10.5194/egusphere-2023-2794, https://doi.org/10.5194/egusphere-2023-2794, 2023
Short summary
Short summary
Water below ice sheets affects ice-sheet motion, while the evolution of ice sheets likewise affects the water below. We create a model that allows for water and ice to affect each other, and use it to see how this coupling or lack thereof may impact ice-sheet retreat. We find that coupling an evolving water system with the ice sheet results in more retreat than if we assume unchanging conditions under the ice, which indicates a need to better represent the effects of water in ice-sheet models.
Michael Wolovick, Angelika Humbert, Thomas Kleiner, and Martin Rückamp
The Cryosphere, 17, 5027–5060, https://doi.org/10.5194/tc-17-5027-2023, https://doi.org/10.5194/tc-17-5027-2023, 2023
Short summary
Short summary
The friction underneath ice sheets can be inferred from observed velocity at the top, but this inference requires smoothing. The selection of smoothing has been highly variable in the literature. Here we show how to rigorously select the best smoothing, and we show that the inferred friction converges towards the best knowable field as model resolution improves. We use this to learn about the best description of basal friction and to formulate recommended best practices for other modelers.
Oliver G. Pollard, Natasha L. M. Barlow, Lauren J. Gregoire, Natalya Gomez, Víctor Cartelle, Jeremy C. Ely, and Lachlan C. Astfalck
The Cryosphere, 17, 4751–4777, https://doi.org/10.5194/tc-17-4751-2023, https://doi.org/10.5194/tc-17-4751-2023, 2023
Short summary
Short summary
We use advanced statistical techniques and a simple ice-sheet model to produce an ensemble of plausible 3D shapes of the ice sheet that once stretched across northern Europe during the previous glacial maximum (140,000 years ago). This new reconstruction, equivalent in volume to 48 ± 8 m of global mean sea-level rise, will improve the interpretation of high sea levels recorded from the Last Interglacial period (120 000 years ago) that provide a useful perspective on the future.
Juditha Aga, Julia Boike, Moritz Langer, Thomas Ingeman-Nielsen, and Sebastian Westermann
The Cryosphere, 17, 4179–4206, https://doi.org/10.5194/tc-17-4179-2023, https://doi.org/10.5194/tc-17-4179-2023, 2023
Short summary
Short summary
This study presents a new model scheme for simulating ice segregation and thaw consolidation in permafrost environments, depending on ground properties and climatic forcing. It is embedded in the CryoGrid community model, a land surface model for the terrestrial cryosphere. We describe the model physics and functionalities, followed by a model validation and a sensitivity study of controlling factors.
Thomas Frank, Ward J. J. van Pelt, and Jack Kohler
The Cryosphere, 17, 4021–4045, https://doi.org/10.5194/tc-17-4021-2023, https://doi.org/10.5194/tc-17-4021-2023, 2023
Short summary
Short summary
Since the ice thickness of most glaciers worldwide is unknown, and since it is not feasible to visit every glacier and observe their thickness directly, inverse modelling techniques are needed that can calculate ice thickness from abundant surface observations. Here, we present a new method for doing that. Our methodology relies on modelling the rate of surface elevation change for a given glacier, compare this with observations of the same quantity and change the bed until the two are in line.
Ronja Reese, Julius Garbe, Emily A. Hill, Benoît Urruty, Kaitlin A. Naughten, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, David Chandler, Petra M. Langebroek, and Ricarda Winkelmann
The Cryosphere, 17, 3761–3783, https://doi.org/10.5194/tc-17-3761-2023, https://doi.org/10.5194/tc-17-3761-2023, 2023
Short summary
Short summary
We use an ice sheet model to test where current climate conditions in Antarctica might lead. We find that present-day ocean and atmosphere conditions might commit an irreversible collapse of parts of West Antarctica which evolves over centuries to millennia. Importantly, this collapse is not irreversible yet.
Emily A. Hill, Benoît Urruty, Ronja Reese, Julius Garbe, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, Ricarda Winkelmann, Mondher Chekki, David Chandler, and Petra M. Langebroek
The Cryosphere, 17, 3739–3759, https://doi.org/10.5194/tc-17-3739-2023, https://doi.org/10.5194/tc-17-3739-2023, 2023
Short summary
Short summary
The grounding lines of the Antarctic Ice Sheet could enter phases of irreversible retreat or advance. We use three ice sheet models to show that the present-day locations of Antarctic grounding lines are reversible with respect to a small perturbation away from their current position. This indicates that present-day retreat of the grounding lines is not yet irreversible or self-enhancing.
