Articles | Volume 9, issue 2
https://doi.org/10.5194/tc-9-613-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-9-613-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Configuration of the Northern Antarctic Peninsula Ice Sheet at LGM based on a new synthesis of seabed imagery
C. Lavoie
CORRESPONDING AUTHOR
Department of Geosciences/CESAM, University of Aveiro, Aveiro, 3810-193, Portugal
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante, Sgonico, 34010, Italy
E. W. Domack
CORRESPONDING AUTHOR
College of Marine Science, University of South Florida, St. Petersburg, Florida 33701, USA
E. C. Pettit
Department of Geosciences, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
T. A. Scambos
National Snow and Ice Data Center, University of Colorado, Boulder, Colorado 80309, USA
R. D. Larter
British Antarctic Survey, Cambridge, Cambridgeshire, CB3 0ET, UK
H.-W. Schenke
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27568, Germany
K. C. Yoo
Korean Polar Research Institute, Incheon, 406-840, Republic of Korea
J. Gutt
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27568, Germany
J. Wellner
Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, USA
M. Canals
Departament d'Estratigrafia, Paleontologia i Geociències Marines/GRR Marine Geosciences, Universitat de Barcelona, Barcelona 08028, Spain
J. B. Anderson
Department of Earth Science, Rice University, Houston, Texas 77251, USA
D. Amblas
Departament d'Estratigrafia, Paleontologia i Geociències Marines/GRR Marine Geosciences, Universitat de Barcelona, Barcelona 08028, Spain
Related authors
No articles found.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Ewa Demianiuk, Mateusz Baca, Danijela Popović, Inès Barrenechea Angeles, Ngoc-Loi Nguyen, Jan Pawlowski, John B. Anderson, and Wojciech Majewski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2824, https://doi.org/10.5194/egusphere-2024-2824, 2024
Short summary
Short summary
Ancient foraminifera DNA is studied in five Antarctic cores with sediments up to 25 kyr old. We use a standard and a new, more effective marker, which may become the next standard for paleoenvironmental studies. Much less diverse foraminifera occur on slopes of submarine moraines than in open-marine settings. Softly-walled foraminifera, not found in the fossil record, are especially abundant. There is no foraminiferal DNA in tills, suggesting its destruction during glacial redeposition.
Gabriela Collao-Barrios, Ted A. Scambos, Christian T. Wild, Martin Truffer, Karen E. Alley, and Erin C. Pettit
EGUsphere, https://doi.org/10.5194/egusphere-2024-1895, https://doi.org/10.5194/egusphere-2024-1895, 2024
Short summary
Short summary
Destabilization of ice shelves frequently leads to significant acceleration and greater mass loss, affecting rates of sea level rise. Our results show a relation between tides, flow direction, and grounding-zone acceleration that result from changing stresses in the ice margins and around a nunatak in Dotson Ice Shelf. The study describes a new way tides can influence ice shelf dynamics, an effect that could become more common as ice shelves thin and weaken around Antarctica.
Chinmay Dash, Yeong Bae Seong, Ajay Kumar Singh, Min Kyung Lee, Jae Il Lee, Kyu-Cheul Yoo, Hyun Hee Rhee, and Byung Yong Yu
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-38, https://doi.org/10.5194/cp-2024-38, 2024
Revised manuscript not accepted
Short summary
Short summary
This study explores sediment core RS15-LC47 from the Ross Sea over the past 800,000 years, examining changes in sea-ice dynamics and deposition environments. It integrates various data to reveal shifts related to Circumpolar Deep Water influx and Antarctic currents, particularly during significant climate transitions. Results highlight potential West Antarctic Ice Sheet collapses in warmer periods, offering new insights into the area's paleoclimate and sedimentary processes.
Allison P. Lepp, Lauren E. Miller, John B. Anderson, Matt O'Regan, Monica C. M. Winsborrow, James A. Smith, Claus-Dieter Hillenbrand, Julia S. Wellner, Lindsay O. Prothro, and Evgeny A. Podolskiy
The Cryosphere, 18, 2297–2319, https://doi.org/10.5194/tc-18-2297-2024, https://doi.org/10.5194/tc-18-2297-2024, 2024
Short summary
Short summary
Shape and surface texture of silt-sized grains are measured to connect marine sediment records with subglacial water flow. We find that grain shape alteration is greatest in glaciers where high-energy drainage events and abundant melting of surface ice are inferred and that the surfaces of silt-sized sediments preserve evidence of glacial transport. Our results suggest grain shape and texture may reveal whether glaciers previously experienced temperate conditions with more abundant meltwater.
Steven Y. J. Lai, David Amblas, Aaron Micallef, and Hervé Capart
Earth Surf. Dynam., 12, 621–640, https://doi.org/10.5194/esurf-12-621-2024, https://doi.org/10.5194/esurf-12-621-2024, 2024
Short summary
Short summary
This study explores the creation of submarine canyons and hanging-wall fans on active faults, which can be defined by gravity-dominated breaching and underflow-dominated diffusion processes. The study reveals the self-similarity in canyon–fan long profiles, uncovers Hack’s scaling relationship and proposes a formula to estimate fan volume using canyon length. This is validated by global data from source-to-sink systems, providing insights into deep-water sedimentary processes.
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere, 18, 1709–1731, https://doi.org/10.5194/tc-18-1709-2024, https://doi.org/10.5194/tc-18-1709-2024, 2024
Short summary
Short summary
On the Antarctic Peninsula, there is a small bay that had sea ice fastened to the shoreline (
fast ice) for over a decade. The fast ice stabilized the glaciers that fed into the ocean. In January 2022, the fast ice broke away. Using satellite data we found that this was because of low sea ice concentrations and a high long-period ocean wave swell. We find that the glaciers have responded to this event by thinning, speeding up, and retreating by breaking off lots of icebergs at remarkable rates.
Jenna A. Epifanio, Edward J. Brook, Christo Buizert, Erin C. Pettit, Jon S. Edwards, John M. Fegyveresi, Todd A. Sowers, Jeffrey P. Severinghaus, and Emma C. Kahle
The Cryosphere, 17, 4837–4851, https://doi.org/10.5194/tc-17-4837-2023, https://doi.org/10.5194/tc-17-4837-2023, 2023
Short summary
Short summary
The total air content (TAC) of polar ice cores has long been considered a potential proxy for past ice sheet elevation. This study presents a high-resolution record of TAC from the South Pole ice core. The record reveals orbital- and millennial-scale variability that cannot be explained by elevation changes. The orbital- and millennial-scale changes are likely a product of firn grain metamorphism near the surface of the ice sheet, due to summer insolation changes or local accumulation changes.
Kelly A. Hogan, Katarzyna L. P. Warburton, Alastair G. C. Graham, Jerome A. Neufeld, Duncan R. Hewitt, Julian A. Dowdeswell, and Robert D. Larter
The Cryosphere, 17, 2645–2664, https://doi.org/10.5194/tc-17-2645-2023, https://doi.org/10.5194/tc-17-2645-2023, 2023
Short summary
Short summary
Delicate sea floor ridges – corrugation ridges – that form by tidal motion at Antarctic grounding lines record extremely fast retreat of ice streams in the past. Here we use a mathematical model, constrained by real-world observations from Thwaites Glacier, West Antarctica, to explore how corrugation ridges form. We identify
till extrusion, whereby deformable sediment is squeezed out from under the ice like toothpaste as it settles down at each low-tide position, as the most likely process.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023, https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Short summary
Atmospheric rivers are air masses that transport large amounts of moisture and heat towards the poles. Here, we use a combination of weather observations and models to quantify the amount of snowfall caused by atmospheric rivers in West Antarctica which is about 10 % of the total snowfall each year. We then examine a unique event that occurred in early February 2020, when three atmospheric rivers made landfall over West Antarctica in rapid succession, leading to heavy snowfall and surface melt.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022, https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
Short summary
Thwaites Glacier (TG), in West Antarctica, is potentially unstable and may contribute significantly to sea-level rise as global warming continues. Using satellite data, we show that Thwaites Eastern Ice Shelf, the largest remaining floating extension of TG, has started to accelerate as it fragments along a shear zone. Computer modelling does not indicate that fragmentation will lead to imminent glacier collapse, but it is clear that major, rapid, and unpredictable changes are underway.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Christian T. Wild, Karen E. Alley, Atsuhiro Muto, Martin Truffer, Ted A. Scambos, and Erin C. Pettit
The Cryosphere, 16, 397–417, https://doi.org/10.5194/tc-16-397-2022, https://doi.org/10.5194/tc-16-397-2022, 2022
Short summary
Short summary
Thwaites Glacier has the potential to significantly raise Antarctica's contribution to global sea-level rise by the end of this century. Here, we use satellite measurements of surface elevation to show that its floating part is close to losing contact with an underwater ridge that currently acts to stabilize. We then use computer models of ice flow to simulate the predicted unpinning, which show that accelerated ice discharge into the ocean follows the breakup of the floating part.
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021, https://doi.org/10.5194/tc-15-5187-2021, 2021
Short summary
Short summary
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites Eastern Ice Shelf (TEIS), the largest remaining floating extension of Thwaites Glacier (TG). TG holds the single greatest control on sea-level rise over the next few centuries, so it is important to understand changes on the TEIS, which controls much of TG's flow into the ocean. Our results suggest that the TEIS is progressively destabilizing and is likely to disintegrate over the next few decades.
Ross Maguire, Nicholas Schmerr, Erin Pettit, Kiya Riverman, Christyna Gardner, Daniella N. DellaGiustina, Brad Avenson, Natalie Wagner, Angela G. Marusiak, Namrah Habib, Juliette I. Broadbeck, Veronica J. Bray, and Samuel H. Bailey
The Cryosphere, 15, 3279–3291, https://doi.org/10.5194/tc-15-3279-2021, https://doi.org/10.5194/tc-15-3279-2021, 2021
Short summary
Short summary
In the last decade, airborne radar surveys have revealed the presence of lakes below the Greenland ice sheet. However, little is known about their properties, including their depth and the volume of water they store. We performed a ground-based geophysics survey in northwestern Greenland and, for the first time, were able to image the depth of a subglacial lake and estimate its volume. Our findings have implications for the thermal state and stability of the ice sheet in northwest Greenland.
Alan Huston, Nicholas Siler, Gerard H. Roe, Erin Pettit, and Nathan J. Steiger
The Cryosphere, 15, 1645–1662, https://doi.org/10.5194/tc-15-1645-2021, https://doi.org/10.5194/tc-15-1645-2021, 2021
Short summary
Short summary
We simulate the past 1000 years of glacier length variability using a simple glacier model and an ensemble of global climate model simulations. Glaciers with long response times are more likely to record global climate changes caused by events like volcanic eruptions and greenhouse gas emissions, while glaciers with short response times are more likely to record natural variability. This difference stems from differences in the frequency spectra of natural and forced temperature variability.
