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Supplementary Material 1 

Reconstruction methods of the daily temperature and precipitation time series at Pyramid station (5035 
m a.s.l.) 

In the following, we describe the missing daily data reconstruction performed on daily T 
(minimum, maximum, and mean) and Prec time series collected at Pyramid (5035 m a.s.l.) for the 
1994-2013 period. As already mentioned in the main text, we consider AWS1 as the reference station 
(REF) for the reconstruction, which has been operating continuously from 2000 to the present. This 
station replaced AWS0 (1994-2005). These two stations have a recorded percentage of missing daily 
values of approximately 20% over the last twenty years (Table S1). The other five stations (ABC, 
AWSKP, AWS2, AWSN and AWS3) taken into account for the reconstruction process will be referred 
to as secondary stations. Information regarding the sensors used in the reconstruction process are 
reported in Table S2. 

The time series reconstruction process considers four steps: 
1) Pre-processing of data 
2) Infilling method 
3) Multiple imputation technique 
4) Monthly aggregation of data 

Step 1 – Pre-processing of data 

Table 1 shows the sampling frequency of stations (ranging from 10 minutes to 2 hours). After an 
accurate data quality control according to Ikoma et al., 2007, a daily aggregation of the time series 
(temporal homogenization) is performed. Daily data have been computed only if the 100% of sub-daily 
data are available; otherwise, it is considered missing. These rules ensure a maximum quality of daily 
values with a loss of information limited to the first and last day of the failure events. 

Step 2 – Infilling method 

The selected daily infilling method is based on a quantile mapping regression (e.g. Déqué 2007). 
This method estimates a rescaling function F between two time series. This function  ensures that the 
daily cumulated density function (cdf) of a secondary station reproduces the daily cdf of the REF over 
their over their common observation period. Applying the inverse function (F-1) to each secondary 
station, a new time series is computed for each of them. In the following, these new time series with the 
systematic bias corrected are indicated as ‘*’ (e.g., AWS0*, ABC*). In our case the bias is mainly due 
to the altitude gradient,  all stations being located along the same valley (Fig. 1b). 

A new time series (REF_filled) has been created  merging REF and the * time series according to a 
priority criterion based on the degree of correlation among data (Fig. S1). The specific rules of 
computing are described below: 

- all available data of REF are maintained in the final reconstruction without any further 
processing; 



- the priority criterion for infilling is based on the magnitude of correlation coefficient (r) 
between REF and each secondary station, for each variable (Table S1); In case the daily data of 
the secondary station with higher r is missing the station with the slight lower r is selected. 

We can observe from Table S1 that AWS0, located few tens of meters far from REF, presenting r = 
0.99 and r = 0.97 for temperature and precipitation, respectively, has been the first choice. The 82% of 
missing daily values of temperature  and 72% of precipitation are filled using the AWS0*. The second 
choice is ABC. Together these two stations cover more than the 90% of missing values; the whole 
infilling procedure allows for filling the 86% and the 91% of the overall missing values of temperature 
and precipitation, respectively. 

  
Table S1. Correlation coefficients (r) between the reference station (REF) and the other secondary 
stations for temperature and precipitation. Furthermore the table reports the number of daily data (n) 
that each station has provided to the reconstruction of the time series. 

 Stations Temperature Precipitation 

 
r n r n 

AWS0 0.99 2,144 (82.2%) 0.97 2,298 (72.2%) 

ABC 0.98 254 (9.7%) 0.84 646 (20.3%) 

AWSKP 0.96 48 (1.8%) 0.62 13 (0.4%) 

AWS2 0.94 95 (3.6%) 0.81 145 (4.6%) 

AWSN 0.92 66 (2.5%) 0.56 78 (2.5%) 

AWS3 0.87 0 (0.0%) 0.53 3 (0.1%) 
Total infilled missing 
values  2,607  3,183 

 

 

 

 

 

 

 

 

 

 

 



Table S2. List of sensors with measurement height, manufacturer and accuracy. Communicated non- 
regular intervention as sensors or data logger replacements are reported at the table bottom.  

