Articles | Volume 10, issue 5
https://doi.org/10.5194/tc-10-2291-2016
https://doi.org/10.5194/tc-10-2291-2016
Research article
 | 
30 Sep 2016
Research article |  | 30 Sep 2016

Effects of bryophyte and lichen cover on permafrost soil temperature at large scale

Philipp Porada, Altug Ekici, and Christian Beer

Related authors

Exploring effects of variation in plant root traits on carbon emissions from estuarine marshes
Youssef Saadaoui, Christian Beer, Peter Mueller, Friederike Neiske, Joscha N. Becker, Annette Eschenbach, and Philipp Porada
EGUsphere, https://doi.org/10.5194/egusphere-2024-1756,https://doi.org/10.5194/egusphere-2024-1756, 2024
Short summary
Exploring environmental and physiological drivers of the annual carbon budget of biocrusts from various climatic zones with a mechanistic data-driven model
Yunyao Ma, Bettina Weber, Alexandra Kratz, José Raggio, Claudia Colesie, Maik Veste, Maaike Y. Bader, and Philipp Porada
Biogeosciences, 20, 2553–2572, https://doi.org/10.5194/bg-20-2553-2023,https://doi.org/10.5194/bg-20-2553-2023, 2023
Short summary
A dynamic local-scale vegetation model for lycopsids (LYCOm v1.0)
Suman Halder, Susanne K. M. Arens, Kai Jensen, Tais W. Dahl, and Philipp Porada
Geosci. Model Dev., 15, 2325–2343, https://doi.org/10.5194/gmd-15-2325-2022,https://doi.org/10.5194/gmd-15-2325-2022, 2022
Short summary
ESD Reviews: Evidence of multiple inconsistencies between representations of terrestrial and marine ecosystems in Earth System Models
Félix Pellerin, Philipp Porada, and Inga Hense
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-55,https://doi.org/10.5194/esd-2020-55, 2020
Revised manuscript not accepted
Short summary
Global NO and HONO emissions of biological soil crusts estimated by a process-based non-vascular vegetation model
Philipp Porada, Alexandra Tamm, Jose Raggio, Yafang Cheng, Axel Kleidon, Ulrich Pöschl, and Bettina Weber
Biogeosciences, 16, 2003–2031, https://doi.org/10.5194/bg-16-2003-2019,https://doi.org/10.5194/bg-16-2003-2019, 2019
Short summary

Related subject area

Numerical Modelling
Sensitivity of the future evolution of the Wilkes Subglacial Basin ice sheet to grounding-line melt parameterizations
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024,https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Modelling snowpack on ice surfaces with the ORCHIDEE land surface model: application to the Greenland ice sheet
Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, Nina Raoult, Xavier Fettweis, and Philippe Conesa
The Cryosphere, 18, 5067–5099, https://doi.org/10.5194/tc-18-5067-2024,https://doi.org/10.5194/tc-18-5067-2024, 2024
Short summary
Application of a regularised Coulomb sliding law to Jakobshavn Isbræ, western Greenland
Matt Trevers, Antony J. Payne, and Stephen L. Cornford
The Cryosphere, 18, 5101–5115, https://doi.org/10.5194/tc-18-5101-2024,https://doi.org/10.5194/tc-18-5101-2024, 2024
Short summary
Brief communication: Stalagmite damage by cave ice flow quantitatively assessed by fluid–structure interaction simulations
Alexander H. Jarosch, Paul Hofer, and Christoph Spötl
The Cryosphere, 18, 4811–4816, https://doi.org/10.5194/tc-18-4811-2024,https://doi.org/10.5194/tc-18-4811-2024, 2024
Short summary
Exploring the decision-making process in model development: focus on the Arctic snowpack
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024,https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary

Cited articles

Atchley, A., Coon, E., Painter, S., Harp, D., and Wilson, C.: Influences and interactions of inundation, peat, and snow on active layer thickness, Geophys. Res. Lett., 43, 5116–5123, https://doi.org/10.1002/2016GL068550, 2016.
Bauer, I., Bhatti, J., Swanston, C., Wieder, R., and Preston, C.: Organic Matter Accumulation and Community Change at the Peatland–Upland Interface: Inferences from 14C and 210Pb Dated Profiles, Ecosystems, 12, 636–653, https://doi.org/10.1007/s10021-009-9248-2, 2009.
Beer, C., Lucht, W., Schmullius, C., and Shvidenko, A.: Small net carbon dioxide uptake by Russian forests during 1981–1999, Geophys. Res. Lett., 33, L15403, https://doi.org/10.1029/2006GL026919, 2006.
Beer, C., Fedorov, A., and Torgovkin, Y.: Permafrost temperature and active-layer thickness of Yakutia with 0.5-degree spatial resolution for model evaluation, Earth Syst. Sci. Data, 5, 305–310, https://doi.org/10.5194/essd-5-305-2013, 2013.
Beer, C., Weber, U., Tomelleri, E., Carvalhais, N., Mahecha, M., and Reichstein, M.: Harmonized European Long-Term Climate Data for Assessing the Effect of Changing Temporal Variability on Land–Atmosphere CO2 Fluxes, J. Climate, 27, 4815–4834, https://doi.org/10.1175/JCLI-D-13-00543.1, 2014.
Download
Short summary
Bryophyte and lichen cover on the forest floor at high latitudes insulates the ground and thus decreases soil temperature. This can protect permafrost soil, stabilising it against global warming. To quantify the insulating effect, we integrate a novel, process-based model of bryophyte and lichen growth into the global land surface model JSBACH. We find an average cooling effect of the bryophyte and lichen cover of 2.7 K, which implies a significant impact on soil temperature at high latitudes.