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Abstract. Multi-model ensembles (MME) are key ingredi-
ents for future climate projections and the quantification of
their uncertainties. Developing robust protocols to design
balanced and complete computer experiments for MME is a
matter of active research. In this study, we take advantage of
a large-size MME produced for Greenland ice sheet contri-
butions to future sea level by 2100 to define a series of com-
puter experiments that are closely related to practical MME
design decisions: what is the added value of including a spe-
cific set of members in the projections, i.e. either adding new
models (Regional Climate Model, RCM, or Ice Sheet Model,
ISM) or extending the range of some parameter values? We
use these experiments to build a random-forest-based emula-
tor, whose predictive capability to assess Greenland sea level
rise contributions in 2100 proves very satisfactory for low
and high levels of warming but less effective for intermedi-
ate levels. On this basis, we assess the changes in the em-
ulator’s predictive performance, both in terms of prediction
accuracy and uncertainty, and the emulator-based probabilis-
tic predictions, in terms of changes in the 17th, 50th and 83rd
percentiles, for given temperature scenarios, compared to the
reference solution built using all members. For the consid-
ered MME, several aspects are outlined: (1) the highest im-
pact of removing the most selected RCM, i.e., MAR, due
to the large number of simulations available; (2) the signifi-
cant impact of excluding the SSP5-8.5 scenario for high tem-
perature scenarios, and of the Community Ice Sheet Model
(CISM) for low temperature scenarios leading to absolute

changes up to 30 % of the high and low percentiles respec-
tively; (3) the non-negligible impact of having a MME de-
signed with a unique ISM or a unique RCM, i.e., CISM
or MAR model in our case, leading to percentile absolute
changes ranging between 10 % and 20 % compared to the
reference solution; (4) the lesser importance of the choice
in the range of the Greenland tidewater glacier retreat pa-
rameter. These results point to the size of the training set as
the key driver of the changes, which supports the need for
large ensembles to develop accurate and reliable emulators,
hence encouraging large participation to projects such as the
Ice Sheet Model Intercomparison Project ISMIP. We also ex-
pect our recommendations to be informative for the design of
next generations of MME, in particular for the next Ice Sheet
Model Intercomparison Project in preparation (ISMIP7).

1 Introduction

Multi-model ensembles (MME) are key ingredients for fu-
ture climate projections and the quantification of their un-
certainties. They consist of sets of numerical experiments
performed under common forcing conditions with different
model designs (i.e. different model formulations, input pa-
rameter values, initial conditions, etc.) to generate multiple
realisations known as ensemble members. This is the ap-
proach of Model Intercomparison Projects, MIPs, which are
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key for the understanding of past, present, and future cli-
mates and contribute to assessments from the Intergovern-
mental Panel on Climate Change (IPCC; e.g., Lee et al.,
2021). In this study, we are interested in projected Greenland
ice sheet contributions to sea level change this century, which
are the subject of recent MME studies (Goelzer et al., 2018,
2020) within the Ice Sheet Model Intercomparison Project
for CMIP6 (ISMIP6: Nowicki et al., 2016, 2020).

However, interpreting MME results is complicated by
the choices made in their construction (e.g., Knutti et al.,
2010). Ideally, the MME should evenly span a representative
and exhaustive set of plausible realisations of the combined
sources of uncertainty, e.g. distinct climate models with dif-
ferent but plausible strategies for simulating the global cli-
mate (GCMs), equally represented by a single model run.
However, members of a MME are often structurally similar,
and the degree of their dependence is difficult to quantify
(e.g., Merrifield et al., 2020). This difficulty is particularly
emblematic of the Coupled Model Intercomparison Project
(CMIP), coined an “ensemble of opportunity” (Tebaldi and
Knutti, 2007) because it collects “best guesses” (Merrifield et
al., 2020) from modelling groups with the capacity to partic-
ipate. This capacity may range from substantial resources to
develop climate models and perform relatively large ensem-
bles through to the ability to perform only a small number
of simulations with an existing version of a climate model.
These disparities, combined with the high computational ex-
pense of climate models and the partial dependence of MME
members, results in limited and unbalanced multi-model en-
semble designs, in which various combinations of modelling
choices and forcing conditions are either over-represented or
missing in the MME, and a full sampling of modelling un-
certainties is impossible to perform or even to define. Sec-
tion 2.1 provides in the following an illustration for the MME
considered in this study.

Emulators (also named surrogate models) have been pro-
posed to address these limitations. An emulator is a fast sta-
tistical approximation of a computationally expensive nu-
merical model, often building on machine learning tech-
niques like linear-regression (Levermann et al., 2020), Gaus-
sian process regression (Edwards et al., 2021), random forest
regression (Rohmer et al., 2022), and deep learning-based
methods (Van Katwyk et al., 2025). Their key advantage is
that they can be used to predict with low computational cost
the numerical model’s response at untried input values, and
to explore the uncertain input space far more thoroughly.
They can therefore potentially overcome the incompleteness
of ensemble designs, which is essential for producing reliable
probabilistic projections.