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Alia L. Khan, Heidi M. Dierssen, Ted A. Scambos, Juan Höfer, and Raul R. Cordero
The Cryosphere, 15, 133–148, https://doi.org/10.5194/tc-15-133-2021, https://doi.org/10.5194/tc-15-133-2021, 2021
Short summary
Short summary
We present radiative forcing (RF) estimates by snow algae in the Antarctic Peninsula (AP) region from multi-year measurements of solar radiation and ground-based hyperspectral characterization of red and green snow algae collected during a brief field expedition in austral summer 2018. Mean daily RF was double for green (~26 W m−2) vs. red (~13 W m−2) snow algae during the peak growing season, which is on par with midlatitude dust attributions capable of advancing snowmelt.
Tom A. Jordan, David Porter, Kirsty Tinto, Romain Millan, Atsuhiro Muto, Kelly Hogan, Robert D. Larter, Alastair G. C. Graham, and John D. Paden
The Cryosphere, 14, 2869–2882, https://doi.org/10.5194/tc-14-2869-2020, https://doi.org/10.5194/tc-14-2869-2020, 2020
Short summary
Short summary
Linking ocean and ice sheet processes allows prediction of sea level change. Ice shelves form a floating buffer between the ice–ocean systems, but the water depth beneath is often a mystery, leaving a critical blind spot in our understanding of how these systems interact. Here, we use airborne measurements of gravity to reveal the bathymetry under the ice shelves flanking the rapidly changing Thwaites Glacier and adjacent glacier systems, providing new insights and data for future models.
Kelly A. Hogan, Robert D. Larter, Alastair G. C. Graham, Robert Arthern, James D. Kirkham, Rebecca L. Totten, Tom A. Jordan, Rachel Clark, Victoria Fitzgerald, Anna K. Wåhlin, John B. Anderson, Claus-Dieter Hillenbrand, Frank O. Nitsche, Lauren Simkins, James A. Smith, Karsten Gohl, Jan Erik Arndt, Jongkuk Hong, and Julia Wellner
The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, https://doi.org/10.5194/tc-14-2883-2020, 2020
Short summary
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
Julie Z. Miller, David G. Long, Kenneth C. Jezek, Joel T. Johnson, Mary J. Brodzik, Christopher A. Shuman, Lora S. Koenig, and Ted A. Scambos
The Cryosphere, 14, 2809–2817, https://doi.org/10.5194/tc-14-2809-2020, https://doi.org/10.5194/tc-14-2809-2020, 2020
Jan Erik Arndt, Robert D. Larter, Claus-Dieter Hillenbrand, Simon H. Sørli, Matthias Forwick, James A. Smith, and Lukas Wacker
The Cryosphere, 14, 2115–2135, https://doi.org/10.5194/tc-14-2115-2020, https://doi.org/10.5194/tc-14-2115-2020, 2020
Short summary
Short summary
We interpret landforms on the seabed and investigate sediment cores to improve our understanding of the past ice sheet development in this poorly understood part of Antarctica. Recent crack development of the Brunt ice shelf has raised concerns about its stability and the security of the British research station Halley. We describe ramp-shaped bedforms that likely represent ice shelf grounding and stabilization locations of the past that may reflect an analogue to the process going on now.
James D. Kirkham, Kelly A. Hogan, Robert D. Larter, Neil S. Arnold, Frank O. Nitsche, Nicholas R. Golledge, and Julian A. Dowdeswell
The Cryosphere, 13, 1959–1981, https://doi.org/10.5194/tc-13-1959-2019, https://doi.org/10.5194/tc-13-1959-2019, 2019
Short summary
Short summary
A series of huge (500 m wide, 50 m deep) channels were eroded by water flowing beneath Pine Island and Thwaites glaciers in the past. The channels are similar to canyon systems produced by floods of meltwater released beneath the Antarctic Ice Sheet millions of years ago. The spatial extent of the channels formed beneath Pine Island and Thwaites glaciers demonstrates significant quantities of water, possibly discharged from trapped subglacial lakes, flowed beneath these glaciers in the past.
Dyre O. Dammann, Leif E. B. Eriksson, Son V. Nghiem, Erin C. Pettit, Nathan T. Kurtz, John G. Sonntag, Thomas E. Busche, Franz J. Meyer, and Andrew R. Mahoney
The Cryosphere, 13, 1861–1875, https://doi.org/10.5194/tc-13-1861-2019, https://doi.org/10.5194/tc-13-1861-2019, 2019
Short summary
Short summary
We validate TanDEM-X interferometry as a tool for deriving iceberg subaerial morphology using Operation IceBridge data. This approach enables a volumetric classification of icebergs, according to volume relevant to iceberg drift and decay, freshwater contribution, and potential impact on structures. We find iceberg volumes to generally match within 7 %. These results suggest that TanDEM-X could pave the way for future interferometric systems of scientific and operational iceberg classification.
Robert D. Larter, Kelly A. Hogan, Claus-Dieter Hillenbrand, James A. Smith, Christine L. Batchelor, Matthieu Cartigny, Alex J. Tate, James D. Kirkham, Zoë A. Roseby, Gerhard Kuhn, Alastair G. C. Graham, and Julian A. Dowdeswell
The Cryosphere, 13, 1583–1596, https://doi.org/10.5194/tc-13-1583-2019, https://doi.org/10.5194/tc-13-1583-2019, 2019
Short summary
Short summary
We present high-resolution bathymetry data that provide the most complete and detailed imagery of any Antarctic palaeo-ice stream bed. These data show how subglacial water was delivered to and influenced the dynamic behaviour of the ice stream. Our observations provide insights relevant to understanding the behaviour of modern ice streams and forecasting the contributions that they will make to future sea level rise.
Bas Altena, Ted Scambos, Mark Fahnestock, and Andreas Kääb
The Cryosphere, 13, 795–814, https://doi.org/10.5194/tc-13-795-2019, https://doi.org/10.5194/tc-13-795-2019, 2019
Short summary
Short summary
Many glaciers in southern Alaska and the Yukon experience changes in flow speed, which occur in episodes or sporadically. These flow changes can be measured with satellites, but the resulting raw velocity products are messy. Thus in this study we developed an automatic method to produce a synthesized velocity product over a large glacier region of roughly 600 km by 200 km. Velocities are at a monthly resolution and at 300 m resolution, making all kinds of glacier dynamics observable.
Joo-Eun Yoon, Kyu-Cheul Yoo, Alison M. Macdonald, Ho-Il Yoon, Ki-Tae Park, Eun Jin Yang, Hyun-Cheol Kim, Jae Il Lee, Min Kyung Lee, Jinyoung Jung, Jisoo Park, Jiyoung Lee, Soyeon Kim, Seong-Su Kim, Kitae Kim, and Il-Nam Kim
Biogeosciences, 15, 5847–5889, https://doi.org/10.5194/bg-15-5847-2018, https://doi.org/10.5194/bg-15-5847-2018, 2018
Short summary
Short summary
Our paper provides an intensive overview of the artificial ocean iron fertilization (aOIF) experiments conducted over the last 25 years to test Martin’s hypothesis, discusses aOIF-related important unanswered open questions, suggests considerations for the design of future aOIF experiments to maximize their effectiveness, and introduces design guidelines for a future Korean Iron Fertilization Experiment in the Southern Ocean.
Lauren M. Simkins, Sarah L. Greenwood, and John B. Anderson
The Cryosphere, 12, 2707–2726, https://doi.org/10.5194/tc-12-2707-2018, https://doi.org/10.5194/tc-12-2707-2018, 2018
Short summary
Short summary
Using thousands of grounding line landforms in the Ross Sea, Antarctica, we observe two distinct landform types associated with contrasting styles of grounding line retreat. We characterise landform morphology, examine factors that control landform morphology and distribution, and explore drivers of grounding line (in)stability. This study highlights the importance of understanding thresholds which may destabilise a system and of controls on grounding line retreat over a range of timescales.
Dominic A. Hodgson, Kelly Hogan, James M. Smith, James A. Smith, Claus-Dieter Hillenbrand, Alastair G. C. Graham, Peter Fretwell, Claire Allen, Vicky Peck, Jan-Erik Arndt, Boris Dorschel, Christian Hübscher, Andrew M. Smith, and Robert Larter
The Cryosphere, 12, 2383–2399, https://doi.org/10.5194/tc-12-2383-2018, https://doi.org/10.5194/tc-12-2383-2018, 2018
Short summary
Short summary
We studied the Coats Land ice margin, Antarctica, providing a multi-disciplinary geophysical assessment of the ice sheet configuration through its last advance and retreat; a description of the physical constraints on the stability of the past and present ice and future margin based on its submarine geomorphology and ice-sheet geometry; and evidence that once detached from the bed, the ice shelves in this region were predisposed to rapid retreat back to coastal grounding lines.
Jan Erik Arndt, Robert D. Larter, Peter Friedl, Karsten Gohl, Kathrin Höppner, and the Science Team of Expedition PS104
The Cryosphere, 12, 2039–2050, https://doi.org/10.5194/tc-12-2039-2018, https://doi.org/10.5194/tc-12-2039-2018, 2018
Short summary
Short summary
The calving line location of the Pine Island Glacier did not show any trend within the last 70 years until calving in 2015 led to unprecedented retreat. In February 2017 we accessed this previously ice-shelf-covered area with RV Polarstern and mapped the sea-floor topography for the first time. Satellite imagery of the last decades show how the newly mapped shoals affected the ice shelf development and highlights that sea-floor topography is an important factor in initiating calving events.
Alex S. Gardner, Geir Moholdt, Ted Scambos, Mark Fahnstock, Stefan Ligtenberg, Michiel van den Broeke, and Johan Nilsson
The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, https://doi.org/10.5194/tc-12-521-2018, 2018
Short summary
Short summary
We map present-day Antarctic surface velocities from Landsat imagery and compare to earlier estimates from radar. Flow accelerations across the grounding lines of West Antarctica's Amundsen Sea Embayment, Getz Ice Shelf and the western Antarctic Peninsula, account for 89 % of the observed increase in ice discharge. In contrast, glaciers draining the East Antarctic have been remarkably stable. Our work suggests that patterns of mass loss are part of a longer-term phase of enhanced flow.
Yuribia P. Munoz and Julia S. Wellner
The Cryosphere, 12, 205–225, https://doi.org/10.5194/tc-12-205-2018, https://doi.org/10.5194/tc-12-205-2018, 2018
Short summary
Short summary
We mapped submarine landforms in western Antarctic Peninsula bays. These landforms were formed by flowing ice and provide insight into the local controls on glacial ice advance and retreat. We combined data from various cruises to create seafloor maps. We conclude that the number of landforms found in the bays scales to the size of the bay, narrower bays tend to stabilize ice flow, and meltwater channels are abundant, and we hypothesize a recent glacial advance, likely the Little Ice Age.