Huy Dinh, Dimitrios Giannakis, Joanna Slawinska, and Georg Stadler
The Cryosphere, 17, 3883–3893, https://doi.org/10.5194/tc-17-3883-2023, https://doi.org/10.5194/tc-17-3883-2023, 2023
Short summary
Short summary
We develop a numerical method to simulate the fracture in kilometer-sized chunks of floating ice in the ocean. Our approach uses a mathematical model that balances deformation energy against the energy required for fracture. We study the strength of ice chunks that contain random impurities due to prior damage or refreezing and what types of fractures are likely to occur. Our model shows that crack direction critically depends on the orientation of impurities relative to surrounding forces.
René R. Wijngaard, Adam R. Herrington, William H. Lipscomb, Gunter R. Leguy, and Soon-Il An
The Cryosphere, 17, 3803–3828, https://doi.org/10.5194/tc-17-3803-2023, https://doi.org/10.5194/tc-17-3803-2023, 2023
Short summary
Short summary
We evaluate the ability of the Community Earth System Model (CESM2) to simulate cryospheric–hydrological variables, such as glacier surface mass balance (SMB), over High Mountain Asia (HMA) by using a global grid (~111 km) with regional refinement (~7 km) over HMA. Evaluations of two different simulations show that climatological biases are reduced, and glacier SMB is improved (but still too negative) by modifying the snow and glacier model and using an updated glacier cover dataset.
Brian Groenke, Moritz Langer, Jan Nitzbon, Sebastian Westermann, Guillermo Gallego, and Julia Boike
The Cryosphere, 17, 3505–3533, https://doi.org/10.5194/tc-17-3505-2023, https://doi.org/10.5194/tc-17-3505-2023, 2023
Short summary
Short summary
It is now well known from long-term temperature measurements that Arctic permafrost, i.e., ground that remains continuously frozen for at least 2 years, is warming in response to climate change. Temperature, however, only tells half of the story. In this study, we use computer modeling to better understand how the thawing and freezing of water in the ground affects the way permafrost responds to climate change and what temperature trends can and cannot tell us about how permafrost is changing.
Yukihiko Onuma, Koji Fujita, Nozomu Takeuchi, Masashi Niwano, and Teruo Aoki
The Cryosphere, 17, 3309–3328, https://doi.org/10.5194/tc-17-3309-2023, https://doi.org/10.5194/tc-17-3309-2023, 2023
Short summary
Short summary
We established a novel model that simulates the temporal changes in cryoconite hole (CH) depth using heat budgets calculated independently at the ice surface and CH bottom based on hole shape geometry. The simulations suggest that CH depth is governed by the balance between the intensity of the diffuse component of downward shortwave radiation and the wind speed. The meteorological conditions may be important factors contributing to the recent ice surface darkening via the redistribution of CHs.
Max Thomas, Briana Cate, Jack Garnett, Inga J. Smith, Martin Vancoppenolle, and Crispin Halsall
The Cryosphere, 17, 3193–3201, https://doi.org/10.5194/tc-17-3193-2023, https://doi.org/10.5194/tc-17-3193-2023, 2023
Short summary
Short summary
A recent study showed that pollutants can be enriched in growing sea ice beyond what we would expect from a perfectly dissolved chemical. We hypothesise that this effect is caused by the specific properties of the pollutants working in combination with fluid moving through the sea ice. To test our hypothesis, we replicate this behaviour in a sea-ice model and show that this type of modelling can be applied to predicting the transport of chemicals with complex behaviour in sea ice.
Tobias Sebastian Finn, Charlotte Durand, Alban Farchi, Marc Bocquet, Yumeng Chen, Alberto Carrassi, and Véronique Dansereau
The Cryosphere, 17, 2965–2991, https://doi.org/10.5194/tc-17-2965-2023, https://doi.org/10.5194/tc-17-2965-2023, 2023
Short summary
Short summary
We combine deep learning with a regional sea-ice model to correct model errors in the sea-ice dynamics of low-resolution forecasts towards high-resolution simulations. The combined model improves the forecast by up to 75 % and thereby surpasses the performance of persistence. As the error connection can additionally be used to analyse the shortcomings of the forecasts, this study highlights the potential of combined modelling for short-term sea-ice forecasting.