Parameter Sensor Manufacturer Accuracy 
AWS0(1) 

Air temperature Precision Linear Thermistor (2m) MTX  0.1°C 
Precipitation  Tipping Bucket (1.5m) MTX  0.2 mm 
Relative humidity Solid state hygrometer (2m) MTX  3% 
Atmospheric pressure Aneroid capsule (2m) MTX  0.5hPa 

AWS1 
Air temperature Thermoresistance (2m)  Lsi-Lastem  0.1°C 
Precipitation  Tipping Bucket (1.5m)  Lsi-Lastem  2% 
Relative humidity Capacitive Plate (2m)  Lsi-Lastem  2.5% 
Atmospheric pressure Slice of Silica (2m)  Lsi-Lastem  1hPa 

ABC 
Air temperature Thermoresistance (2m) Vaisala 0.3°C 
Precipitation  Acoustic (2m) Vaisala 5% 
Relative humidity Capacitive Plate (2m) Vaisala  3%-5% 
Atmospheric pressure Slice of Silica (2m) Vaisala 0.5 hPa 

AWSKP 
Air temperature Thermoresistance (2m)  Lsi-Lastem  0.1°C 
Precipitation  Tipping Bucket (1.5m)  Lsi-Lastem  1% 
Relative humidity Capacitive Plate (2m)  Lsi-Lastem  1.5% 
Atmospheric pressure Slice of Silica (2m)  Lsi-Lastem  1hPa 

AWS2(2) 
Air temperature(3) Thermoresistance (2m)  Lsi-Lastem /Vaisala 0.1°C/0.3°C 
Precipitation  Tipping Bucket (1.5m)  Lsi-Lastem  2% 
Relative humidity(3) Capacitive Plate (2m)  Lsi-Lastem /Vaisala 1.5%/2.5% 
Atmospheric pressure(3) Slice of Silica (2m)  Lsi-Lastem /Vaisala 1hPa/0.5 hPa 

AWSN(4) 
Air temperature Thermoresistance (2m)  Lsi-Lastem  0.1°C 
Precipitation  Tipping Bucket (1.5m)  Lsi-Lastem  2% 
Relative humidity Capacitive Plate (2m)  Lsi-Lastem  2.50% 
Atmospheric pressure Slice of Silica (2m)  Lsi-Lastem  1hPa 

AWS3(5) 
Air temperature(6) Thermoresistance (2m)  Lsi-Lastem /Vaisala 0.1°C/0.3°C 
Precipitation  Tipping Bucket (1.5m)  Lsi-Lastem  2% 
Relative humidity(6) Capacitive Plate (2m)  Lsi-Lastem /Vaisala 1.5%/2.5% 
Atmospheric pressure(6) Slice of Silica (2m)  Lsi-Lastem /Vaisala 1hPa/0.5 hPa 
(1) dissmissed in 2005  
(2) data logger replacement on 08/12/2010  
(3) sensors change on 05/2012 to Vaisala sensors  
(4) data logger replacement on 08/10/2010 
(5) data logger replacement on 06/10/2010 
(6) sensors change on 05/2013 to Vaisala sensors 

 

 



Figure S1. Scheme followed for the infilling process. Upper panel: daily mean temperature. Lower 
panel: precipitation. On the left, for each station, the daily data availability and the re-computed 
values, according to the quantile mapping procedure, are shown. On the right, a new time series 
(REF_filled) is created by merging REF (reference station) and the * time series, according to a 
priority criterion described in the text. In case all stations recorded some simultaneous gaps, a multiple 
imputation technique is applied to obtain the PYRAMID_daily time series. 

The uncertainty associated with REF_filled (𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) time series derives from the quantile 
mapping procedure and in particular from the miss-correlation and possible non stationarity in the 
quantile relationship.  