Dieter Piepenburg, Alexander Buschmann, Amelie Driemel, Hannes Grobe, Julian Gutt, Stefanie Schumacher, Alexandra Segelken-Voigt, and Rainer Sieger
Earth Syst. Sci. Data, 9, 461–469, https://doi.org/10.5194/essd-9-461-2017, https://doi.org/10.5194/essd-9-461-2017, 2017
Short summary
Short summary
An ocean floor observation system (OFOS) was used to collect seabed imagery on two cruises of the RV Polarstern, ANT-XXIX/3 (PS81) to the Antarctic Peninsula from January to March 2013 and ANT-XXXI/2 (PS96) to the Weddell Sea from December 2015 to February 2016. We report on the image and data collections gathered during these cruises. Seabed images, including metadata, are available from the data publisher PANGAEA via https://doi.org/10.1594/PANGAEA.872719 (PS81) and https://doi.org/10.1594/PANGAEA.862097 (PS96).
Byeong-Hoon Kim, Choon-Ki Lee, Ki-Weon Seo, Won Sang Lee, and Ted Scambos
The Cryosphere, 10, 2971–2980, https://doi.org/10.5194/tc-10-2971-2016, https://doi.org/10.5194/tc-10-2971-2016, 2016
Short summary
Short summary
Kamb Ice Stream (KIS) in Antarctica ceased rapid ice flow approximately 160 years ago, still influencing on the current mass balance of the West Antarctic Ice Sheet. We identify two previously unknown subglacial lakes beneath the stagnated trunk of the KIS. Rapid fill-drain hydrologic events over several months indicate that the lakes are probably connected by a subglacial drainage network. Our findings support previously published conceptual models of the KIS shutdown.
Megan O'Sadnick, Malcolm Ingham, Hajo Eicken, and Erin Pettit
The Cryosphere, 10, 2923–2940, https://doi.org/10.5194/tc-10-2923-2016, https://doi.org/10.5194/tc-10-2923-2016, 2016
Short summary
Short summary
Non-destructive in situ monitoring of sea-ice microstructure is of value to sea-ice research and operations but remains elusive to date. We relate in situ measurements of sea-ice dielectric properties at frequencies of 10 to 95 Hz to ice temperature, salinity, and microstructure. Results support the possible use of low-frequency electric measurements to monitor the seasonal evolution of brine volume fraction, pore volume, and connectivity of pore space in sea ice.
Anna Ruth W. Halberstadt, Lauren M. Simkins, Sarah L. Greenwood, and John B. Anderson
The Cryosphere, 10, 1003–1020, https://doi.org/10.5194/tc-10-1003-2016, https://doi.org/10.5194/tc-10-1003-2016, 2016
Short summary
Short summary
Geomorphic features on the Ross Sea sea floor provide a record of ice-sheet behaviour during the Last Glacial Maximum and subsequent retreat. Based on extensive mapping of these glacial landforms, a large embayment formed in the eastern Ross Sea. This was followed by complex, late-stage retreat in the western Ross Sea where banks stabilised the ice sheet. Physiography and sea floor geology act as regional controls on ice-sheet dynamics across the Ross Sea.
Mercè Cisneros, Isabel Cacho, Jaime Frigola, Miquel Canals, Pere Masqué, Belen Martrat, Marta Casado, Joan O. Grimalt, Leopoldo D. Pena, Giulia Margaritelli, and Fabrizio Lirer
Clim. Past, 12, 849–869, https://doi.org/10.5194/cp-12-849-2016, https://doi.org/10.5194/cp-12-849-2016, 2016
Short summary
Short summary
We present a high-resolution multi-proxy study about the evolution of sea surface conditions along the last 2700 yr in the north-western Mediterranean Sea based on five sediment records from two different sites north of Minorca. The novelty of the results and the followed approach, constructing stack records from the studied proxies to preserve the most robust patterns, provides a special value to the study. This complex period appears to have significant regional changes in the climatic signal.
J. M. van Wessem, S. R. M. Ligtenberg, C. H. Reijmer, W. J. van de Berg, M. R. van den Broeke, N. E. Barrand, E. R. Thomas, J. Turner, J. Wuite, T. A. Scambos, and E. van Meijgaard
The Cryosphere, 10, 271–285, https://doi.org/10.5194/tc-10-271-2016, https://doi.org/10.5194/tc-10-271-2016, 2016
Short summary
Short summary
This study presents the first high-resolution (5.5 km) modelled estimate of surface mass balance (SMB) over the period 1979–2014 for the Antarctic Peninsula (AP). Precipitation (snowfall and rain) largely determines the SMB, and is exceptionally high over the western mountain slopes, with annual values > 4 m water equivalent. Snowmelt is widespread over the AP, but only runs off into the ocean at some locations: the Larsen B,C, and Wilkins ice shelves, and along the north-western mountains.
A. Pope, T. A. Scambos, M. Moussavi, M. Tedesco, M. Willis, D. Shean, and S. Grigsby
The Cryosphere, 10, 15–27, https://doi.org/10.5194/tc-10-15-2016, https://doi.org/10.5194/tc-10-15-2016, 2016
Short summary
Short summary
Liquid water stored on the surface of ice sheets and glaciers, such as that in surface (supraglacial) lakes, plays a key role in the glacial hydrological system. Multispectral remote sensing can be used to detect lakes and estimate their depth. Here, we use in situ data to assess lake depth retrieval using the recently launched Landsat 8. We validate Landsat 8-derived depths and provide suggestions for future applications. We apply our method to a case study are in Greenland for summer 2014.
R. Pedrosa-Pàmies, C. Parinos, A. Sanchez-Vidal, A. Gogou, A. Calafat, M. Canals, I. Bouloubassi, and N. Lampadariou
Biogeosciences, 12, 7379–7402, https://doi.org/10.5194/bg-12-7379-2015, https://doi.org/10.5194/bg-12-7379-2015, 2015
Short summary
Short summary
A multi-proxy approach is applied in surface sediments collected from deep slopes and basins (1018-4087 m depth) of the oligotrophic eastern Mediterranean Sea. This study sheds new light on the sources and transport mechanisms along with the impact of preservation vs. diagenetic processes on the composition of sedimentary organic matter in the deep basins of the oligotrophic eastern Mediterranean Sea.
J. S. Wellner
Sci. Dril., 18, 11–11, https://doi.org/10.5194/sd-18-11-2014, https://doi.org/10.5194/sd-18-11-2014, 2014
T. A. Scambos, E. Berthier, T. Haran, C. A. Shuman, A. J. Cook, S. R. M. Ligtenberg, and J. Bohlander
The Cryosphere, 8, 2135–2145, https://doi.org/10.5194/tc-8-2135-2014, https://doi.org/10.5194/tc-8-2135-2014, 2014
Short summary
Short summary
This study of one of the most rapidly changing glacier regions on earth -- the Antarctic Peninsula -- uses two types of satellite data to measure the rates of ice loss in detail for the individual glaciers. The satellite data is laser altimetry from ICESat and stereo image DEM differences. The results show that 24..9 ± 7.8 billion tons of ice are lost from the region north of 66°S on the peninsula each year. The majority of the data cover 2003-2008.
B. Dorschel, J. Gutt, D. Piepenburg, M. Schröder, and J. E. Arndt
Biogeosciences, 11, 3797–3817, https://doi.org/10.5194/bg-11-3797-2014, https://doi.org/10.5194/bg-11-3797-2014, 2014
M. Higueras, P. Kerhervé, A. Sanchez-Vidal, A. Calafat, W. Ludwig, M. Verdoit-Jarraya, S. Heussner, and M. Canals
Biogeosciences, 11, 157–172, https://doi.org/10.5194/bg-11-157-2014, https://doi.org/10.5194/bg-11-157-2014, 2014
K. Kawamura, J. P. Severinghaus, M. R. Albert, Z. R. Courville, M. A. Fahnestock, T. Scambos, E. Shields, and C. A. Shuman
Atmos. Chem. Phys., 13, 11141–11155, https://doi.org/10.5194/acp-13-11141-2013, https://doi.org/10.5194/acp-13-11141-2013, 2013
A. Rumín-Caparrós, A. Sanchez-Vidal, A. Calafat, M. Canals, J. Martín, P. Puig, and R. Pedrosa-Pàmies
Biogeosciences, 10, 3493–3505, https://doi.org/10.5194/bg-10-3493-2013, https://doi.org/10.5194/bg-10-3493-2013, 2013
J. Martín, X. Durrieu de Madron, P. Puig, F. Bourrin, A. Palanques, L. Houpert, M. Higueras, A. Sanchez-Vidal, A. M. Calafat, M. Canals, S. Heussner, N. Delsaut, and C. Sotin
Biogeosciences, 10, 3221–3239, https://doi.org/10.5194/bg-10-3221-2013, https://doi.org/10.5194/bg-10-3221-2013, 2013
A. Dell'Anno, A. Pusceddu, C. Corinaldesi, M. Canals, S. Heussner, L. Thomsen, and R. Danovaro
Biogeosciences, 10, 2945–2957, https://doi.org/10.5194/bg-10-2945-2013, https://doi.org/10.5194/bg-10-2945-2013, 2013
A. Pusceddu, M. Mea, M. Canals, S. Heussner, X. Durrieu de Madron, A. Sanchez-Vidal, S. Bianchelli, C. Corinaldesi, A. Dell'Anno, L. Thomsen, and R. Danovaro
Biogeosciences, 10, 2659–2670, https://doi.org/10.5194/bg-10-2659-2013, https://doi.org/10.5194/bg-10-2659-2013, 2013
M. Stabholz, X. Durrieu de Madron, M. Canals, A. Khripounoff, I. Taupier-Letage, P. Testor, S. Heussner, P. Kerhervé, N. Delsaut, L. Houpert, G. Lastras, and B. Dennielou
Biogeosciences, 10, 1097–1116, https://doi.org/10.5194/bg-10-1097-2013, https://doi.org/10.5194/bg-10-1097-2013, 2013
F. O. Nitsche, K. Gohl, R. D. Larter, C.-D. Hillenbrand, G. Kuhn, J. A. Smith, S. Jacobs, J. B. Anderson, and M. Jakobsson
The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, https://doi.org/10.5194/tc-7-249-2013, 2013
Related subject area
Antarctic
A fast and simplified subglacial hydrological model for the Antarctic Ice Sheet and outlet glaciers
Dual-frequency radar observations of snowmelt processes on Antarctic perennial sea ice by CFOSCAT and ASCAT
Brief communication: New perspectives on the skill of modelled sea ice trends in light of recent Antarctic sea ice loss
Using deep learning and multi-source remote sensing images to map landlocked lakes in Antarctica
Thwaites Glacier thins and retreats fastest where ice-shelf channels intersect its grounding zone
Contribution of blowing-snow sublimation to the surface mass balance of Antarctica
Melt sensitivity of irreversible retreat of Pine Island Glacier
A model framework for atmosphere–snow water vapor exchange and the associated isotope effects at Dome Argus, Antarctica – Part 1: The diurnal changes
The long-term sea-level commitment from Antarctica
The influence of present-day regional surface mass balance uncertainties on the future evolution of the Antarctic Ice Sheet
Quantifying the influence of snow over sea ice morphology on L-band passive microwave satellite observations in the Southern Ocean
How well can satellite altimetry and firn models resolve Antarctic firn thickness variations?