Saskia Kahl, Carolin Mehlmann, and Dirk Notz
EGUsphere, https://doi.org/10.5194/egusphere-2023-982, https://doi.org/10.5194/egusphere-2023-982, 2023
Short summary
Short summary
Ice mélange is a mixture of sea ice and icebergs, which can have a strong influence on the sea-ice-ocean interaction. So far, ice mélange is not represented in climate models. We include icebergs into the most used sea-ice model by modifying the mathematical equations that describe the material law of sea ice. We show with three test cases that the modification is necessary to represent icebergs. Furthermore we suggest a numerical method to solve the ice mélange equations computational efficient.
Philipp de Vrese, Goran Georgievski, Jesus Fidel Gonzalez Rouco, Dirk Notz, Tobias Stacke, Norman Julius Steinert, Stiig Wilkenskjeld, and Victor Brovkin
The Cryosphere, 17, 2095–2118, https://doi.org/10.5194/tc-17-2095-2023, https://doi.org/10.5194/tc-17-2095-2023, 2023
Short summary
Short summary
The current generation of Earth system models exhibits large inter-model differences in the simulated climate of the Arctic and subarctic zone. We used an adapted version of the Max Planck Institute (MPI) Earth System Model to show that differences in the representation of the soil hydrology in permafrost-affected regions could help explain a large part of this inter-model spread and have pronounced impacts on important elements of Earth systems as far to the south as the tropics.
Xia Lin, François Massonnet, Thierry Fichefet, and Martin Vancoppenolle
The Cryosphere, 17, 1935–1965, https://doi.org/10.5194/tc-17-1935-2023, https://doi.org/10.5194/tc-17-1935-2023, 2023
Short summary
Short summary
This study provides clues on how improved atmospheric reanalysis products influence sea ice simulations in ocean–sea ice models. The summer ice concentration simulation in both hemispheres can be improved with changed surface heat fluxes. The winter Antarctic ice concentration and the Arctic drift speed near the ice edge and the ice velocity direction simulations are improved with changed wind stress. The radiation fluxes and winds in atmospheric reanalyses are crucial for sea ice simulations.
Cited articles
Atchley, A., Coon, E., Painter, S., Harp, D., and Wilson, C.: Influences and interactions of inundation, peat, and snow on active layer thickness, Geophys. Res. Lett., 43, 5116–5123, https://doi.org/10.1002/2016GL068550, 2016.
Bauer, I., Bhatti, J., Swanston, C., Wieder, R., and Preston, C.: Organic Matter Accumulation and Community Change at the Peatland–Upland Interface: Inferences from 14C and 210Pb Dated Profiles, Ecosystems, 12, 636–653, https://doi.org/10.1007/s10021-009-9248-2, 2009.
Beer, C., Lucht, W., Schmullius, C., and Shvidenko, A.: Small net carbon dioxide uptake by Russian forests during 1981–1999, Geophys. Res. Lett., 33, L15403, https://doi.org/10.1029/2006GL026919, 2006.
Beer, C., Fedorov, A., and Torgovkin, Y.: Permafrost temperature and active-layer thickness of Yakutia with 0.5-degree spatial resolution for model evaluation, Earth Syst. Sci. Data, 5, 305–310, https://doi.org/10.5194/essd-5-305-2013, 2013.
Beer, C., Weber, U., Tomelleri, E., Carvalhais, N., Mahecha, M., and Reichstein, M.: Harmonized European Long-Term Climate Data for Assessing the Effect of Changing Temporal Variability on Land–Atmosphere CO2 Fluxes, J. Climate, 27, 4815–4834, https://doi.org/10.1175/JCLI-D-13-00543.1, 2014.
Bell, P. and Hemsley, A. (Eds.): Green Plants – Their Origin and Diversity, 2nd Edn., Cambridge University Press, New York, 2011.
Benscoter, B. and Vitt, D.: Evaluating feathermoss growth: a challenge to traditional methods and implications for the boreal carbon budget, J. Ecol., 95, 151–158, https://doi.org/10.1111/j.1365-2745.2006.01180.x, 2007.
