Articles | Volume 10, issue 1
https://doi.org/10.5194/tc-10-227-2016
https://doi.org/10.5194/tc-10-227-2016
Research article
 | 
21 Jan 2016
Research article |  | 21 Jan 2016

An analytical model for wind-driven Arctic summer sea ice drift

H.-S. Park and A. L. Stewart

Related authors

Southern Ocean polynyas and dense water formation in a high-resolution, coupled Earth system model
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023,https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary

Related subject area

Sea Ice
Spatial characteristics of frazil streaks in the Terra Nova Bay Polynya from high-resolution visible satellite imagery
Katarzyna Bradtke and Agnieszka Herman
The Cryosphere, 17, 2073–2094, https://doi.org/10.5194/tc-17-2073-2023,https://doi.org/10.5194/tc-17-2073-2023, 2023
Short summary
Modelling the evolution of Arctic multiyear sea ice over 2000–2018
Heather Regan, Pierre Rampal, Einar Ólason, Guillaume Boutin, and Anton Korosov
The Cryosphere, 17, 1873–1893, https://doi.org/10.5194/tc-17-1873-2023,https://doi.org/10.5194/tc-17-1873-2023, 2023
Short summary
A quasi-objective single-buoy approach for understanding Lagrangian coherent structures and sea ice dynamics
Nikolas O. Aksamit, Randall K. Scharien, Jennifer K. Hutchings, and Jennifer V. Lukovich
The Cryosphere, 17, 1545–1566, https://doi.org/10.5194/tc-17-1545-2023,https://doi.org/10.5194/tc-17-1545-2023, 2023
Short summary
Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023,https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Analysis of microseismicity in sea ice with deep learning and Bayesian inference: application to high-resolution thickness monitoring
Ludovic Moreau, Léonard Seydoux, Jérôme Weiss, and Michel Campillo
The Cryosphere, 17, 1327–1341, https://doi.org/10.5194/tc-17-1327-2023,https://doi.org/10.5194/tc-17-1327-2023, 2023
Short summary

Cited articles

Bitz, C. M. and Polvani, L. M.: Antarctic Climate Response to Stratospheric Ozone Depletion in a Fine Resolution Ocean Climate Model, Geophys. Res. Lett., 39, L20705, https://doi.org/10.1029/2012GL053393, 2012.
Bitz, C. M., Fyfe, J., and Flato, G.: Sea ice response to wind forcing from AMIP models, J. Climate, 15, 522–536, 2002.
Cole, S. T., Timmermans, M-L., Toole, J. M., Krishfield, R. A., and Thwaites, F. T.: Ekman Veering, Internal Waves, and Turbulence Observed under Arctic Sea Ice, J. Phys. Oceanogr., 44, 1306–1328, 2014.
Dee, D. P., Uppala, S. M., Simmons, A. J., et al.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc. 137, 553–597, 2011.
Gray, J. M. N. T. and Morland, L. W.: A two-dimensional model for the dynamics of sea ice, Philos. T. Roy. Soc. Lond. A, 347, 219–290, 1994.
Download
Short summary
We have derived an analytical model for wind-driven free sea ice drift. We allow for partial sea ice cover using the "mixture layer" formulation and explicitly assume an oceanic Ekman layer, separated from the ice by a thin boundary layer. Provided that surface wind field is known, it is easy to calculate sea ice motion using this analytical model. We believe this analytical model is going to be a powerful tool for identifying and quantifying the mechanisms for sea ice variability.