In order to estimate the 𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, the probability distribution of the residues between REF and 
*time series is considered. In order to take into account the possible seasonal variability of the 
uncertainty, residues  have been analyzed on monthly basis.  

The Kolmogorov-Smirnov test (Massey, 1951), applied to distribution of the residues, verifies 
their normality. As a consequence, the daily uncertainty  𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is estimated as the standard 
deviation of the residues. The estimated daily uncertainties  are reported in Table S3.  

Table S3. Daily uncertainty (expressed as °C and mm for temperature and precipitation, respectively) 
for each station associated with the daily data infilled through the quantile mapping regression. 



 

Step 3 – Multiple imputation technique 

Unfortunately, all stations recorded some simultaneous gaps for a given variable: 5.7% and 4.3% 
for temperature and precipitation, respectively. For these cases, we applied a multiple imputation 
technique (the Regularized Expectation Maximization algorithm, RegEM; Schneider, 2001) to obtain 
the final PYRAMID_daily time series (Fig. S1). 

This algorithm considers more available meteorological variables. In our case, we feed the 
procedure with the minimum, maximum and mean temperatures, precipitation, atmospheric pressure 
and relative humidity. The additional two variables (atmospheric pressure and relative humidity) 
allowed for a reduction of the estimated uncertainty associated with the computing of these missing 
data (σRegEM). 

RegEM has been applied to the daily missing data on a monthly basis, considering the possible 
seasonal effect on the uncertainty. Table S3 reports the number of days imputed to the complete 
PYRAMID_daily time series for each month and for each variable. The daily standard error 
σRegEM estimated by the RegEM algorithm (Table S5) has been associated with each imputed data 
filled into the complete and final time series reconstructions for daily minimum, maximum, and mean 
temperatures and precipitation. 

Minimum Temperature (minT)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

AWS0 0.95 0.98 0.72 0.65 0.49 0.48 0.29 0.35 0.49 0.77 1.09 0.86
ABC 0.82 0.79 1.6 1.29 0.9 0.58 0.66 0.45 0.56 1 0.87 0.89
AWSKP 1.41 1.3 2.25 1.62 1.54 0.84 0.84 0.71 0.65 1.29 1.18 1.61
AWS2 2.06 2.09 2.11 1.85 1.49 1.11 0.88 0.78 0.99 1.99 2.15 1.87
AWSN 2.8 2.44 1.98 1.3 1.14 0.81 0.62 0.72 0.79 1.89 2.95 2.96
AWS3 3.18 2.48 2.35 1.33 1.31 1.25 0.82 0.8 0.88 2.02 3.39 3.23

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
AWS0 0.81 0.9 0.71 1.05 0.65 0.75 0.63 0.61 0.71 1.02 0.74 1.43
ABC 0.61 0.92 1.68 1.2 1.53 1 1.07 0.65 0.75 0.77 0.65 0.62
AWSKP 1.4 1.91 2 1.58 2.12 1.31 1.02 1.07 0.8 1.21 1.49 1.35
AWS2 2.2 2.05 2.07 1.71 1.62 1.13 1.06 0.99 1.12 1.47 1.91 1.9
AWSN 3.41 3.04 2.89 2.25 2.06 1.84 1.42 1.3 1.39 2.14 3.31 3.26
AWS3 4.08 4.11 3.99 2.68 2.6 2.55 2.2 2.23 2.62 3.11 4.15 3.91

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
AWS0 0.56 0.7 0.57 0.24 0.28 0.29 0.24 0.24 0.27 0.46 0.45 0.5
ABC 0.34 0.32 1.46 1.02 0.96 0.54 0.72 0.41 0.36 0.59 0.46 0.4
AWSKP 0.91 0.74 2.08 1.3 1.29 0.82 0.58 0.52 0.47 0.94 1.07 1.4
AWS2 1.8 1.88 1.71 1.38 1.1 0.66 0.5 0.43 0.57 1.56 1.88 1.53
AWSN 2.78 2.43 1.85 1.17 1.03 0.69 0.56 0.54 0.64 1.78 2.79 2.83
AWS3 3.09 2.44 2.43 1.41 1.25 1.15 0.75 0.79 1.03 1.91 3.16 3.06