Beringer, J., Lynch, A., Chapin, F., Mack, M., and Bonan, G.: The Representation of Arctic Soils in the Land Surface Model: The Importance of Mosses, J. Climate, 14, 3324–3335, https://doi.org/10.1175/1520-0442(2001)014<3324:TROASI>2.0.CO;2, 2001.
Bernier, P., Desjardins, R., Karimi-Zindashty, Y., Worth, D., Beaudoin, A., Luo, Y., and Wang, S.: Boreal lichen woodlands: A possible negative feedback to climate change in eastern North America, Agr. Forest Meteorol., 151, 521–528, https://doi.org/10.1016/j.agrformet.2010.12.013, 2011.
Bisbee, K., Gower, S., Norman, J., and Nordheim, E.: Environmental controls on ground cover species composition and productivity in a boreal black spruce forest, Oecologia, 129, 261–270, https://doi.org/10.1007/s004420100719, 2001.
Blok, D., Heijmans, M., Schaepman-Strub, G., van Ruijven, J., Parmentier, F., Maximov, T., and Berendse, F.: The Cooling Capacity of Mosses: Controls on Water and Energy Fluxes in a Siberian Tundra Site, Ecosystems, 14, 1055–1065, https://doi.org/10.1007/s10021-011-9463-5, 2011.
Bohn, K., Dyke, J., Pavlick, R., Reineking, B., Reu, B., and Kleidon, A.: The relative importance of seed competition, resource competition and perturbations on community structure, Biogeosciences, 8, 1107–1120, https://doi.org/10.5194/bg-8-1107-2011, 2011.
Bona, K., Fyles, J., Shaw, C., and Kurz, W.: Are Mosses Required to Accurately Predict Upland Black Spruce Forest Soil Carbon in National-Scale Forest C Accounting Models?, Ecosystems, 16, 1071–1086, https://doi.org/10.1007/s10021-013-9668-x, 2013.
Bonan, G.: A biophysical surface energy budget analysis of soil temperature in the boreal forests of interior Alaska, Water Resour. Res., 27, 767–781, https://doi.org/10.1029/91WR00143, 1991.
Bonan, G. and Shugart, H.: Environmental Factors and Ecological Processes in Boreal Forests, Ann. Rev. Ecol. Syst., 20, 1–28, 1989.
Bond-Lamberty, B. and Gower, S.: Estimation of stand-level leaf area for boreal bryophytes, Oecologia, 151, 584–592, https://doi.org/10.1007/s00442-006-0619-5, 2007.
Bond-Lamberty, B., Wang, C., and Gower, S.: Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence, Global Change Biol., 10, 473–487, https://doi.org/10.1111/j.1529-8817.2003.0742.x, 2004.
Brovkin, V., Raddatz, T., Reick, C., Claussen, M., and Gayler, V.: Global biogeophysical interactions between forest and climate, Geophys. Res. Lett., 36, L07405, https://doi.org/10.1029/2009GL037543, 2009.
Camill, P., Lynch, J., Clark, J., Adams, J., and Jordan, B.: Changes in Biomass, Aboveground Net Primary Production, and Peat Accumulation following Permafrost Thaw in the Boreal Peatlands of Manitoba, Canada, Ecosystems, 4, 461–478, https://doi.org/10.1007/s10021-001-0022-3, 2001.
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., Mu, M., Saatchi, S., Santoro, M., Thurner, M., Weber, U., Ahrens, B., Beer, C., Cescatti, A., Randerson, J., and Reichstein, M.: Global covariation of carbon turnover times with climate in terrestrial ecosystems, Nature, 514, 213–217, https://doi.org/10.1038/nature13731, 2014.
Chadburn, S., Burke, E., Essery, R., Boike, J., Langer, M., Heikenfeld, M., Cox, P., and Friedlingstein, P.: An improved representation of physical permafrost dynamics in the JULES land-surface model, Geosci. Model Dev., 8, 1493–1508, https://doi.org/10.5194/gmd-8-1493-2015, 2015a.
Chadburn, S. E., Burke, E. J., Essery, R. L. H., Boike, J., Langer, M., Heikenfeld, M., Cox, P. M., and Friedlingstein, P.: Impact of model developments on present and future simulations of permafrost in a global land-surface model, The Cryosphere, 9, 1505–1521, https://doi.org/10.5194/tc-9-1505-2015, 2015b.
