Articles | Volume 9, issue 3
The Cryosphere, 9, 1229–1247, 2015
The Cryosphere, 9, 1229–1247, 2015
Research article
17 Jun 2015
Research article | 17 Jun 2015

Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013)

F. Salerno et al.

Related authors

Glacier melting and precipitation trends detected by surface area changes in Himalayan ponds
Franco Salerno, Sudeep Thakuri, Nicolas Guyennon, Gaetano Viviano, and Gianni Tartari
The Cryosphere, 10, 1433–1448,,, 2016
Short summary
Incorporating Distributed Debris Thickness in a Glacio-Hydrological Model: Khumbu Himalaya, Nepal
James S. Douglas, Matthias Huss, Darrel A. Swift, Julie M. Jones, and Franco Salerno
The Cryosphere Discuss.,,, 2016
Revised manuscript has not been submitted
Short summary
Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery
S. Thakuri, F. Salerno, C. Smiraglia, T. Bolch, C. D'Agata, G. Viviano, and G. Tartari
The Cryosphere, 8, 1297–1315,,, 2014
Benefits from using combined dynamical-statistical downscaling approaches – lessons from a case study in the Mediterranean region
N. Guyennon, E. Romano, I. Portoghese, F. Salerno, S. Calmanti, A. B. Petrangeli, G. Tartari, and D. Copetti
Hydrol. Earth Syst. Sci., 17, 705–720,,, 2013

Related subject area

Climate Interactions
Synoptic control over winter snowfall variability observed in a remote site of Apennine Mountains (Italy), 1884–2015
Vincenzo Capozzi, Carmela De Vivo, and Giorgio Budillon
The Cryosphere, 16, 1741–1763,,, 2022
Short summary
Network connectivity between the winter Arctic Oscillation and summer sea ice in CMIP6 models and observations
William Gregory, Julienne Stroeve, and Michel Tsamados
The Cryosphere, 16, 1653–1673,,, 2022
Short summary
Land–atmosphere interactions in sub-polar and alpine climates in the CORDEX Flagship Pilot Study Land Use and Climate Across Scales (LUCAS) models – Part 2: The role of changing vegetation
Priscilla A. Mooney, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Natalie de Noblet-Ducoudré, Marcus Breil, Rita M. Cardoso, Anne Sophie Daloz, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 1383–1397,,, 2022
Short summary
A probabilistic framework for quantifying the role of anthropogenic climate change in marine-terminating glacier retreats
John Erich Christian, Alexander A. Robel, and Ginny Catania
The Cryosphere Discuss.,,, 2022
Revised manuscript accepted for TC
Short summary
Evidence of elevation-dependent warming from the Chinese Tian Shan
Lu Gao, Haijun Deng, Xiangyong Lei, Jianhui Wei, Yaning Chen, Zhongqin Li, Miaomiao Ma, Xingwei Chen, Ying Chen, Meibing Liu, and Jianyun Gao
The Cryosphere, 15, 5765–5783,,, 2021
Short summary

Cited articles

Abebe, A., Solomatine, D., and Venneker, R.: Application of adaptive fuzzy rule based models for reconstruction of missing precipitation events, Hydrolog. Sci. J., 45, 425–436,, 2000.
Abudu, S., Bawazir, A. S., and King, J. P.: Infilling missing daily evapotranspiration data using neural networks, J. Irrig. Drain. E-ASCE, 136, 317–325,, 2010.
Amatya, L. K., Cuccillato, E., Haack, B., Shadie, P., Sattar, N., Bajracharya, B., Shrestha, B., Caroli, P., Panzeri, D., Basani, M., Schommer, B., Flury, B., Salerno, F., and Manfredi, E. C.: Improving communication for management of social-ecological systems in high mountain areas: Development of methodologies and tools – The HKKH Partnership Project, Mt. Res. Dev., 30, 69–79,, 2010.
Bajracharya, B., Uddin, K., Chettri, N., Shrestha, B., and Siddiqui, S. A.: Understanding land cover change using a harmonized classification system in the Himalayas: A case study from Sagarmatha National Park, Nepal, Mt. Res. Dev., 30, 143–156,, 2010.
Barros, A. P., Kim, G., Williams, E., and Nesbitt, S .W.: Probing orographic controls in the Himalayas during the monsoon using satellite imagery, Nat. Hazards Earth Syst. Sci., 4, 29–51,, 2004.
Short summary
Climate-trends data in Himalaya are completely absent at high elevation. We explore the south slopes of Mt Everest though time series reconstructed from 7 stations (2660-5600m) during 1994-2013. The main increase in temp is concentrated outside of the monsoon, minimum temp increased far more than maximum, while we note a precipitation weakening. We contribute to change the perspective on which climatic drivers (temperature vs. precipitation) led mainly the glacier responses in the last 20 yr.