Articles | Volume 8, issue 5
https://doi.org/10.5194/tc-8-1625-2014
https://doi.org/10.5194/tc-8-1625-2014
Research article
 | 
03 Sep 2014
Research article |  | 03 Sep 2014

The effect of snow/sea ice type on the response of albedo and light penetration depth (e-folding depth) to increasing black carbon

A. A. Marks and M. D. King

Related authors

Optical properties of sea ice doped with black carbon – an experimental and radiative-transfer modelling comparison
Amelia A. Marks, Maxim L. Lamare, and Martin D. King
The Cryosphere, 11, 2867–2881, https://doi.org/10.5194/tc-11-2867-2017,https://doi.org/10.5194/tc-11-2867-2017, 2017
Short summary
The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover
A. A. Marks and M. D. King
The Cryosphere, 7, 1193–1204, https://doi.org/10.5194/tc-7-1193-2013,https://doi.org/10.5194/tc-7-1193-2013, 2013

Related subject area

Climate Interactions
Unravelling the sources of uncertainty in glacier runoff projections in the Patagonian Andes (40–56° S)
Rodrigo Aguayo, Fabien Maussion, Lilian Schuster, Marius Schaefer, Alexis Caro, Patrick Schmitt, Jonathan Mackay, Lizz Ultee, Jorge Leon-Muñoz, and Mauricio Aguayo
The Cryosphere, 18, 5383–5406, https://doi.org/10.5194/tc-18-5383-2024,https://doi.org/10.5194/tc-18-5383-2024, 2024
Short summary
How does a change in climate variability impact the Greenland ice sheet surface mass balance?
Tobias Zolles and Andreas Born
The Cryosphere, 18, 4831–4844, https://doi.org/10.5194/tc-18-4831-2024,https://doi.org/10.5194/tc-18-4831-2024, 2024
Short summary
Arctic glacier snowline altitudes rise 150 m over the last 4 decades
Laura J. Larocca, James M. Lea, Michael P. Erb, Nicholas P. McKay, Megan Phillips, Kara A. Lamantia, and Darrell S. Kaufman
The Cryosphere, 18, 3591–3611, https://doi.org/10.5194/tc-18-3591-2024,https://doi.org/10.5194/tc-18-3591-2024, 2024
Short summary
Triggers of the 2022 Larsen B multi-year landfast sea ice breakout and initial glacier response
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere, 18, 1709–1731, https://doi.org/10.5194/tc-18-1709-2024,https://doi.org/10.5194/tc-18-1709-2024, 2024
Short summary
Projection of snowfall extremes in the French Alps as a function of elevation and global warming level
Erwan Le Roux, Guillaume Evin, Raphaëlle Samacoïts, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 17, 4691–4704, https://doi.org/10.5194/tc-17-4691-2023,https://doi.org/10.5194/tc-17-4691-2023, 2023
Short summary

Cited articles

Abbatt, J.: Atmospheric chemistry: arctic snowpack bromine release, Nat. Geosci., 6, 331–332, 2013.
Aoki, T., Hachikubo, A., and Hori, M.: Effects of snow physical parameters on shortwave broadband albedos, J. Geophys. Res., 108, 4916, https://doi.org/10.1029/2003JD003506, 2003.
Beine, H. J., Amoroso, A., Dominé, F., King, M. D., Nardino, M., Ianniello, A., and France, J. L.: Surprisingly small HONO emissions from snow surfaces at Browning Pass, Antarctica, Atmos. Chem. Phys., 6, 2569–2580, https://doi.org/10.5194/acp-6-2569-2006, 2006.
Bohren, C.: Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles, J. Atmos. Sci., 43, 468–475, 1986.
Bond, T. and Bergstrom, R.: Light absorption by carbonaceous particles: an investigative review, Aerosol Sci. Tech., 40, 27–67, 2006.
Download