Cowan, I., Lange, O., and Green, T.: Carbon-dioxide exchange in lichens: Determination of transport and carboxylation characteristics, Planta, 187, 282–294, https://doi.org/10.1007/BF00201952, 1992.
Ekici, A., Beer, C., Hagemann, S., Boike, J., Langer, M., and Hauck, C.: Simulating high-latitude permafrost regions by the JSBACH terrestrial ecosystem model, Geosci. Model Dev., 7, 631–647, https://doi.org/10.5194/gmd-7-631-2014, 2014.
FAO, IIASA, ISRIC, ISS-CAS, and JRC: Harmonized world soil database (version 1.1), FAO, Rome, Italy and IIASA, Laxenburg, Austria, http://www.fao.org/nr/land/soils/harmonized-world-soildatabase/en (last access: 10 October 2011), 2009.
Farquhar, G. and von Caemmerer, S.: Modelling of Photosynthetic Response to Environmental Conditions, in: Encyclopedia of Plant Physiology, vol. 12B, edited by: Lange, O., Nobel, P., Osmond, C., and Ziegler, H., Springer, Heidelberg, 1982.
French, H. (Ed.): The periglacial environment, 3rd Edn., John Wiley & Sons, Chichester, 2007.
Frolking, S., Goulden, M., Wofsy, S., Fan, S.-M., Sutton, D., Munger, J., Bazzaz, A., Daube, B., Crill, P., Aber, J., Band, L., X., W., Savage, K., Moore, T., and Harriss, R.: Modelling temporal variability in the carbon balance of a spruce/moss boreal forest, Global Change Biol., 2, 343–366, 1996.
Goll, D., Brovkin, V.and Liski, J., Raddatz, T., Thum, T., and Todd-Brown, K.: Strong dependence of CO2 emissions from anthropogenic land cover change on initial land cover and soil carbon parametrization, Global Biogeochem. Cy., 29, 1511–1523, https://doi.org/10.1002/2014GB004988, 2015.
Goodrich, L.: The influence of snow cover on the ground thermal regime, Can. Geotech. J., 19, 421–432, https://doi.org/10.1139/t82-047, 1982.
Gornall, J., Jónsdóttir, I., Woodin, S., and Van der Wal, R.: Arctic mosses govern below-ground environment and ecosystem processes, Oecologia, 153, 931–941, https://doi.org/10.1007/s00442-007-0785-0, 2007.
Goulden, M. and Crill, P.: Automated measurements of CO2 exchange at the moss surface of a black spruce forest, Tree Physiol., 17, 537–542, https://doi.org/10.1093/treephys/17.8-9.537, 1997.
Gower, S., Vogel, J., Norman, J., Kucharik, C., Steele, S., and Stow, T.: Carbon distribution and aboveground net primary production in aspen, jack pine and black spruce stands in Saskatchewan and Manitoba, Canada, J. Geophys. Res., 102, 29029–29041, https://doi.org/10.1029/97JD02317, 1997.
Gower, S., Krankina, O., Olson, R., Apps, M., Linder, S., and Wang, C.: Net primary production and carbon allocation patterns of boreal forest ecosystems, Ecol. Appl., 11, 1395–1411, 2001.
Grime, J., Rincon, E., and Wickerson, B.: Bryophytes and plant strategy theory, Bot. J. Linnean Soc., 104, 175–186, https://doi.org/10.1111/j.1095-8339.1990.tb02217.x, 1990.
Hagemann, S. and Stacke, T.: Impact of the soil hydrology scheme on simulated soil moisture memory, Clim. Dynam., 44, 1731–1750, https://doi.org/10.1007/s00382-014-2221-6, 2015.
Hermle, S., Lavigne, M., Bernier, P., Bergeron, O., and Paré, D.: Component respiration, ecosystem respiration and net primary production of a mature black spruce forest in northern Quebec, Tree Physiol., 30, 527–540, https://doi.org/10.1093/treephys/tpq002, 2010.
Hinzman, L., Kane, D., Gieck, R., and Everett, K.: Hydrologic and thermal properties of the active layer in the Alaskan Arctic, Cold Reg. Sci. Technol., 19, 95–110, https://doi.org/10.1016/0165-232X(91)90001-W, 1991.