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
AWS0 0.68 0.22 0.43 0.99 0.61 0.72 1.34 0.93 0.61 0.29 0.38 0.04
ABC 0.02 0.03 0.07 0.28 0.52 1.17 1.91 3.42 1.49 0.1 0.19 0.04
AWSKP 0.27 0.42 0.46 1.04 0.79 1.62 2.79 2.8 1.97 2.09 0.09 0.19
AWS2 0.31 0.15 0.22 0.42 0.7 2.36 4.71 3.68 2.04 1.93 0.6 0
AWSN 0.42 0.66 0.69 1.1 1.19 2.2 5.41 5.13 3.07 1.41 0.27 0.8
AWS3 0.14 0.29 0.43 0.68 0.44 2.06 5.35 5.11 4.57 0.88 0.43 0.11

Precipitation (P)

Maximum Temperature (maxT)

Mean Temperature (meanT)



Table S4. Number of days imputed through RegEM 

Variable Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

minT 0 1 1 35 87 48 68 71 60 33 10 0 

maxT 0 1 1 35 87 48 68 71 60 33 10 0 

meanT 0 1 1 35 87 48 68 71 60 33 10 0 

Prec 13 31 14 52 99 48 31 9 1 9 4 0 

             

Table S5. Uncertainty (°C and mm for temperature and precipitation, respectively) associated to the 
daily imputed thought RegEM 

 Variable Jan Feb Mar Apr May Jun Jul Ago Sep Oct Nov Dic 

minT - 3.25 2.89 2.34 2.21 1.95 0.83 0.96 1.37 2.54 2.46 - 

maxT - 3.64 3.22 2.82 2.47 1.87 1.34 1.31 1.44 2.30 2.55 - 

meanT - 3.20 2.82 2.34 2.07 1.58 0.72 0.84 1.16 2.17 2.29 - 

p 0.18 0.35 0.65 0.86 0.93 2.73 4.54 4.51 2.73 1.59 0.69 - 

 

Step 4- Monthly aggregation 

Finally, the PYRAMID_daily time series, for each variable, have been aggregated on the monthly 
scale (hereinafter referred to as PYRAMID). The uncertainty associated with each value of the 
PYRAMID (named σm) is estimated considering the propagation of the daily uncertainty to the 
monthly one through the computation of the mean (for temperature) or of the sum (for precipitation). 

The propagation of the uncertainty from the daily data di to the monthly one is different if we 
consider the monthly average Mm (as for temperature) or the monthly accumulation Mc (as for 
precipitation): 
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where  𝑀𝑀𝑐𝑐 = ∑ 𝑑𝑑𝑖𝑖𝑁𝑁
𝑖𝑖=1   

N is the number of days of a given month and 𝜎𝜎𝑑𝑑𝑗𝑗the daily uncertainty as :  



�
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Finally, we estimated the uncertainty associated with the annual Sen’s slopes (1994-2013) of each 
time series through a Monte Carlo uncertainty analysis (e.g., James and Oldenburg 1997):  

- For each month value, a random realization of the normal distribution with zero-mean and σm 
standard deviation is computed.  

- This uncertainty is added to each monthly estimate coming from eq. (1) or (2), obtaining a time 
series perturbed by the uncertainty. 

- The Sen’s slope and associated p-value is computed.  
- The process is repeated until the convergence of the mean value of the Sen’s slope and the 

associated standard deviation. In these regards, we observed that approximately 5000 runs are 
enough to ensure the convergence with a threshold of 10-5 °C a-1 and 10-3 mm a-1 for 
temperature and precipitation, respectively. 

Table S6 reports the Sen’s slopes for the 1994-2013 period calculated for each reconstructed 
monthly time series (PYRAMID), associated intervals of confidence (95%), median p-value and the 
associated [5% and 95%] quantiles. 

