Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.713 IF 4.713
  • IF 5-year value: 4.927 IF 5-year
    4.927
  • CiteScore value: 8.0 CiteScore
    8.0
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 2.353 SJR 2.353
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 53 h5-index 53
Volume 4, issue 2
The Cryosphere, 4, 147–160, 2010
https://doi.org/10.5194/tc-4-147-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 4, 147–160, 2010
https://doi.org/10.5194/tc-4-147-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Apr 2010

Research article | 28 Apr 2010

Polynyas in a dynamic-thermodynamic sea-ice model

E. Ö. Ólason and I. Harms

Related subject area

Sea Ice
Changes of the Arctic marginal ice zone during the satellite era
Rebecca J. Rolph, Daniel L. Feltham, and David Schröder
The Cryosphere, 14, 1971–1984, https://doi.org/10.5194/tc-14-1971-2020,https://doi.org/10.5194/tc-14-1971-2020, 2020
Short summary
An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC)
Mark A. Tschudi, Walter N. Meier, and J. Scott Stewart
The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020,https://doi.org/10.5194/tc-14-1519-2020, 2020
Short summary
Accuracy and inter-analyst agreement of visually estimated sea ice concentrations in Canadian Ice Service ice charts using single-polarization RADARSAT-2
Angela Cheng, Barbara Casati, Adrienne Tivy, Tom Zagon, Jean-François Lemieux, and L. Bruno Tremblay
The Cryosphere, 14, 1289–1310, https://doi.org/10.5194/tc-14-1289-2020,https://doi.org/10.5194/tc-14-1289-2020, 2020
Short summary
Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks
Young Jun Kim, Hyun-Cheol Kim, Daehyeon Han, Sanggyun Lee, and Jungho Im
The Cryosphere, 14, 1083–1104, https://doi.org/10.5194/tc-14-1083-2020,https://doi.org/10.5194/tc-14-1083-2020, 2020
Short summary
Variability scaling and consistency in airborne and satellite altimetry measurements of Arctic sea ice
Shiming Xu, Lu Zhou, and Bin Wang
The Cryosphere, 14, 751–767, https://doi.org/10.5194/tc-14-751-2020,https://doi.org/10.5194/tc-14-751-2020, 2020
Short summary

Cited articles

Backhaus, J.: Improved representation of topographic effects by a vertical adaptive grid in vector-ocean-model ({VOM}), {P}art {I}: {G}eneration of adaptive grids, Ocean Model., 22, 114–127, https://doi.org/10.1016/j.ocemod.2008.02.003, 2008.
Bjornsson, H., Willmott, A. J., Mysak, L. A., and Morales Maqueda, M. A.: Polynyas in a high-resolution dynamic-thermodynamic sea ice model and their parameterization using flux models, Tellus, 53A, 245–265, https://doi.org/10.1034/j.1600-0870.2001.00113.x, 2001.
Coon, M. D., Maykut, G. A., Pritchard, R. S., Rothrock, D. A., and Thorndike, A. S.: Modeling the pack ice as an elastic-plastic material, AIDJEX Bulletin, 24, 1–105, 1974.
Griffies, S. M. and Hallberg, R. W.: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models, Mon. Weather Rev., 128, 2935–2946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2, 2000.
Harms, I., H{ü}bner, U., Backhaus, J. O., Kulakov, M., Stanovoy, V., Stepanets, O., Kodina, L., and Schiltzer, R.: Salt intrusions in {S}iberian river estuaries: {O}bservations and model experiments in {O}b and {Y}enisei, in: Siberian River Runoff in the {K}ara {S}ea: {C}haracterization, Quantification, Variability and Environmental Significance, no. 6 in Proceedings in Marine Science, pp. 27–46, Elsevier, 2003.
Publications Copernicus
Download
Citation