Jorgenson, M., Romanovsky, V., Harden, J., Shur, Y., O'Donnell, J., Schuur, E., Kanevskiy, M., and Marchenko, S.: Resilience and vulnerability of permafrost to climate change, Can. J. Forest Res., 40, 1219–1236, https://doi.org/10.1139/X10-060, 2010.
Knorr, W.: Annual and interannual CO2 exchanges of the terrestrial biosphere: process-based simulations and uncertainties, Global Ecol. Biogeogr., 9, 225–252, 2000.
Kolari, P., Pumpanen, J., Kulmala, L., Ilvesniemi, H., Nikinmaa, E., Grönholm, T., and Hari, P.: Forest floor vegetation plays an important role in photosynthetic production of boreal forests, Forest Ecol. Manage., 221, 241–248, https://doi.org/10.1016/j.foreco.2005.10.021, 2006.
Koshurnikova, N.: Annual Production of Moss Layer in Dark Coniferous Forests of Ket-Chulym Forest District (by the Example of Moss Hylocomium splendens), Biol. Bull., 34, 532–536, https://doi.org/10.1134/S1062359007050184, 2007.
Koven, C., Friedlingstein, P., Ciais, P., Khvorostyanov, D., Krinner, G., and Tarnocai, C.: On the formation of high-latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model, Geophys. Res. Lett., 36, L21501, https://doi.org/10.1029/2009GL040150, 2009.
Lange, O., Hahn, S., Meyer, A., and Tenhunen, J.: Upland Tundra in the Foothills of the Brooks Range, Alaska, U.S.A.: Lichen Long-Term Photosynthetic CO2 Uptake and Net Carbon Gain, Arct. Alp. Res., 30, 252–261, https://doi.org/10.2307/1551972, 1998.
Mack, M., Treseder, K., Manies, K., Harden, J., Schuur, E., Vogel, J., Randerson, J., and Chapin III, F.: Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska, Ecosystems, 11, 209–225, https://doi.org/10.1007/s10021-007-9117-9, 2008.
Meinshausen, M., Smith, S., Calvin, K., Daniel, J., Kainuma, M., Lamarque, J.-F., Matsumoto, K., Montzka, S., Raper, S., Riahi, K., Thomson, A., Velders, G., and van Vuuren, D.: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Climatic Change, 109, 213–241, https://doi.org/10.1007/s10584-011-0156-z, 2011.
Mouillot, F. and Field, C.: Fire history and the global carbon budget: a 1° × 1° fire history reconstruction for the 20th century, Global Change Biol., 11, 398–420, https://doi.org/10.1111/j.1365-2486.2005.00920.x, 2005.
Nash III, T. (Ed.): Lichen Biology, 2nd ed., Cambridge University Press, New York, 1996.
O'Connell, K., Gower, S., and Norman, J.: Comparison of Net Primary Production and Light-Use Dynamics of Two Boreal Black Spruce Forest Communities, Ecosystems, 6, 236–247, 2003.
O'Donnell, J., Romanovsky, V., Harden, J., and McGuire, A.: The Effect of Moisture Content on the Thermal Conductivity of Moss and Organic Soil Horizons From Black Spruce Ecosystems in Interior Alaska, Soil Sci., 174, 646–651, 2009.
O'Donnell, J., Harden, J., McGuire, A., Kanevskiy, M., Jorgenson, M., and Xu, X.: The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss, Global Change Biol., 17, 1461–1474, https://doi.org/10.1111/j.1365-2486.2010.02358.x, 2011.
Oechel, W. and Collins, N.: Comparative CO2 exchange patterns in mosses from two tundra habitats at Barrow, Alaska, Can. J. Bot., 54, 1355–1369, https://doi.org/10.1139/b76-148, 1976.
Oechel, W. and Van Cleve, K.: The role of bryophytes in nutrient cycling in the taiga, in: Forest ecosystems in the Alaskan taiga. A synthesis of structure and function, edited by: Van Cleve, K., Chapin III, F., Flanagan, P., Vierect, L., and Dyrness, C., Springer, New York, 122–137, 1986.
Olson, D., Dinerstein, E., Wikramanayake, E., Burgess, N., Powell, G., Underwood, E., D'Amico, J., Itoua, I., Strand, H., Morrison, J., Loucks, C., Allnutt, T., Ricketts, T., Kura, Y., Lamoreux, J., Wettengel, W., Hedao, P., and Kassem, K.: Terrestrial Ecoregions of the World: A New Map of Life on Earth, BioScience, 51, 933–938, https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2, 2001.