Feedback mechanisms controlling Antarctic glacial-cycle dynamics simulated with a coupled ice sheet–solid Earth model
Employing automated electrical resistivity tomography for detecting short- and long-term changes in permafrost and active-layer dynamics in the maritime Antarctic
The effect of ice shelf rheology on shelf edge bending
Hysteresis of idealized, instability-prone outlet glaciers in response to pinning-point buttressing variation
A decade (2008–2017) of water stable isotope composition of precipitation at Concordia Station, East Antarctica
The role of atmospheric conditions in the Antarctic sea ice extent summer minima
A physics-based Antarctic melt detection technique: combining Advanced Microwave Scanning Radiometer 2, radiative-transfer modeling, and firn modeling
Brief communication: Precision measurement of the index of refraction of deep glacial ice at radio frequencies at Summit Station, Greenland
Extreme precipitation associated with atmospheric rivers over West Antarctic ice shelves: insights from kilometre-scale regional climate modelling
Widespread increase in discharge from west Antarctic Peninsula glaciers since 2018
Surface dynamics and history of the calving cycle of Astrolabe Glacier (Adélie Coast, Antarctica) derived from satellite imagery
Detecting Holocene retreat and readvance in the Amundsen Sea sector of Antarctica: assessing the suitability of sites near Pine Island Glacier for subglacial bedrock drilling
Weak relationship between remotely detected crevasses and inferred ice rheological parameters on Antarctic ice shelves
Speed-up, slowdown, and redirection of ice flow on neighbouring ice streams in the Pope, Smith and Kohler region of West Antarctica
A history-matching analysis of the Antarctic Ice Sheet since the last interglacial – Part 1: Ice sheet evolution
Extensive palaeo-surfaces beneath the Evans–Rutford region of the West Antarctic Ice Sheet control modern and past ice flow
Sources of low-frequency variability in observed Antarctic sea ice
Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 1: Event detection for cryoseismology
Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 2: Unsupervised learning for source process characterization
Firn air content changes on Antarctic ice shelves under three future warming scenarios
Geometric amplification and suppression of ice-shelf basal melt in West Antarctica
Alpine topography of the Gamburtsev Subglacial Mountains, Antarctica, mapped from ice sheet surface morphology
Surface processes and drivers of the snow water stable isotopic composition at Dome C, East Antarctica – a multi-datasets and modelling analysis
Impact of boundary conditions on the modeled thermal regime of the Antarctic ice sheet
The staggered retreat of grounded ice in the Ross Sea, Antarctica, since the Last Glacial Maximum (LGM)
The effect of landfast sea ice buttressing on ice dynamic speedup in the Larsen B embayment, Antarctica
ISMIP6-based Antarctic Projections to 2100: simulations with the BISICLES ice sheet model
Meteoric water and glacial melt in the southeastern Amundsen Sea: a time series from 1994 to 2020
Evaporative controls on Antarctic precipitation: an ECHAM6 model study using innovative water tracer diagnostics
Extreme events of snow grain size increase in East Antarctica and their relationship with meteorological conditions
Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model
A contrast in sea ice drift and deformation between winter and spring of 2019 in the Antarctic marginal ice zone
Modelling GNSS-observed seasonal velocity changes of the Ross Ice Shelf, Antarctica, using the Ice-sheet and Sea-level System Model (ISSM)
Multidecadal variability and predictability of Antarctic sea ice in the GFDL SPEAR_LO model
Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty
Signature of the stratosphere–troposphere coupling on recent record-breaking Antarctic sea-ice anomalies
Local spatial variability in the occurrence of summer precipitation in the Sør Rondane Mountains, Antarctica
Evaluation of four calving laws for Antarctic ice shelves
Elise Kazmierczak, Thomas Gregov, Violaine Coulon, and Frank Pattyn
The Cryosphere, 18, 5887–5911, https://doi.org/10.5194/tc-18-5887-2024, https://doi.org/10.5194/tc-18-5887-2024, 2024
Short summary
Short summary
We introduce a new fast model for water flow beneath the ice sheet capable of handling various hydrological and bed conditions in a unified way. Applying this model to Thwaites Glacier, we show that accounting for this water flow in ice sheet model projections has the potential to greatly increase the contribution to future sea level rise. We also demonstrate that the sensitivity of the ice sheet in response to external changes depends on the efficiency of the drainage and the bed type.
Rui Xu, Chaofang Zhao, Stefanie Arndt, and Christian Haas
The Cryosphere, 18, 5769–5788, https://doi.org/10.5194/tc-18-5769-2024, https://doi.org/10.5194/tc-18-5769-2024, 2024
Short summary
Short summary
The onset of snowmelt on Antarctic sea ice is an important indicator of sea ice change. In this study, we used two radar scatterometers to detect the onset of snowmelt on perennial Antarctic sea ice. Results show that since 2007, snowmelt onset has demonstrated strong interannual and regional variabilities. We also found that the difference in snowmelt onsets between the two scatterometers is closely related to snow metamorphism.
Caroline R. Holmes, Thomas J. Bracegirdle, Paul R. Holland, Julienne Stroeve, and Jeremy Wilkinson
The Cryosphere, 18, 5641–5652, https://doi.org/10.5194/tc-18-5641-2024, https://doi.org/10.5194/tc-18-5641-2024, 2024
Short summary
Short summary
Until recently, satellite data showed an increase in Antarctic sea ice area since 1979, but climate models simulated a decrease over this period. This mismatch was one reason for low confidence in model projections of 21st-century sea ice loss. We show that following low Antarctic sea ice in 2022 and 2023, we can no longer conclude that modelled and observed trends differ. However, differences in the manner of the decline mean that model sea ice projections should still be viewed with caution.
Anyao Jiang, Xin Meng, Yan Huang, and Guitao Shi
The Cryosphere, 18, 5347–5364, https://doi.org/10.5194/tc-18-5347-2024, https://doi.org/10.5194/tc-18-5347-2024, 2024
Short summary
Short summary
Landlocked lakes are crucial to the Antarctic ecosystem and sensitive to climate change. Limited research on their distribution prompted us to develop an automated detection process using deep learning and multi-source satellite imagery. This allowed us to accurately determine the landlocked lake open water (LLOW) area in Antarctica, generating high-resolution time series data. We find that the changes in positive and negative degree days predominantly drive variations in the LLOW area.
Allison M. Chartrand, Ian M. Howat, Ian R. Joughin, and Benjamin E. Smith
The Cryosphere, 18, 4971–4992, https://doi.org/10.5194/tc-18-4971-2024, https://doi.org/10.5194/tc-18-4971-2024, 2024
Short summary
Short summary
This study uses high-resolution remote-sensing data to show that shrinking of the West Antarctic Thwaites Glacier’s ice shelf (floating extension) is exacerbated by several sub-ice-shelf meltwater channels that form as the glacier transitions from full contact with the seafloor to fully floating. In mapping these channels, the position of the transition zone, and thinning rates of the Thwaites Glacier, this work elucidates important processes driving its rapid contribution to sea level rise.
Srinidhi Gadde and Willem Jan van de Berg
The Cryosphere, 18, 4933–4953, https://doi.org/10.5194/tc-18-4933-2024, https://doi.org/10.5194/tc-18-4933-2024, 2024
Short summary
Short summary
Blowing-snow sublimation is the major loss term in the mass balance of Antarctica. In this study we update the blowing-snow representation in the Regional Atmospheric Climate Model (RACMO). With the updates, results compare well with observations from East Antarctica. Also, the continent-wide variation of blowing snow compares well with satellite observations. Hence, the updates provide a clear step forward in producing a physically sound and reliable estimate of the mass balance of Antarctica.
Brad Reed, J. A. Mattias Green, Adrian Jenkins, and G. Hilmar Gudmundsson
The Cryosphere, 18, 4567–4587, https://doi.org/10.5194/tc-18-4567-2024, https://doi.org/10.5194/tc-18-4567-2024, 2024
Short summary
Short summary
We use a numerical ice-flow model to simulate the response of a 1940s Pine Island Glacier to changes in melting beneath its ice shelf. A decadal period of warm forcing is sufficient to push the glacier into an unstable, irreversible retreat from its long-term position on a subglacial ridge to an upstream ice plain. This retreat can only be stopped when unrealistic cold forcing is applied. These results show that short warm anomalies can lead to quick and substantial increases in ice flux.
Tianming Ma, Zhuang Jiang, Minghu Ding, Pengzhen He, Yuansheng Li, Wenqian Zhang, and Lei Geng
The Cryosphere, 18, 4547–4565, https://doi.org/10.5194/tc-18-4547-2024, https://doi.org/10.5194/tc-18-4547-2024, 2024
Short summary
Short summary
We constructed a box model to evaluate the isotope effects of atmosphere–snow water vapor exchange at Dome A, Antarctica. The results show clear and invisible diurnal changes in surface snow isotopes under summer and winter conditions, respectively. The model also predicts that the annual net effects of atmosphere–snow water vapor exchange would be overall enrichments in snow isotopes since the effects in summer appear to be greater than those in winter at the study site.
Ann Kristin Klose, Violaine Coulon, Frank Pattyn, and Ricarda Winkelmann
The Cryosphere, 18, 4463–4492, https://doi.org/10.5194/tc-18-4463-2024, https://doi.org/10.5194/tc-18-4463-2024, 2024
Short summary
Short summary
We systematically assess the long-term sea-level response from Antarctica to warming projected over the next centuries, using two ice-sheet models. We show that this committed Antarctic sea-level contribution is substantially higher than the transient sea-level change projected for the coming decades. A low-emission scenario already poses considerable risk of multi-meter sea-level increase over the next millennia, while additional East Antarctic ice loss unfolds under the high-emission pathway.
Christian Wirths, Thomas F. Stocker, and Johannes C. R. Sutter
The Cryosphere, 18, 4435–4462, https://doi.org/10.5194/tc-18-4435-2024, https://doi.org/10.5194/tc-18-4435-2024, 2024
Short summary
Short summary
We investigated the influence of several regional climate models on the Antarctic Ice Sheet when applied as forcing for the Parallel Ice Sheet Model (PISM). Our study shows that the choice of regional climate model forcing results in uncertainties of around a tenth of those in future sea level rise projections and also affects the extent of grounding line retreat in West Antarctica.
