Articles | Volume 9, issue 1
https://doi.org/10.5194/tc-9-399-2015
https://doi.org/10.5194/tc-9-399-2015
Research article
 | 
20 Feb 2015
Research article |  | 20 Feb 2015

Assessment of sea ice simulations in the CMIP5 models

Q. Shu, Z. Song, and F. Qiao

Related authors

Impact of increased resolution on Arctic Ocean simulations in Ocean Model Intercomparison Project phase 2 (OMIP-2)
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024,https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Arctic Ocean simulations in the CMIP6 Ocean Model Intercomparison Project (OMIP)
Qi Shu, Qiang Wang, Chuncheng Guo, Zhenya Song, Shizhu Wang, Yan He, and Fangli Qiao
Geosci. Model Dev., 16, 2539–2563, https://doi.org/10.5194/gmd-16-2539-2023,https://doi.org/10.5194/gmd-16-2539-2023, 2023
Short summary
Development and validation of a global 1∕32° surface-wave–tide–circulation coupled ocean model: FIO-COM32
Bin Xiao, Fangli Qiao, Qi Shu, Xunqiang Yin, Guansuo Wang, and Shihong Wang
Geosci. Model Dev., 16, 1755–1777, https://doi.org/10.5194/gmd-16-1755-2023,https://doi.org/10.5194/gmd-16-1755-2023, 2023
Short summary
swNEMO_v4.0: an ocean model based on NEMO4 for the new-generation Sunway supercomputer
Yuejin Ye, Zhenya Song, Shengchang Zhou, Yao Liu, Qi Shu, Bingzhuo Wang, Weiguo Liu, Fangli Qiao, and Lanning Wang
Geosci. Model Dev., 15, 5739–5756, https://doi.org/10.5194/gmd-15-5739-2022,https://doi.org/10.5194/gmd-15-5739-2022, 2022
Short summary
The development and validation of a global 1/32° surface wave-tide-circulation coupled ocean model: FIO-COM32
Bin Xiao, Fangli Qiao, Qi Shu, Xunqiang Yin, Guansuo Wang, and Shihong Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-52,https://doi.org/10.5194/gmd-2022-52, 2022
Revised manuscript not accepted
Short summary

Related subject area

Sea Ice
Spring 2021 sea ice transport in the southern Beaufort Sea occurred during coastal-lead opening events
MacKenzie E. Jewell, Jennifer K. Hutchings, and Angela C. Bliss
The Cryosphere, 19, 1413–1430, https://doi.org/10.5194/tc-19-1413-2025,https://doi.org/10.5194/tc-19-1413-2025, 2025
Short summary
National Weather Service Alaska Sea Ice Program: gridded ice concentration maps for the Alaskan Arctic
Astrid Pacini, Michael Steele, and Mary-Beth Schreck
The Cryosphere, 19, 1391–1411, https://doi.org/10.5194/tc-19-1391-2025,https://doi.org/10.5194/tc-19-1391-2025, 2025
Short summary
Improving Seasonal Arctic Sea Ice Predictions with the Combination of Machine Learning and Earth System Model
Zikang He, Yiguo Wang, Julien Brajard, Xidong Wang, and Zheqi Shen
EGUsphere, https://doi.org/10.5194/egusphere-2024-4092,https://doi.org/10.5194/egusphere-2024-4092, 2025
Short summary
Estimation of duration and its changes in Lagrangian observations relying on ice floes in the Arctic Ocean utilizing sea ice motion product
Fanyi Zhang, Ruibo Lei, Meng Qu, Na Li, Ying Chen, and Xiaoping Pang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2723,https://doi.org/10.5194/egusphere-2024-2723, 2024
Short summary
Seasonal evolution of the sea ice floe size distribution in the Beaufort Sea from 2 decades of MODIS data
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024,https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary

Cited articles

Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H.: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, NASA DAAC at the National Snow and Ice Data Center, Boulder, Colorado, USA, 1996.
Cavalieri, D. J., Gloersen, P., Parkinson, C. L., Comiso, J. C., and Zwally, H. J.: Observed hemispheric asymmetry in global sea ice changes, Science, 278, 1104–1106, 1997.
Cavalieri, D. J., Parkinson, C. L., and Vinnikov, K. Y: 30-Year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability, Geophys. Res. Lett., 30, 1970, https://doi.org/10.1029/2003GL018031, 2003.
Eisenman, I., Meier, W. N., and Norris, J. R.: A spurious jump in the satellite record: has Antarctic sea ice expansion been overestimated?, The Cryosphere, 8, 1289–1296, https://doi.org/10.5194/tc-8-1289-2014, 2014.
Kurtz, N. and Markus, T.: Satellite observations of Antarctic sea ice thickness and volume, J. Geophys. Res., 117, C08025, https://doi.org/10.1029/2012JC008141, 2012.
Download
Short summary
We evaluated all CMIP5 sea-ice simulations with more metrics in both the Antarctic and the Arctic, in an attempt to provide the community a useful reference. Generally speaking, our study shows that the performance of an Arctic sea-ice simulation is better than that of an Antarctic sea-ice simulation, that sea-ice extent simulation is better than sea-ice volume simulation, and that mean-state simulation is better than long-term trend simulation.
Share