Pachauri, R., Allen, M., Barros, V., Broome, J., Cramer, W., Christ, R., Church, J., Clarke, L., Dahe, Q., Dasgupta, P., et al.: Climate Change 2014: Synthesis Report, in: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, 2014.
Porada, P., Weber, B., Elbert, W., Pöschl, U., and Kleidon, A.: Estimating global carbon uptake by lichens and bryophytes with a process-based model, Biogeosciences, 10, 6989–7033, https://doi.org/10.5194/bg-10-6989-2013, 2013.
Porada, P., Weber, B., Elbert, W., Pöschl, U., and Kleidon, A.: Estimating Impacts of Lichens and Bryophytes on Global Biogeochemical Cycles of Nitrogen and Phosphorus and on Chemical Weathering, Global Biogeochem. Cy., 28, 71–85, https://doi.org/10.1002/2013GB004705, 2014.
Proctor, M.: The bryophyte paradox: tolerance of desiccation, evasion of drought, Plant Ecol., 151, 41–49, 2000.
Raddatz, T., Reick, C., Knorr, W., Kattge, J., Roeckner, E., Schnur, R., Schnitzler, K.-G., Wetzel, P., and Jungclaus, J.: Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century?, Clim. Dynam., 29, 565–574, https://doi.org/10.1007/s00382-007-0247-8, 2007.
Rapalee, G., Steyaert, L., and Hall, F.: Moss and lichen cover mapping at local and regional scales in the boreal forest ecosystem of central Canada, J. Geophys. Res.-Atmos., 106, 33551–33563, https://doi.org/10.1029/2001JD000509, 2001.
Rinke, A., Kuhry, P., and Dethloff, K.: Importance of a soil organic layer for Arctic climate: A sensitivity study with an Arctic RCM, Geophys. Res. Lett., 35, L13709, https://doi.org/10.1029/2008GL034052, 2008.
Rogers, R.: Ecological strategies of lichens, Lichenologist, 22, 149–162, https://doi.org/10.1017/S002428299000010X, 1990.
Ruess, R., Hendrick, R., Burton, A., Pregitzer, K., Sveinbjornsson, B., Allen, M., and Maurer, G.: Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska, Ecol. Monogr., 73, 643–662, https://doi.org/10.1890/02-4032, 2003.
Schulze, E.-D. and Caldwell, M. M. (Eds.): Ecophysiology of photosynthesis, Springer Science & Business Media, Springer-Verlag, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-79354-7, 1995.
Schuur, E., Crummer, K., Vogel, J., and Mack, M.: Plant Species Composition and Productivity following Permafrost Thaw and Thermokarst in Alaskan Tundra, Ecosystems, 10, 280–292, https://doi.org/10.1007/s10021-007-9024-0, 2007.
Schuur, E., McGuire, A., Schadel, C., Grosse, G., Harden, J., Hayes, D., Hugelius, G., Koven, C., Kuhry, P., Lawrence, D., Natali, S., Olefeldt, D., Romanovsky, V., Schaefer, K., Turetsky, M., Treat, C., and Vonk, J.: Climate change and the permafrost carbon feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Shaver, G. and Chapin III, F.: Production: Biomass relationships and element cycling in contrasting arctic vegetation types, Ecol. Monogr., 61, 1–31, https://doi.org/10.2307/1942997, 1991.
Skre, O. and Oechel, W.: Moss production in a black spruce Picea mariana forest with permafrost near Fairbanks, Alaska, as compared with two permafrost-free stands, Ecography, 2, 249–254, https://doi.org/10.1111/j.1600-0587.1979.tb01296.x, 1979.
Soudzilovskaia, N., van Bodegom, P., and Cornelissen, J.: Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation, Funct. Ecol., 27, 1442–1454, https://doi.org/10.1111/1365-2435.12127, 2013.
Stoy, P., Street, L., Johnson, A., Prieto-Blanco, A., and Ewing, S.: Temperature, Heat Flux, and Reflectance of Common Subarctic Mosses and Lichens under Field Conditions: Might Changes to Community Composition Impact Climate-Relevant Surface Fluxes?, Arct. Antarct. Alp. Res., 44, 500–508, https://doi.org/10.1657/1938-4246-44.4.500, 2012.
