Articles | Volume 10, issue 5
https://doi.org/10.5194/tc-10-2027-2016
https://doi.org/10.5194/tc-10-2027-2016
Research article
 | 
14 Sep 2016
Research article |  | 14 Sep 2016

Sea-ice indicators of polar bear habitat

Harry L. Stern and Kristin L. Laidre

Related authors

Characterizing southeast Greenland fjord surface ice and freshwater flux to support biological applications
Twila A. Moon, Benjamin Cohen, Taryn E. Black, Kristin L. Laidre, Harry L. Stern, and Ian Joughin
The Cryosphere, 18, 4845–4872, https://doi.org/10.5194/tc-18-4845-2024,https://doi.org/10.5194/tc-18-4845-2024, 2024
Short summary

Related subject area

Sea Ice
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024,https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Seasonal Evolution of the Sea Ice Floe Size Distribution from Two Decades of MODIS Data
Ellen Margaret Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica Martinez Wilhelmus
EGUsphere, https://doi.org/10.5194/egusphere-2024-89,https://doi.org/10.5194/egusphere-2024-89, 2024
Short summary

Cited articles

Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, https://doi.org/10.7289/V5C8276M, 2009.
Amstrup, S. C., Marcot, B. G., and Douglas, D. C.: A Bayesian network modeling approach to forecasting the 21st century worldwide status of polar bears, in: Arctic Sea Ice Decline: Observations, Projections, Mechanisms and Implications, edited by: DeWeaver, E. T., Bitz, C. M., and Tremblay, L. B., Geophysical Monograph Series 180, American Geophysical Union, Washington, DC, USA, 213–268, 2008.
Barnhart, K. R., Miller, C. R., Overeem, I., and Kay, J. E.: Mapping the future expansion of Arctic open water, Nature Climate Change, 6, 280–285, https://doi.org/10.1038/NCLIMATE2848, 2015.
Belchansky, G. I., Douglas, D. C., and Platonov, N. G.: Duration of the Arctic Sea Ice Melt Season: Regional and Interannual Variability, 1979–2001, J. Climate, 17, 67–80, 2004.
Blanchard, E., Armour, K. C., and Bitz, C. M.: Persistence and Inherent Predictability of Arctic Sea Ice in a GCM Ensemble and Observations, J. Climate, 24, 231–250, https://doi.org/10.1175/2010JCLI3775.1, 2011.
Download
Short summary
Polar bears, found in 19 distinct regions of the Arctic, depend on sea ice as a platform for hunting. Using satellite data of sea ice for the period 1979–2014, we found that the date of sea-ice retreat in spring is arriving weeks earlier, and the date of sea-ice advance in fall is arriving weeks later, in all 19 regions. We calculated several other measures of sea ice, which all show declines. These measures were designed to be useful for management agencies to assess polar bear habitat.