Lu Zhou, Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Shiming Xu, Weixin Zhu, Sahra Kacimi, Stefanie Arndt, and Zifan Yang
The Cryosphere, 18, 4399–4434, https://doi.org/10.5194/tc-18-4399-2024, https://doi.org/10.5194/tc-18-4399-2024, 2024
Short summary
Short summary
Snow over Antarctic sea ice, influenced by highly variable meteorological conditions and heavy snowfall, has a complex stratigraphy and profound impact on the microwave signature. We employ advanced radiation transfer models to analyse the effects of complex snow properties on brightness temperatures over the sea ice in the Southern Ocean. Great potential lies in the understanding of snow processes and the application to satellite retrievals.
Maria T. Kappelsberger, Martin Horwath, Eric Buchta, Matthias O. Willen, Ludwig Schröder, Sanne B. M. Veldhuijsen, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 4355–4378, https://doi.org/10.5194/tc-18-4355-2024, https://doi.org/10.5194/tc-18-4355-2024, 2024
Short summary
Short summary
The interannual variations in the height of the Antarctic Ice Sheet (AIS) are mainly due to natural variations in snowfall. Precise knowledge of these variations is important for the detection of any long-term climatic trends in AIS surface elevation. We present a new product that spatially resolves these height variations over the period 1992–2017. The product combines the strengths of atmospheric modeling results and satellite altimetry measurements.
Torsten Albrecht, Meike Bagge, and Volker Klemann
The Cryosphere, 18, 4233–4255, https://doi.org/10.5194/tc-18-4233-2024, https://doi.org/10.5194/tc-18-4233-2024, 2024
Short summary
Short summary
We performed coupled ice sheet–solid Earth simulations and discovered a positive (forebulge) feedback mechanism for advancing grounding lines, supporting a larger West Antarctic Ice Sheet during the Last Glacial Maximum. During deglaciation we found that the stabilizing glacial isostatic adjustment feedback dominates grounding-line retreat in the Ross Sea, with a weak Earth structure. This may have consequences for present and future ice sheet stability and potential rates of sea-level rise.
Mohammad Farzamian, Teddi Herring, Gonçalo Vieira, Miguel Angel de Pablo, Borhan Yaghoobi Tabar, and Christian Hauck
The Cryosphere, 18, 4197–4213, https://doi.org/10.5194/tc-18-4197-2024, https://doi.org/10.5194/tc-18-4197-2024, 2024
Short summary
Short summary
An automated electrical resistivity tomography (A-ERT) system was developed and deployed in Antarctica to monitor permafrost and active-layer dynamics. The A-ERT, coupled with an efficient processing workflow, demonstrated its capability to monitor real-time thaw depth progression, detect seasonal and surficial freezing–thawing events, and assess permafrost stability. Our study showcased the potential of A-ERT to contribute to global permafrost monitoring networks.
W. Roger Buck
The Cryosphere, 18, 4165–4176, https://doi.org/10.5194/tc-18-4165-2024, https://doi.org/10.5194/tc-18-4165-2024, 2024
Short summary
Short summary
Standard theory predicts that the edge of an ice shelf should bend downward. Satellite observations show that the edges of many ice shelves bend upward. A new theory for ice shelf bending is developed that, for the first time, includes the kind of vertical variations in ice flow properties expected for ice shelves. Upward bending of shelf edges is predicted as long as the ice surface is very cold and the ice flow properties depend strongly on temperature.
Johannes Feldmann, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 18, 4011–4028, https://doi.org/10.5194/tc-18-4011-2024, https://doi.org/10.5194/tc-18-4011-2024, 2024
Short summary
Short summary
Here we show in simplified simulations that the (ir)reversibility of the retreat of instability-prone, Antarctica-type glaciers can strongly depend on the depth of the bed depression they rest on. If it is sufficiently deep, then the destabilized glacier does not recover from its collapsed state. Our results suggest that glaciers resting on a wide and deep bed depression, such as Antarctica's Thwaites Glacier, are particularly susceptible to irreversible retreat.
Giuliano Dreossi, Mauro Masiol, Barbara Stenni, Daniele Zannoni, Claudio Scarchilli, Virginia Ciardini, Mathieu Casado, Amaëlle Landais, Martin Werner, Alexandre Cauquoin, Giampietro Casasanta, Massimo Del Guasta, Vittoria Posocco, and Carlo Barbante
The Cryosphere, 18, 3911–3931, https://doi.org/10.5194/tc-18-3911-2024, https://doi.org/10.5194/tc-18-3911-2024, 2024
Short summary
Short summary
Oxygen and hydrogen stable isotopes have been extensively used to reconstruct past temperatures, with precipitation representing the input signal of the isotopic records in ice cores. We present a 10-year record of stable isotopes in daily precipitation at Concordia Station: this is the longest record for inland Antarctica and represents a benchmark for quantifying post-depositional processes and improving the paleoclimate interpretation of ice cores.
Bianca Mezzina, Hugues Goosse, François Klein, Antoine Barthélemy, and François Massonnet
The Cryosphere, 18, 3825–3839, https://doi.org/10.5194/tc-18-3825-2024, https://doi.org/10.5194/tc-18-3825-2024, 2024
Short summary
Short summary
We analyze years with extraordinarily low sea ice extent in Antarctica during summer, until the striking record in 2022. We highlight common aspects among these events, such as the fact that the exceptional melting usually occurs in two key regions and that it is related to winds with a similar direction. We also investigate whether the summer conditions are preceded by an unusual state of the sea ice during the previous winter, as well as the physical processes involved.
Marissa E. Dattler, Brooke Medley, and C. Max Stevens
The Cryosphere, 18, 3613–3631, https://doi.org/10.5194/tc-18-3613-2024, https://doi.org/10.5194/tc-18-3613-2024, 2024
Short summary
Short summary
We developed an algorithm based on combining models and satellite observations to identify the presence of surface melt on the Antarctic Ice Sheet. We find that this method works similarly to previous methods by assessing 13 sites and the Larsen C ice shelf. Unlike previous methods, this algorithm is based on physical parameters, and updates to this method could allow the meltwater present on the Antarctic Ice Sheet to be quantified instead of simply detected.
Christoph Welling and The RNO-G Collaboration
The Cryosphere, 18, 3433–3437, https://doi.org/10.5194/tc-18-3433-2024, https://doi.org/10.5194/tc-18-3433-2024, 2024
Short summary
Short summary
We report on the measurement of the index of refraction in glacial ice at radio frequencies. We show that radio echoes from within the ice can be associated with specific features of the ice conductivity and use this to determine the wave velocity. This measurement is especially relevant for the Radio Neutrino Observatory Greenland (RNO-G), a neutrino detection experiment currently under construction at Summit Station, Greenland.
Ella Gilbert, Denis Pishniak, José Abraham Torres, Andrew Orr, Michelle Maclennan, Nander Wever, and Kristiina Verro
EGUsphere, https://doi.org/10.5194/egusphere-2024-2111, https://doi.org/10.5194/egusphere-2024-2111, 2024
Short summary
Short summary
We use 3 sophisticated climate models to examine extreme precipitation in a critical region of West Antarctica. We found that rainfall probably occurred during the two cases we examined, and that it was generated by the interaction of air with steep topography. Our results show that kilometre scale models are useful tools for exploring extreme precipitation in this region, and that more observations of rainfall are needed.
Benjamin J. Davison, Anna E. Hogg, Carlos Moffat, Michael P. Meredith, and Benjamin J. Wallis
The Cryosphere, 18, 3237–3251, https://doi.org/10.5194/tc-18-3237-2024, https://doi.org/10.5194/tc-18-3237-2024, 2024
Short summary
Short summary
Using a new dataset of ice motion, we observed glacier acceleration on the west coast of the Antarctic Peninsula. The speed-up began around January 2021, but some glaciers sped up earlier or later. Using a combination of ship-based ocean temperature observations and climate models, we show that the speed-up coincided with a period of unusually warm air and ocean temperatures in the region.
Floriane Provost, Dimitri Zigone, Emmanuel Le Meur, Jean-Philippe Malet, and Clément Hibert
The Cryosphere, 18, 3067–3079, https://doi.org/10.5194/tc-18-3067-2024, https://doi.org/10.5194/tc-18-3067-2024, 2024
Short summary
Short summary
The recent calving of Astrolabe Glacier in November 2021 presents an opportunity to better understand the processes leading to ice fracturing. Optical-satellite imagery is used to retrieve the calving cycle of the glacier ice tongue and to measure the ice velocity and strain rates in order to document fracture evolution. We observed that the presence of sea ice for consecutive years has favoured the glacier extension but failed to inhibit the growth of fractures that accelerated in June 2021.
Joanne S. Johnson, John Woodward, Ian Nesbitt, Kate Winter, Seth Campbell, Keir A. Nichols, Ryan A. Venturelli, Scott Braddock, Brent M. Goehring, Brenda Hall, Dylan H. Rood, and Greg Balco
EGUsphere, https://doi.org/10.5194/egusphere-2024-1452, https://doi.org/10.5194/egusphere-2024-1452, 2024
Short summary
Short summary
Determining where and when the Antarctic ice sheet was smaller than present requires recovery and exposure dating of subglacial bedrock. Here we use ice sheet model outputs and field data (geological and glaciological observations, bedrock samples and ground-penetrating radar from subglacial ridges) to assess the suitability for drilling of sites in the Hudson Mountains, West Antarctica. We find that no sites are perfect, but two are feasible, with the most suitable being Winkie Nunatak.
Cristina Gerli, Sebastian Rosier, G. Hilmar Gudmundsson, and Sainan Sun
The Cryosphere, 18, 2677–2689, https://doi.org/10.5194/tc-18-2677-2024, https://doi.org/10.5194/tc-18-2677-2024, 2024
Short summary
Short summary
Recent efforts have focused on using AI and satellite imagery to track crevasses for assessing ice shelf damage and informing ice flow models. Our study reveals a weak connection between these observed products and damage maps inferred from ice flow models. While there is some improvement in crevasse-dense regions, this association remains limited. Directly mapping ice damage from satellite observations may not significantly improve the representation of these processes within ice flow models.
Heather Louise Selley, Anna E. Hogg, Benjamin J. Davison, Pierre Dutrieux, and Thomas Slater
EGUsphere, https://doi.org/10.5194/egusphere-2024-1442, https://doi.org/10.5194/egusphere-2024-1442, 2024
Short summary
Short summary
We used satellite observations to measure recent changes in ice speed and flow direction in the Pope, Smith and Kohler Region of West Antarctica (2005–2022). We found substantial speed up on seven ice streams of up to 87 %. However, Kohler West Glacier has slowed by 10%, due to the redirection of ice flow into its rapidly thinning neighbour. This process of ‘ice piracy’ hasn’t previously been directly observed on this rapid timescale and may influence future ice shelf and sheet mass changes.