Street, L., Stoy, P., Sommerkorn, M., Fletcher, B., Sloan, V. L., Hill, T., and Williams, M.: Seasonal bryophyte productivity in the sub-Arctic: A comparison with vascular plants, Funct. Ecol., 26, 365–378, https://doi.org/10.1111/j.1365-2435.2011.01954.x, 2012.
Swanson, R. and Flanagan, L.: Environmental regulation of carbon dioxide exchange at the forest floor in a boreal black spruce ecosystem, Agr. Forest Meteorol., 108, 165–181, https://doi.org/10.1016/S0168-1923(01)00243-X, 2001.
Trumbore, S. and Harden, J.: Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area, J. Geophys. Res.-Atmos., 102, 28817–28830, https://doi.org/10.1029/97JD02231, 1997.
Turetsky, M., Mack, M., Hollingsworth, T., and Harden, J.: The role of mosses in ecosystem succession and function in Alaska's boreal forest, Can. J. Forest Res., 40, 1237–1264, https://doi.org/10.1139/X10-072, 2010.
Uchida, M., Muraoka, H., Nakatsubo, T., Bekku, Y., Ueno, T., Kanda, H., and Koizumi, H.: Net Photosynthesis, Respiration, and Production of the Moss Sanionia uncinata on a Glacier Foreland in the High Arctic, Ny-Ålesund, Svalbard, Arct. Antarct. Alp. Res., 34, 287–292, https://doi.org/10.2307/1552486, 2002.
Uchida, M., Nakatsubo, T., Kanda, H., and Koizumi, H.: Estimation of the annual primary production of the lichen Cetrariella delisei in a glacier foreland in the High Arctic, Ny-Ålesund, Svalbard, Polar Res., 25, 39–49, https://doi.org/10.3402/polar.v25i1.6237, 2006.
Valladares, F., Wierzchos, J., and Ascaso, C.: Porosimetric Study of the Lichen Family Umbilicariaceae: Anatomical Interpretation and Implications for Water Storage Capacity of the Thallus, Am. J. Bot., 80, 263–272, https://doi.org/10.2307/2445349, 1993.
Verseghy, D.: CLASS – A Canadian land surface scheme for GCMs. I. Soil model, Int. J. Climatol., 11, 111–133, https://doi.org/10.1002/joc.3370110202, 1991.
Vogel, J., Bond-Lamberty, B., Schuur, E., Gower, S., Mack, M., O'Connell, K., Valentine, D., and Ruess, R.: Carbon allocation in boreal black spruce forests across regions varying in soil temperature and precipitation, Global Change Biol., 14, 1503–1516, https://doi.org/10.1111/j.1365-2486.2008.01600.x, 2008.
Wahren, C., Walker, M., and Bret-Harte, M.: Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment, Global Change Biol., 11, 537–552, https://doi.org/10.1111/j.1365-2486.2005.00927.x, 2005.
Webb, R., Rosenzweig, C., and Levine, E.: Global Soil Texture and Derived Water-Holding Capacities (Webb et al.), ORNL Distributed Active Archive Center, Oak Ridge, Tennessee, https://doi.org/10.3334/ORNLDAAC/548, 2000.
Williams, T. and Flanagan, L.: Measuring and modelling environmental influences on photosynthetic gas exchange in Sphagnum and Pleurozium, Plant Cell Environ., 21, 555–564, 1998.
Zhu, D., Peng, S., Ciais, P., Viovy, N., Druel, A., Kageyama, M., Krinner, G., Peylin, P., Ottlé, C., Piao, S., Poulter, B., Schepaschenko, D., and Shvidenko, A.: Improving the dynamics of Northern Hemisphere high-latitude vegetation in the ORCHIDEE ecosystem model, Geosci. Model Dev., 8, 2263–2283, https://doi.org/10.5194/gmd-8-2263-2015, 2015.
Short summary
Bryophyte and lichen cover on the forest floor at high latitudes insulates the ground and thus decreases soil temperature. This can protect permafrost soil, stabilising it against global warming. To quantify the insulating effect, we integrate a novel, process-based model of bryophyte and lichen growth into the global land surface model JSBACH. We find an average cooling effect of the bryophyte and lichen cover of 2.7 K, which implies a significant impact on soil temperature at high latitudes.
Bryophyte and lichen cover on the forest floor at high latitudes insulates the ground and thus...