Articles | Volume 10, issue 5
https://doi.org/10.5194/tc-10-1915-2016
https://doi.org/10.5194/tc-10-1915-2016
Research article
 | 
05 Sep 2016
Research article |  | 05 Sep 2016

Sliding of temperate basal ice on a rough, hard bed: creep mechanisms, pressure melting, and implications for ice streaming

Maarten Krabbendam

Related authors

Data acquisition by digitizing 2-D fracture networks and topographic lineaments in geographic information systems: further development and applications
Romesh Palamakumbura, Maarten Krabbendam, Katie Whitbread, and Christian Arnhardt
Solid Earth, 11, 1731–1746, https://doi.org/10.5194/se-11-1731-2020,https://doi.org/10.5194/se-11-1731-2020, 2020
Short summary

Related subject area

Subglacial Processes
Misidentified subglacial lake beneath the Devon Ice Cap, Canadian Arctic: a new interpretation from seismic and electromagnetic data
Siobhan F. Killingbeck, Anja Rutishauser, Martyn J. Unsworth, Ashley Dubnick, Alison S. Criscitiello, James Killingbeck, Christine F. Dow, Tim Hill, Adam D. Booth, Brittany Main, and Eric Brossier
The Cryosphere, 18, 3699–3722, https://doi.org/10.5194/tc-18-3699-2024,https://doi.org/10.5194/tc-18-3699-2024, 2024
Short summary
Multi-scale variations of subglacial hydro-mechanical conditions at Kongsvegen glacier, Svalbard
Coline Bouchayer, Ugo Nanni, Pierre-Marie Lefeuvre, John Hult, Louise Steffensen Schmidt, Jack Kohler, François Renard, and Thomas V. Schuler
The Cryosphere, 18, 2939–2968, https://doi.org/10.5194/tc-18-2939-2024,https://doi.org/10.5194/tc-18-2939-2024, 2024
Short summary
Geothermal heat source estimations through ice flow modelling at Mýrdalsjökull, Iceland
Alexander H. Jarosch, Eyjólfur Magnússon, Krista Hannesdóttir, Joaquín M. C. Belart, and Finnur Pálsson
The Cryosphere, 18, 2443–2454, https://doi.org/10.5194/tc-18-2443-2024,https://doi.org/10.5194/tc-18-2443-2024, 2024
Short summary
Improved monitoring of subglacial lake activity in Greenland
Louise Sandberg Sørensen, Rasmus Bahbah, Sebastian B. Simonsen, Natalia Havelund Andersen, Jade Bowling, Noel Gourmelen, Alex Horton, Nanna B. Karlsson, Amber Leeson, Jennifer Maddalena, Malcolm McMillan, Anne Solgaard, and Birgit Wessel
The Cryosphere, 18, 505–523, https://doi.org/10.5194/tc-18-505-2024,https://doi.org/10.5194/tc-18-505-2024, 2024
Short summary
Impact of shallow sills on circulation regimes and submarine melting in glacial fjords
Weiyang Bao and Carlos Moffat
The Cryosphere, 18, 187–203, https://doi.org/10.5194/tc-18-187-2024,https://doi.org/10.5194/tc-18-187-2024, 2024
Short summary

Cited articles

Alley, R. B.: Flow-law hypotheses for ice-sheet modeling, J. Glaciol., 38, 245–256, https://doi.org/10.1029/2005JF000320, 1992.
Alley, R. B., Blankenship, D. D., Bentley, C. R., and Rooney, S: Till beneath ice stream B: 3. Till deformation: evidence and implications, J. Geophys. Res., 95, 8921–8929, https://doi.org/10.1029/JB092iB09p08921, 1987.
Aschwanden, A. and Blatter, H.: Meltwater production due to strain heating in Storglaciären, Sweden, J. Geophys. Res., 110, F04024, https://doi.org/10.1029/2005JF000328, 2005.
Azuma, N.: A flow law for anisotropic ice and its application to ice sheets, Earth Planet. Sci. Lett., 128, 601–614, https://doi.org/10.1016/0012-821X(94)90173-2, 1994.
Barnes, P. and Tabor, D.: Plastic flow and pressure melting in the deformation of ice I, Nature, 210, 878–882, https://doi.org/10.1038/210878a0, 1966.
Download
Short summary
The way that ice moves over rough ground at the base of an ice sheet is important to understand and predict the behaviour of ice sheets. Here, I argue that if basal ice is at the melting temperature, as is locally the case below the Greenland Ice Sheet, this basal motion is easier and faster than hitherto thought. A thick (tens of metres) layer of ice at the melting temperature may better explain some ice streams and needs to be taken into account when modelling future ice sheet behaviour.