Benoit S. Lecavalier and Lev Tarasov
EGUsphere, https://doi.org/10.5194/egusphere-2024-1291, https://doi.org/10.5194/egusphere-2024-1291, 2024
Short summary
Short summary
We present the evolution of the Antarctic Ice Sheet (AIS) over the last 200 ka by means of a history-matching analysis where an updated observational database constrained ~10,000 model simulations. During peak glaciation at the Last Glacial Maximum (LGM), the best-fitting sub-ensemble of AIS simulations reached an excess grounded ice volume relative to present of 9.2 to 26.5 meters equivalent sea-level relative to present. The LGM AIS volume can help resolve the LGM missing ice problem.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
David B. Bonan, Jakob Dörr, Robert C. J. Wills, Andrew F. Thompson, and Marius Årthun
The Cryosphere, 18, 2141–2159, https://doi.org/10.5194/tc-18-2141-2024, https://doi.org/10.5194/tc-18-2141-2024, 2024
Short summary
Short summary
Antarctic sea ice has exhibited variability over satellite records, including a period of gradual expansion and a period of sudden decline. We use a novel statistical method to identify sources of variability in observed Antarctic sea ice changes. We find that the gradual increase in sea ice is likely related to large-scale temperature trends, and periods of abrupt sea ice decline are related to specific flavors of equatorial tropical variability known as the El Niño–Southern Oscillation.
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, and J. Paul Winberry
The Cryosphere, 18, 2061–2079, https://doi.org/10.5194/tc-18-2061-2024, https://doi.org/10.5194/tc-18-2061-2024, 2024
Short summary
Short summary
The study of icequakes allows for investigation of many glacier processes that are unseen by typical reconnaissance methods. However, detection of such seismic signals is challenging due to low signal-to-noise levels and diverse source mechanisms. Here we present a novel algorithm that is optimized to detect signals from a glacier environment. We apply the algorithm to seismic data recorded in the 2010–2011 austral summer from the Whillans Ice Stream and evaluate the resulting event catalogue.
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, Sue Cook, Bernd Kulessa, and J. Paul Winberry
The Cryosphere, 18, 2081–2101, https://doi.org/10.5194/tc-18-2081-2024, https://doi.org/10.5194/tc-18-2081-2024, 2024
Short summary
Short summary
Seismic catalogues are potentially rich sources of information on glacier processes. In a companion study, we constructed an event catalogue for seismic data from the Whillans Ice Stream. Here, we provide a semi-automated workflow for consistent catalogue analysis using an unsupervised cluster analysis. We discuss the defining characteristics of identified signal types found in this catalogue and possible mechanisms for the underlying glacier processes and noise sources.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 1983–1999, https://doi.org/10.5194/tc-18-1983-2024, https://doi.org/10.5194/tc-18-1983-2024, 2024
Short summary
Short summary
We use the IMAU firn densification model to simulate the 21st-century evolution of Antarctic firn air content. Ice shelves on the Antarctic Peninsula and the Roi Baudouin Ice Shelf in Dronning Maud Land are particularly vulnerable to total firn air content (FAC) depletion. Our results also underline the potentially large vulnerability of low-accumulation ice shelves to firn air depletion through ice slab formation.
Jan De Rydt and Kaitlin Naughten
The Cryosphere, 18, 1863–1888, https://doi.org/10.5194/tc-18-1863-2024, https://doi.org/10.5194/tc-18-1863-2024, 2024
Short summary
Short summary
The West Antarctic Ice Sheet is losing ice at an accelerating pace. This is largely due to the presence of warm ocean water around the periphery of the Antarctic continent, which melts the ice. It is generally assumed that the strength of this process is controlled by the temperature of the ocean. However, in this study we show that an equally important role is played by the changing geometry of the ice sheet, which affects the strength of the ocean currents and thereby the melt rates.
Edmund J. Lea, Stewart S. R. Jamieson, and Michael J. Bentley
The Cryosphere, 18, 1733–1751, https://doi.org/10.5194/tc-18-1733-2024, https://doi.org/10.5194/tc-18-1733-2024, 2024
Short summary
Short summary
We use the ice surface expression of the Gamburtsev Subglacial Mountains in East Antarctica to map the horizontal pattern of valleys and ridges in finer detail than possible from previous methods. In upland areas, valleys are spaced much less than 5 km apart, with consequences for the distribution of melting at the bed and hence the likelihood of ancient ice being preserved. Automated mapping techniques were tested alongside manual approaches, with a hybrid approach recommended for future work.
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-685, https://doi.org/10.5194/egusphere-2024-685, 2024
Short summary
Short summary
The role of post-depositional processes taking place at the ice sheet's surface on the water stable isotope signal measured in polar ice cores is not fully understood. Using field observations and modelling results, we show that the original precipitation isotopic signal at Dome C, East Antarctica, is modified by post-depositional processes and provide the first quantitative estimation of their mean impact on the isotopic signal observed in the snow.
In-Woo Park, Emilia Kyung Jin, Mathieu Morlighem, and Kang-Kun Lee
The Cryosphere, 18, 1139–1155, https://doi.org/10.5194/tc-18-1139-2024, https://doi.org/10.5194/tc-18-1139-2024, 2024
Short summary
Short summary
This study conducted 3D thermodynamic ice sheet model experiments, and modeled temperatures were compared with 15 observed borehole temperature profiles. We found that using incompressibility of ice without sliding agrees well with observed temperature profiles in slow-flow regions, while incorporating sliding in fast-flow regions captures observed temperature profiles. Also, the choice of vertical velocity scheme has a greater impact on the shape of the modeled temperature profile.
Matthew A. Danielson and Philip J. Bart
The Cryosphere, 18, 1125–1138, https://doi.org/10.5194/tc-18-1125-2024, https://doi.org/10.5194/tc-18-1125-2024, 2024
Short summary
Short summary
The post-Last Glacial Maximum (LGM) retreat of the West Antarctic Ice Sheet in the Ross Sea was more significant than for any other Antarctic sector. Here we combined the available dates of retreat with new mapping of sediment deposited by the ice sheet during overall retreat. Our work shows that the post-LGM retreat through the Ross Sea was not uniform. This uneven retreat can cause instability in the present-day Antarctic ice sheet configuration and lead to future runaway retreat.
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, Benjamin J. Wallis, Benjamin J. Davison, Heather L. Selley, Ross A. W. Slater, Elise K. Lie, Livia Jakob, Andrew Ridout, Noel Gourmelen, Bryony I. D. Freer, Sally F. Wilson, and Andrew Shepherd
The Cryosphere, 18, 977–993, https://doi.org/10.5194/tc-18-977-2024, https://doi.org/10.5194/tc-18-977-2024, 2024
Short summary
Short summary
Here, we use satellite observations and an ice flow model to quantify the impact of sea ice buttressing on ice streams on the Antarctic Peninsula. The evacuation of 11-year-old landfast sea ice in the Larsen B embayment on the East Antarctic Peninsula in January 2022 was closely followed by major changes in the calving behaviour and acceleration (30 %) of the ocean-terminating glaciers. Our results show that sea ice buttressing had a negligible direct role in the observed dynamic changes.
James F. O'Neill, Tamsin L. Edwards, Daniel F. Martin, Courtney Shafer, Stephen L. Cornford, Helene L. Seroussi, Sophie Nowicki, and Mira Adhikari
EGUsphere, https://doi.org/10.5194/egusphere-2024-441, https://doi.org/10.5194/egusphere-2024-441, 2024
Short summary
Short summary
We use an ice sheet model to simulate the Antarctic contribution to sea level over the 21st century, under a range of future climates, varying how sensitive the ice sheet is to different processes. We find that, under stronger warming scenarios, ocean temperatures increases and more snow falls on the ice sheet. When the ice sheet is sensitive to ocean warming, ocean melting driven loss exceeds snowfall driven gains, so that the sea level contribution is greater with more climate warming.
Andrew N. Hennig, David A. Mucciarone, Stanley S. Jacobs, Richard A. Mortlock, and Robert B. Dunbar
The Cryosphere, 18, 791–818, https://doi.org/10.5194/tc-18-791-2024, https://doi.org/10.5194/tc-18-791-2024, 2024
Short summary
Short summary
A total of 937 seawater paired oxygen isotope (δ18O)–salinity samples collected during seven cruises on the SE Amundsen Sea between 1994 and 2020 reveal a deep freshwater source with δ18O − 29.4±1.0‰, consistent with the signature of local ice shelf melt. Local mean meteoric water content – comprised primarily of glacial meltwater – increased between 1994 and 2020 but exhibited greater interannual variability than increasing trend.
Qinggang Gao, Louise C. Sime, Alison J. McLaren, Thomas J. Bracegirdle, Emilie Capron, Rachael H. Rhodes, Hans Christian Steen-Larsen, Xiaoxu Shi, and Martin Werner
The Cryosphere, 18, 683–703, https://doi.org/10.5194/tc-18-683-2024, https://doi.org/10.5194/tc-18-683-2024, 2024
Short summary
Short summary
Antarctic precipitation is a crucial component of the climate system. Its spatio-temporal variability impacts sea level changes and the interpretation of water isotope measurements in ice cores. To better understand its climatic drivers, we developed water tracers in an atmospheric model to identify moisture source conditions from which precipitation originates. We find that mid-latitude surface winds exert an important control on moisture availability for Antarctic precipitation.
Claudio Stefanini, Giovanni Macelloni, Marion Leduc-Leballeur, Vincent Favier, Benjamin Pohl, and Ghislain Picard
The Cryosphere, 18, 593–608, https://doi.org/10.5194/tc-18-593-2024, https://doi.org/10.5194/tc-18-593-2024, 2024
Short summary
Short summary
Local and large-scale meteorological conditions have been considered in order to explain some peculiar changes of snow grains on the East Antarctic Plateau from 2000 to 2022, by using remote sensing observations and reanalysis. We identified some extreme grain size events on the highest ice divide, resulting from a combination of conditions of low wind speed and low temperature. Moreover, the beginning of seasonal grain growth has been linked to the occurrence of atmospheric rivers.
Violaine Coulon, Ann Kristin Klose, Christoph Kittel, Tamsin Edwards, Fiona Turner, Ricarda Winkelmann, and Frank Pattyn
The Cryosphere, 18, 653–681, https://doi.org/10.5194/tc-18-653-2024, https://doi.org/10.5194/tc-18-653-2024, 2024
Short summary
Short summary
We present new projections of the evolution of the Antarctic ice sheet until the end of the millennium, calibrated with observations. We show that the ocean will be the main trigger of future ice loss. As temperatures continue to rise, the atmosphere's role may shift from mitigating to amplifying Antarctic mass loss already by the end of the century. For high-emission scenarios, this may lead to substantial sea-level rise. Adopting sustainable practices would however reduce the rate of ice loss.
Ashleigh Womack, Alberto Alberello, Marc de Vos, Alessandro Toffoli, Robyn Verrinder, and Marcello Vichi
The Cryosphere, 18, 205–229, https://doi.org/10.5194/tc-18-205-2024, https://doi.org/10.5194/tc-18-205-2024, 2024
Short summary
Short summary
Synoptic events have a significant influence on the evolution of Antarctic sea ice. Our current understanding of the interactions between cyclones and sea ice remains limited. Using two ensembles of buoys, deployed in the north-eastern Weddell Sea region during winter and spring of 2019, we show how the evolution and spatial pattern of sea ice drift and deformation in the Antarctic marginal ice zone were affected by the balance between atmospheric and oceanic forcing and the local ice.