Table S6. Sen’s slopes for the 1994-2013 period calculated for each reconstructed monthly time series 
(PYRAMID), associated intervals of confidence (95%), median p-value and the associated  [5% and 
95%] quantiles.  

Time series   Sen’s slope Interval of 
confidence (95%)   p-value quantiles  

[5% and 95%] 

PYRAMID minT  0.072 °C a-1 +/- 0.011  0.0021 [0.0001-0.0212] 

PYRAMID maxT  0.009 °C a-1 +/- 0.012  0.7212 [0.2843-0.9741] 

PYRAMID meanT  0.044 °C a-1 +/- 0.008  0.035 [0.0053-0.1443] 

       

PYRAMID Prec   -13.66 mm a-1 +/- 2.36   0.0021 [0.0002-0.0252] 
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Supplementary Material 2 

Further analysis on the non-stationarity of the reconstructed daily precipitation time series at Pyramid 
station  

The analysis described in the following aims at assessing whether the decreasing trend of precipitation 
observed for the daily time series reconstructed at Pyramid (1994-2013) is due to a reduction of 
duration or to a reduction of intensity. 

To this goal we considered two different periods p, say p1 = 1994-1998 and p2 = 2009-2013, which 
correspond to the first and last five years of the whole analysis period p0 = 1994-2013. For a given 
week w, the mean weekly-cumulated precipitation 𝑅𝑅𝑅𝑅𝑤𝑤

𝑝𝑝  is defined as 𝑅𝑅𝑅𝑅𝑤𝑤
𝑝𝑝 = �∑ 𝑅𝑅𝑅𝑅𝑤𝑤,𝑦𝑦

𝑁𝑁
𝑦𝑦=1 � 𝑁𝑁⁄ , where 

N is the number of years during the period p. 

The difference between the mean weekly-cumulated precipitation 𝑅𝑅𝑅𝑅𝑤𝑤
𝑝𝑝1 and 𝑅𝑅𝑅𝑅𝑤𝑤

𝑝𝑝2 may be attributed to 
a change in the corresponding duration and/or intensity. To separate the relative contributions, we 
defined two descriptors:  

1-The duration of precipitation for a given week w of the year y is described by the number of wet days 
𝑊𝑊𝑤𝑤,𝑦𝑦, where a “wet day” is defined by the threshold RR>1 mm. Then, the mean 𝑊𝑊𝑤𝑤

𝑝𝑝 over a given 
period p of N years is computed as:  
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2- The daily intensity of precipitation for a given week w of the year y is computed as the cumulative 
precipitation 𝑅𝑅𝑅𝑅𝑤𝑤,𝑦𝑦 divided by the number of wet days 𝑊𝑊𝑤𝑤,𝑦𝑦 . Then, a mean intensity index 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑤𝑤

𝑝𝑝  over 
a given period p of N years is computed as: 
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An attempt to quantify the contribution to the variation in precipitation arising from variation in 
duration and/or intensity is to consider one of the two terms stationary over the whole period. This is a 
rough approximation as the non-stationarity may not be linear. However, an estimation of the relative 
contribution arising from the change in duration can be expressed considering the intensity of 
precipitation as stationary over the whole period p0 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑤𝑤

𝑝𝑝0) and computing the variation of 
precipitation due only to a variation in duration, i.e. (𝑊𝑊𝑤𝑤

𝑝𝑝2 −𝑊𝑊𝑤𝑤
𝑝𝑝1) ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑤𝑤

𝑝𝑝0. The relative contribution 
RLD to the total change (𝑅𝑅𝑅𝑅𝑤𝑤

𝑝𝑝2 − 𝑅𝑅𝑅𝑅𝑤𝑤
𝑝𝑝1)  can be estimated as:  

𝑅𝑅𝑅𝑅𝑅𝑅 = (𝑊𝑊𝑤𝑤
𝑝𝑝2−𝑊𝑊𝑤𝑤

𝑝𝑝1)∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑤𝑤
𝑝𝑝0

(𝑅𝑅𝑅𝑅𝑤𝑤
𝑝𝑝2−𝑅𝑅𝑅𝑅𝑤𝑤

𝑝𝑝1)
∗ 100  (3) 

