Articles | Volume 19, issue 12
https://doi.org/10.5194/tc-19-6421-2025
https://doi.org/10.5194/tc-19-6421-2025
Research article
 | 
02 Dec 2025
Research article |  | 02 Dec 2025

Lessons for multi-model ensemble design drawn from emulator experiments: application to a large ensemble for 2100 sea level contributions of the Greenland ice sheet

Jeremy Rohmer, Heiko Goelzer, Tamsin L. Edwards, Goneri Le Cozannet, and Gael Durand

Related authors

Assessing atoll island future habitability in the context of climate change using Bayesian networks
Mirna Badillo-Interiano, Jérémy Rohmer, Gonéri Le Cozannet, and Virginie Duvat
Nat. Hazards Earth Syst. Sci., 25, 4527–4543, https://doi.org/10.5194/nhess-25-4527-2025,https://doi.org/10.5194/nhess-25-4527-2025, 2025
Short summary
Extending the range and reach of physically-based Greenland ice sheet sea-level projections
Heiko Goelzer, Constantijn J. Berends, Fredrik Boberg, Gael Durand, Tamsin Edwards, Xavier Fettweis, Fabien Gillet-Chaulet, Quentin Glaude, Philippe Huybrechts, Sébastien Le clec'h, Ruth Mottram, Brice Noël, Martin Olesen, Charlotte Rahlves, Jeremy Rohmer, Michiel van den Broeke, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3098,https://doi.org/10.5194/egusphere-2025-3098, 2025
Short summary
Investigating metamodeling capability to predict sea levels and marine flooding maps for early-warning systems: application on the Arcachon Lagoon (France)
Sophie Lecacheux, Jeremy Rohmer, Eva Membrado, Rodrigo Pedreros, Andrea Filippini, Déborah Idier, Servane Gueben-Vénière, Denis Paradis, Alice Dalphinet, and David Ayache
EGUsphere, https://doi.org/10.5194/egusphere-2024-3615,https://doi.org/10.5194/egusphere-2024-3615, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Insights into the prediction uncertainty of machine-learning-based digital soil mapping through a local attribution approach
Jeremy Rohmer, Stephane Belbeze, and Dominique Guyonnet
SOIL, 10, 679–697, https://doi.org/10.5194/soil-10-679-2024,https://doi.org/10.5194/soil-10-679-2024, 2024
Short summary
Improving interpretation of sea-level projections through a machine-learning-based local explanation approach
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022,https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary

Cited articles

Altmann, A., Tolosi, L., Sander, O., and Lengauer, T.: Permutation importance: a corrected feature importance measure, Bioinformatics, 26, 1340–1347, 2010. 
Aschwanden, A. and Brinkerhoff, D. J.: Calibrated mass loss predictions for the Greenland ice sheet. Geophysical Research Letters, 49, e2022GL099058, https://doi.org/10.1029/2022GL099058, 2022. 
Aschwanden, A., Bartholomaus, T. C., Brinkerhoff, D. J., and Truffer, M.: Brief communication: A roadmap towards credible projections of ice sheet contribution to sea level, The Cryosphere, 15, 5705–5715, https://doi.org/10.5194/tc-15-5705-2021, 2021. 
Au, T. C.: Random forests, decision trees, and categorical predictors: the “absent levels” problem. Journal of Machine Learning Research, 19, 1–30, 2018. 
Barthel, A., Agosta, C., Little, C. M., Hattermann, T., Jourdain, N. C., Goelzer, H., Nowicki, S., Seroussi, H., Straneo, F., and Bracegirdle, T. J.: CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica, The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020, 2020. 
Download
Short summary
Developing robust protocols to design multi-model ensembles is of primary importance for the uncertainty quantification of sea level projections. Here, we set up a series of computer experiments to reflect design decisions for the prediction of future sea level contribution of the Greenland ice sheet in 2100. We show the importance of including the most extreme climate scenario and the implications of using a single type of numerical model for ice sheets or regional climate.
Share