Francesca Baldacchino, Nicholas R. Golledge, Huw Horgan, Mathieu Morlighem, Alanna V. Alevropoulos-Borrill, Alena Malyarenko, Alexandra Gossart, Daniel P. Lowry, and Laurine van Haastrecht
EGUsphere, https://doi.org/10.5194/egusphere-2023-2793, https://doi.org/10.5194/egusphere-2023-2793, 2023
Short summary
Short summary
Understanding how the Ross Ice Shelf flow is changing in a warming world is important for monitoring mass changes. The flow displays an intra-annual variation; however, it is unclear what mechanisms drive this variability. Sensitivity maps are modelled showing areas of the ice shelf where changes in basal melt most influence the ice flow. We suggest that basal melting partly drives the flow variability along the calving front of the ice shelf and will continue to do so in a warming world.
Yushi Morioka, Liping Zhang, Thomas L. Delworth, Xiaosong Yang, Fanrong Zeng, Masami Nonaka, and Swadhin K. Behera
The Cryosphere, 17, 5219–5240, https://doi.org/10.5194/tc-17-5219-2023, https://doi.org/10.5194/tc-17-5219-2023, 2023
Short summary
Short summary
Antarctic sea ice extent shows multidecadal variations with its decrease in the 1980s and increase after the 2000s until 2015. Here we show that our climate model can predict the sea ice decrease by deep convection in the Southern Ocean and the sea ice increase by the surface wind variability. These results suggest that accurate simulation and prediction of subsurface ocean and atmosphere conditions are important for those of Antarctic sea ice variability on a multidecadal timescale.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Raúl R. Cordero, Sarah Feron, Alessandro Damiani, Pedro J. Llanillo, Jorge Carrasco, Alia L. Khan, Richard Bintanja, Zutao Ouyang, and Gino Casassa
The Cryosphere, 17, 4995–5006, https://doi.org/10.5194/tc-17-4995-2023, https://doi.org/10.5194/tc-17-4995-2023, 2023
Short summary
Short summary
We investigate the response of Antarctic sea ice to year-to-year changes in the tropospheric–stratospheric dynamics. Our findings suggest that, by affecting the tropospheric westerlies, the strength of the stratospheric polar vortex has played a major role in recent record-breaking anomalies in Antarctic sea ice.
Alfonso Ferrone, Étienne Vignon, Andrea Zonato, and Alexis Berne
The Cryosphere, 17, 4937–4956, https://doi.org/10.5194/tc-17-4937-2023, https://doi.org/10.5194/tc-17-4937-2023, 2023
Short summary
Short summary
In austral summer 2019/2020, three K-band Doppler profilers were deployed across the Sør Rondane Mountains, south of the Belgian base Princess Elisabeth Antarctica. Their measurements, along with atmospheric simulations and reanalyses, have been used to study the spatial variability in precipitation over the region, as well as investigate the interaction between the complex terrain and the typical flow associated with precipitating systems.
Joel A. Wilner, Mathieu Morlighem, and Gong Cheng
The Cryosphere, 17, 4889–4901, https://doi.org/10.5194/tc-17-4889-2023, https://doi.org/10.5194/tc-17-4889-2023, 2023
Short summary
Short summary
We use numerical modeling to study iceberg calving off of ice shelves in Antarctica. We examine four widely used mathematical descriptions of calving (
calving laws), under the assumption that Antarctic ice shelf front positions should be in steady state under the current climate forcing. We quantify how well each of these calving laws replicates the observed front positions. Our results suggest that the eigencalving and von Mises laws are most suitable for Antarctic ice shelves.
Cited articles
Amblas, D., Urgeles, R., Canals, M., Calafat, A. M., Robesco, M., Camerlenghi, A., Estrada, F., De Batist, M., and Hughes-Clarke, J. E.: Relationship between continental rise development and palaeo-ice sheet dynamics, Northern Antarctic Peninsula Pacific margin, Quaternary Sci. Rev., 25, 933–944, 2006.
Andrews, J. T.: On the reconstruction of pleistocene ice sheets: a review, Quaternary Sci. Rev., 1, 1–30, 1982.
Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G., Goleby, B., Rebesco, M., Bohoyo, F., Hong, J., Black, J., Greku, R., Udintsev, G., Barrios, F., Reynoso-Peralta, W., Taisei, M., and Wigley, R.: The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 – a new bathymetric compilation covering circum-Antarctic waters, Geophys. Res. Lett., 40, 3111–3117, 2013.
Banfield, L. A. and Anderson, J. B.: Seismic facies investgation of the late Quaternary glacial history of Bransfield Basin, Antarctica, in: Geology and Seismic Stratigraphy of the Antarctic Margin, edited by: Cooper, A. K., Barker, P. F., and Brancolini, G., Antarct. Res. Ser. 68, American Geophysical Union, Washington, D.C., 123–140, 1995.
Barker, P. F.: The Cenozoic subduction history of the Pacific margin of the Antarctic Peninsula: ridge crest-trench interactions, J. Geol. Soc., 139, 787–801, 1982.
Bentley, M. J. and Anderson, J. B.: Glacial and marine geological evidence for the ice sheet configuration in the Weddell Sea-Antarctic Peninsula region during the Last Glacial Maximum, Antarct. Sci., 10, 309–325, 1998.
Boulton, G. S.: Sedimentary and sea level changes during glacial cycles and their control on glacimarine facies architecture, in: Glacimarine Environments: Processes and Sediments, edited by: Dowdeswell, J. A. and Scourse, J. D., Geological Society Special Publication 53, The Geological Society, London, 15–52, 1990.
Brisbourne, A. M., Smith, A. M., King, E. C., Nicholls, K. W., Holland, P. R., and Makinson, K.: Seabed topography beneath Larsen C Ice Shelf from seismic soundings, The Cryosphere, 8, 1–13, https://doi.org/10.5194/tc-8-1-2014, 2014.
Bueler, E., Lingle, C. S., Kallen-Brown, J. A., Covey, D., and Bowman, L. N.: Exact solutions and verification of numerical models for isothermal ice sheets, J. Glaciol., 51, 291–306, 2005.
Camerlenghi, A., Domack, E. W., Rebesco, M., Gilbert, R., Ishman, S., Leventer, A., Brachfeld, S., and Drake, A.: Glacial morphology and post-glacial contourites in northern Prince Gustav Channel (NW Weddell Sea, Antarctica), Mar. Geophys. Res., 22, 417–443, 2001.
Canals, M., Urgeles, R., and Calafat, A. M.: Deep sea-floor evidence of past ice streams off the Antarctic Peninsula, Geology, 28, 31–34, 2000.
Canals, M., Casamor, J. L., Urgeles, R., Calafat, A. M., Domack, E. W., Baraza, J., Farran, M., and De Batist, M.: Seafloor evidence of a subglacial sedimentary system off the northern Antarctic Peninsula, Geology, 30, 603–606, 2002.
Canals, M., Calafat, A. M., Camerlenghi, A., De Batist, M., Urgeles, R., Farran, M., Geletti, R., Versteeg,W., Amblas, D., Rebesco, M., Casamor, J. L., Sànchez, A., Willmott, V., Lastras, G., and Imbo, Y.: Uncovering the footprint of former ice streams off Antarctica, EOS, 84, 97–108, 2003.
Clark, C. D.: Mega-sclae glacial lineations and cross-cutting ice-flow landforms, Earth Surf. Proc. Land., 18, 1–29, 1993.
Clark, C. D., Tulaczyk, S., Stokes, C. R., and Canals, M.: A groove-ploughing theory for the production of mega-scale glacial lineations, and implications for ice-stream mechanics, J. Glaciol., 49, 240–256, 2003.
Conway, H., Catania, G., Raymond, C. F., and Gades, A. M.: Switch of flow direction in an Antarctic ice stream, Nature, 419, 465–467, 2002.
Cuffey, K. M. and Paterson, W. S. B. (Eds.): The Physics of Glaciers, Elsevier Inc., Oxford, UK, 2010.
Curry, P. and Pudsey, C. J.: New Quaternary sedimentary records from near the Larcen C and former Larsen B ice shelves; evidence for Holocene stability, Antarct. Sci., 19, 355–364, 2007.
Davies, B. J., Hambrey, M. J., Smellie, J. L., Carrivick, J. L., and Glasser, N. F.: Antarctic Peninsula Ice Sheet evolution during the Cenozoic Era, Quaternary Sci. Rev., 31, 30–66, 2012.
Domack, E. W., Canals, M., Camerlenghi, A., Gilbert, R., Amblas, D., Wilmott, V., Calafat, A. M., Urgeles, R., DeBatist, M., Casamor, J. L., and Rebesco, M.: Complete swath map coverage of the Gerlache Boyd Strait paleo ice stream: an example of collaborative seafloor mapping in the Antarctic Peninsula, XXVIII SCAR Open Science Conference, Bremen, Germany, 26–28 July 2004, Abstract S11/P08, 2004.
Domack, E., Duran, D., Leventer, A., Ishman, S., Doane, S., McCallum, S., Amblas, D., Ring, J., Gilbert, R., and Prentice, M.: Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch, Nature, 436, 681–685, 2005.
Domack, E., Amblas, D., Gilbert, R., Brachfeld, S., Camerlenghi, A., Robesco, M., Canals, M., and Urgeles, R.: Subglacial morphology and glacial evolution of the Palmer deep outlet system, Antarctic Peninsula, Geomorphology, 75, 125–142, 2006.
Dowdeswell, J. A., Ottesen, D., Evans, J., Ó Cofaigh, C., and Anderson, J. B.: Submarine glacial landforms and rates of ice-stream collapse, Geology, 26, 819–822, 2008.
Eittreim, S. L., Cooper, A. K., and Wannesson, J.: Seismic stratigraphic evidence of ice-sheet advances on the Wilkes Land margin of Antarctica, Sediment. Geol., 96, 131–156, 1995.
Evans, J., Dowdeswell, J. A., and Ó Cofaigh, C.: Late Quaternary submarine bedforms and ice-sheet flow in Gerlache Strait and on the adjacent continental shelf, Antarctic Peninsula, J. Quaternary Sci., 19, 397–407, 2004.
Evans, J., Pudsey, C. J., Ó Cofaigh, C., Morris, P., and Domack, E. W.: Late Quaternary glacial history, flow dynamics and sedimentation along the eastern margin of the Antarctic Peninsula Ice Sheet, Quaternary Sci. Rev., 24, 741–774, 2005.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Gades, A., Raymond, C. F., Conway, H., and Jacobel, R.: Bed properties of Siple Dome and adjacent ice streams, West Antarctica, inferred from radio-echo sounding measurements, J. Glaciol., 46, 88–94, 2000.