 



The indexes proposed above are shown in figure S6 in dark blue area for the 1994-1998 period and 
light blue area for the 2009-2013 period for the 𝑊𝑊𝑤𝑤

𝑝𝑝, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑤𝑤
𝑝𝑝  and 𝑅𝑅𝑅𝑅𝑤𝑤

𝑝𝑝  (panel a, b and c respectively). 
For each index, we defined as residues the difference between the two periods (red bar plot). 

The RLD (shown in red on the right axis of the panel c) indicates that the early and late monsoon are 
more affected by the reduction in duration than intensity, while it is the opposite during the monsoon.   

 

 

Figure S6. Panel a: Mean number of wet day per week 𝑊𝑊𝑤𝑤
𝑝𝑝. Panel b: Mean daily precipitation intensity 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑤𝑤
𝑝𝑝  (mm). Panel c: Mean weekly-cumulated precipitation 𝑅𝑅𝑅𝑅𝑤𝑤

𝑝𝑝  and relative contribution of the 
change in duration RLD in % (red line) 

 

 

 

 

 

 

 

 

 



Supplementary Material 3 

Evaluation of the possible underestimation of solid precipitation at Pyramid 

The Chaurikhark station (ID 1202) (Fig. 1b, Table 2) is located at 2619 m a.s.l., along the same valley 
of PYRAMID (Dud Koshi). This station records only daily precipitation with a tipping bucket. Not 
having the availability of air temperature data, we estimated for this location the mean daily values for 
the 1994-2013 period through of the lapse rate and the mean daily air temperature series reconstructed 
in this study at PYRAMID.  

The precipitation phase has been taken into account assuming that the probability of snowfall and 
rainfall depends on the mean daily air temperature (as well as we did for PYRAMID, see the text). In 
Figure S7 we observe that 86% of precipitation is concentrated during June-September. The probability 
of snowfall is very low (0.6%) and it is completely concentrated in December, January, and February 
(the mean temperature of these months is about 5 °C).  

We realized the scatter-plot of Figure S8 between their monthly precipitation (averaged on 1994-2013 
period) in order to compare the two stations. Data were previously log transformed assuring their 
normal distribution. First of all, we observe the strong relationship due to the fact that they belong to 
the same valley, although there are 2400 m of altitudinal range.  Secondly, we note the variability 
between the two stations is higher for those months which record less precipitation (spring and winter). 
Probably, during these months, PYRAMID underestimates the solid precipitation which fall in liquid 
form at lower elevation (Chaurikhark). In this regard we realized the graph of Figure S8 for showing 
the precipitation ratio between PYRAMID and Chaurikhark. We observe that during the monsoon 
(June-September), period of the year when the probability of snowfall at PYRAMID is very low (4%) 
(see the text), the precipitation ratio is 21±3% (standard deviation) that means at 5050 m a.s.l. it rains a 
fifth respect to 2600 m a.s.l. (see Fig. 5). Outside the monsoon months this ratio decreases to 15±6%. 
Assuming that this lower ratio if completely attributable to the solid precipitation not captured at high 
elevations, we calculated an underestimation of  15±5 mm y-1, corresponding to 3±1% of the total 
annual cumulated precipitation at PYRAMID (446 mm y-1). 
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Figure S7. Mean monthly cumulated precipitation subdivided into snowfall and rainfall and mean 
temperature at Chaurikhark station (ID 1202) (reference period 1994-2013). The bars represent the 
standard deviation. 

 

 

Figure S8. Scatter-plot between the monthly precipitation of PYRAMID and Chaurikhark (averaged on 
1994-2013 period).  

 

Figure S9. Ratio between the PYRAMID and Chaurikhark total precipitation for each month (averaged 
on 1994-2013 period).  
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