Gilbert, R., Domack, E. W., and Camerlenghi, A.: Deglacial history of the Greenpeace Trough: ice Sheet to Ice Shelf transition in the Northwestern Weddell Sea, Antarct. Res. Ser., 79, 195–204, 2003.
Glasser, N. F., Davies, B. J., Carrivick, J. L., Rodés, A., Hambrey, M. J., Smellie, J. L., and Domack, E.: Ice-stream initiation, duration and thinning on James Rosse Island, northern Antarctic Peninsula, Quaternary Sci. Rev., 86, 78–88, 2014.
Golledge, N. R., Levy, R. H., McKay, R. M., Fogwill, C. J., White, D. A., Graham, A. G. C., Smith, J. A., Hillenbrand, C.-D., Licht, K. J., Denton, G. H., Ackert Jr., R. P., Maas, S. M., and Hall, B. L.: Glaciology and geological signature of the Last Glacial Maximum Antarctic ice sheet, Quaternary Sci. Rev., 78, 225-247, 2013.
Graham, A. G. C. and Smith, J. A.: Palaeoglaciology of the Alexander Island ice cap, western Antarctic Peninsula, reconstructed from marine geophysical and core data, Quaternary Sci. Rev., 35, 63–81, 2012.
Gudmundsson, G. H.: Transmission of basal variability to a glacier surface, J. Geophys. Res.-Solid Earth, 108, ETG 9-1–19, 2003.
Heroy, D. C. and Anderson, J. B.: Ice-sheet extent of the Antarctic Peninsula region during the Last Glacial Maximum (LGM) – insights from glacial geomorphology, Geol. Soc. Am. Bull., 117, 1497–1512, 2005.
Johnson, J. S., Bentley, M. J., Roberts, S. J., Binnie, S. A., and Freeman, S. P. H. T.: Holocene deglacial history of the northeast Antarctic Peninsula – a review and new chronological constraints, Quaternary Sci. Rev., 30, 3791–3802, 2011.
Joughin, I., Fahnestock, M., MacAyeal, D. R., Bamber, J. L., and Gogineni, P.: Observation and analysis of ice flow in the largest Greenland ice stream, J. Geophys. Res., 106, 34021–34034, 2001.
Joughin, I., Smith, B. E., Howat, I. M., Scambos, T., and Moon, T.: Greenland flow variability from ice-sheet-wide velocity mapping, J. Glaciol., 56, 415–430, 2010.
Kilfeather, A. A., ÓCofaigh, C., Lloyd, J. M., Dowdswell, J. A., Xu, S., and Moreton, S. G.: Ice-stream retreat and ice-shelf history in Marguerite Trough, Antarctic Peninsula: Sedimentological and foraminiferal signatures, Geol. Soc. Am. Bull., 123, 997–1015, 2011.
Knight, P. G., Sugden, D. E., and Minty, C. D.: Ice flow around large obstacles as indicated by basal ice exposed at the margin of the Greenland ice sheet, J. Glaciol., 40, 359–367, 1994.
Larter, R. D. and Barker, P. F.: Seismic stratigraphy of the Antarctic Peninsula Pacific margin: a record of Pliocene–Pleistocene ice volume and paleoclimate, Geology, 17, 731–734, 1989.
Larter, R. D. and Vanneste, L. E.: Relict subglacial deltas on the Antarctic Peninsula outer shelf, Geology, 23, 33–36, 1995.
Lawver, L. A., Sloan, B. J., Barker, D. H. N., Ghidella, M. E., von Herzen, R. P., Keller, R. A., Klinkhammer, G. P., and Chin, C. S.: Distributed, active extension in Bransfield Basin, Antarctic Peninsula: evidence from multibeam bathymetry, GSA Today, 6, 1–6, 1996.
Leventer, A., Domack, E., Dunbar, R., Pike, J., Stickley, C., Maddison, E., Brachfield, S., Manely, P., and McClennan, C.: Marine sediment record from East Antarctica margin reveals dynamics of ice-sheet recession, GSA Today, 16, 4–10, 2006.
Livingstone, S. J., Ó Cofaigh, C., Stokes, C. R., Hillenbrand, C. D., Vieli, A., and Jamieson, S. S. R.: Antarctic palaeo-ice streams, Earth-Sci. Rev., 111, 90–128, 2012.
Luckman, A., Padman, L., and Jansen, D.: Persistent iceberg groundings in the western Weddell Sea, Antarctica, Remote Sens. Environ., 114, 385–391, 2010.
Marshall, S. J. and Cuffey, K. M.: Peregrinations of the Greenland Ice Sheet divide in the last glacial cycle: implications for central Greenland ice cores, Earth Planet. Sc. Lett., 179, 73–93, 2000.
Nereson, N. A., Hindmarsh, R. C. A., and Raymond, C. F.: Sensitivity of the divide position at Siple Dome, West Antarctica, to boundary forcing, Ann. Glaciol., 27, 207–214, 1998.
Nývlt, D., Košler, J., Mlčoch, B., Mixa, P., Lisá, L., Bubík, M., and Hendriks, B. W. H.: The Mendel Formation: Evidence for Late Miocene climatic cyclicity at the northern tip of the Antarctic Peninsula, Palaeogeogr. Palaeoclimatol. Palaeoecol., 299, 363–384, 2011.
Ó Cofaigh, C., Davies, B. J., Livingstone, S. J., Smith, J. A., Johnson, J. S., Hocking, E. P., Hodgson, D. A., Anderson, J. B., Bentley, M. J., Canals, M., Domack, E., Dowdeswell, J. A., Evans, J., Glasser, N. F., Hillenbrand, C. D., Larter, R. D., Roberts, S. J., and Simms, A. R.: Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum, Quaternary Sci. Rev., 100, 87–110, 2014.
Pudsey, C. J., Barker, P. F., and Larter, R. D.: Ice Sheet retreat from the Antarctic Peninsula shelf, Cont. Shelf. Res., 14, 1647–1675, 1994.
Pudsey, C. J., Evans, J., Domack, E. W., Morris, P., and Del Valle, R. A.: Bathymetry and acoustic facies beneath the former Larsen-A and Prince Gustav ice shelves, north-west Weddell Sea, Antarct. Sci., 13, 312–322, 2001.
Rebesco, M., Liu, Y., Camerlenghi, A., Winsborrow, M., Laberg, J. S., Caburlotto, A., Diviacco, P., Accettella, D., Sauli, C., Wardell, N., and Tomini, I.: Deglaciation of the western margin of the Barents Sea Ice Sheet – a swath bathymetric and sub-bottom seismic study from the Kveithola Trough, Mar. Geol., 279, 141–147, 2011.
Rebesco, M., Domack, E., Zgur, F., Lavoie, C., Leventer, A., Brachfeld, S., Willmott, V., Halverson, G., Truffer, M., Scambos, T., Smith, J., and Pettit, E.: Boundary condition of grounding lines prior to collapse, Larsen-B Ice Shelf, Antarctica, Nature, 345, 1354–1358, 2014.
Reinardy, B. T. J., Larter, L. D., Hillenbrand, C. D., Murray, T., Hiemstra, J. F., and Booth, A. D.: Streaming flow of an Antarctic Peninsula palaeo-ice stream, both by basal sliding and deformation of substrate, J. Glaciol., 57, 596–608, 2011.
Roe, G. H. and Lindzen, R. S.: The mutual interaction between continental-scale ice sheets and atmospheric stationary waves, J. Climate, 14, 1450–1465, 2001.
Scambos, T. A., Hulbe, C. L., and Fahnestock, M.: Climate-induced ice shelf disintegration in the Antarctic Peninsula, in: Antarctic Peninsula Climate Variability, edited by: Domack, E. W., Leventer, A., Burnett, A., Bindschadler, R., Convey, P., and Kirby, M., Antarct. Res. Ser. 79, American Geophysical Union, Washington, D.C., 79–92, 2003.
Simms, A. R., Milliken, K. T., Anderson, J. B., and Wellner, J. S.: The marine record of deglaciation of the South Shetland Islands, Antarctica since the Last Glacial Maximum, Quaternary Sci. Rev., 30, 1583–1601, 2011.
Sloan, B. J., Lawver, L. A., and Anderson, J. B.: Seismic stratigraphy of the Larsen Basin Eastern Antarctic Peninsula, in: Geology and Seismic Stratigraphy of the Antarctic Margin, edited by: Cooper, A. K., Barker, P. F., and Brancolini, G., Antarctic Res. Ser. 68, American Geophysical Union, Washington, D.C., 59–74, 1995.
Smith, R. T. and Anderson, J. B.: Ice-sheet evolution in James Ross Basin,Weddell Sea margin of the Antarctic Peninsula: the seismic stratigraphic record, Geol. Soc. Am. Bull., 122, 830–842, 2009.
Smith, T. and Anderson, J. B.: Seismic stratigraphy of the Joinville Platform: implications for regional climate evolution, in: Tectonic, Climatic and Cryospheric Evolution of the Antarctic Peninsula, edited by: Anderson, J. B. and Wellner, J. S., American Geophysical Union Special Publication 063, American Geophysical Union, Washington, D.C., 51–62, 2011.
Stokes, C. R. and Clark, C. D.: The Dubawnt Lake palaeo-ice stream: evidence for dynamic ice sheet behaviour on the Canadian Shield and insights regarding the controls on ice-stream location and vigour, Boreas, 32, 264–279, 2003.
Vanneste, L. E. and Larter, R. D.: Deep-tow boomer survey on the Antarctic Peninsula Pacific Margin: an investigation of the morphology and acoustic characteristics of Late Quaternary sedimentary deposits on the outer continental shelf and upper slope, in: Geology and Seismic Stratigraphy of the Antarctic Margin, Part 1, edited by: Cooper, A. K., Barker, P. F., and Brancolini, G., American Ggophysical Union, Washington, D.C., 97–121, 1995.
Wellner, J. S., Lowe, A. L., Shipp, S. S., and Anderson, J. B.: Distribution of glacial geomorphic features on the Antarctic continental shelf and correlation with substrate: implications for ice behavior, J. Glaciol., 47, 397–411, 2001.
Wellner, J. S., Heroy, D. C., and Anderson, J. B.: The death mask of the antarctic ice sheet: comparison of glacial geomorphic features across the continental shelf, Geomorphology, 75, 157–171, 2006.
Willmott, V., Canals, M., and Casamor, J. L.: Retreat history of the Gerlache–Boyd ice stream, Northern Antarctic Peninsula: an ultra-high resolution acoustic study of the deglacial and post-glacial sediment drape, in: Antarctic Peninsula Climate Variability, edited by: Domack, E. W., Leventer, A., Burnett, A., Bindschadler, R., Peter, C., and Kirby, M., Antarct. Res. Ser., 79, 183–194, 2003.