Some emulation studies have broadened this approach to
represent entire MME at once, rather than individual mod-
els. One example in this field is provided by Edwards et
al. (2021), who emulate ISMIP6 simulations for the Green-
land and Antarctic ice sheets and multi-model glacier en-
sembles, driven by multi-model climate model ensemble

simulations, to estimate land ice contributions to twenty-
first-century sea level rise. Emulating an MME requires
an assumption (and check) that the simulations are quasi-
independent, i.e., that the differences induced by different
model setups (in particular, initialisation) outweigh any sim-
ilarities induced by common model structures. This was
found by Edwards et al. (2021) to be the case for ice sheet
and glacier MMEs. Another example is the study by Seroussi
et al. (2023), who used a statistical emulator to recreate some
of the missing simulations as done by Edwards et al. (2021)
in order to investigate the dynamic vulnerability of major
Antarctic glaciers using the ISMIP6 ensemble of ice flow
simulations. Finally, another type of application is illustrated
by Van Breedam et al. (2021) who used emulators to per-
form a large number of sensitivity tests with numerical sim-
ulations of ice sheet–climate interactions on a multi-million-
year timescale.

In this study, we aim to explore how the results provided
by an emulator can be informative for the design of an MME.
Key design questions relate to the added value of includ-
ing specific sets of experiments in the projections, i.e. ei-
ther adding new models (e.g. new Regional Climate Model,
RCM, new GCM, etc.) or extending the range of some pa-
rameter values (e.g., the Antarctic basal melt parameter or
Greenland tidewater glacier retreat parameter described by
Edwards et al., 2021). To address these questions, we take
advantage of a large MME of Greenland ice sheet contri-
butions to sea level this century, based on which we define
a series of numerical experiments (referred to as emulator’s
experiments) that are closely related to practical MME de-
sign decisions. These experiments consist in leaving out spe-
cific results from the original MME assuming that all mem-
bers have the same weight in the ensemble. The evaluation
of the emulator prediction capability as well as the changes
in probabilistic predictions induced by each of these emula-
tor experiments provides us with information on the added
value of including specific set of members and the impact of
excluding groups of members.

The paper is organized as follows. We first describe the sea
level numerical simulations as well as details of the statistical
methods used to build the emulator and assess the different
design questions (Sect. 2). In Sect. 3, we apply the experi-
ments and assess the influence of each design question. We
discuss results in Sect. 4, and we draw lessons and guidance
related to the MME design, and discuss the implications from
a stakeholder’s point of view. Finally, we conclude in Sect. 5.

2 Data and methods

2.1 Multi-model ensemble case study

We focus on the sea level contribution, denoted slc (ex-
pressed in meters sea level equivalent, SLE, with respect
to 2014), from the Greenland ice sheet (GrIS). Our study
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is based on a new MME study performed for the Eu-
ropean Union’s Horizon 2020 project PROTECT (http://
protect-slr.eu, last access: 28 November 2025). Some mod-
elling choices are taken from the protocols of the ISMIP6 ini-
tiative (Goelzer et al., 2020; in particular, the two main emis-
sions scenarios, and the retreat parametrisation described be-
low). This MME has been designed as an extension of IS-
MIP6 MME through the inclusion of:

– a wider range of CMIP6 climate model output as well
as more climate change scenarios {SSP1-2.6, SSP2-4.5,
SSP5-8.5};

– the surface mass balance forcing from several RCMs,
i.e., MAR, RACMO, and HIRHAM as well as a statis-
tical downscaling approach of a given GCM;

– retreat forcing before 2015 that is calculated from re-
constructions of past runoff and ocean thermal forcing
(Slater et al., 2019, 2020), hence allowing for a consis-
tent forcing of the models in past and future (Rahlves et
al., 2025) and to consider historical retreat of the out-
let glaciers, which was an important source of mass loss
after 1990.

We provide here a brief summary of the GrIS MME dataset
and refer the interested reader to Goelzer et al. (2025) for
further details, where appropriate. The full modelling chain
for these projections combines: (1) a number of CMIP5 and
CMIP6 GCMs that produce climate projections according to
different emissions scenarios; (2) different RCMs, and their
variants, that locally downscale the GCM forcing to the GrIS
surface; (3) a range of ISM models that produce projections
of ice mass changes and slc (initialised to reproduce the
present-day state of the GrIS as best as possible, at a given
initial year sometime before the start of emissions scenar-
ios in 2015). The ISMs are forced by surface mass balance
(SMB) anomalies from the RCMs, added to their own ref-
erence SMB assumed during initialisation. Ocean forcing is
integrated based on an empirically derived retreat parame-
terization that relates changes in meltwater runoff from the
RCM and ocean temperature changes from the GCM to the
retreat of calving front positions (Slater et al., 2019, 2020).
The parameter that controls retreat is denoted κ . It represents
the sensitivity of the ocean forcing as a whole, and defines
the sensitivity of the downscaling from global model to local
ice sheet scale. Figure 1 shows the general approach used for
forcing the ISMs and producing the projections. The MME
design questions addressed in this study are related to the
modelling choices made for each of the boxes outlined in
Fig. 1.

In what follows, we use the generic term “inputs” to des-
ignate all the choices made throughout the modelling chain,
i.e. the choices in the models used, the choices in the sce-
narios and the ice-sheet parameter values. The inputs are de-
scribed in detail in Table 1. All abbreviations used in the text

Figure 1. General forcing approach for Greenland ice sheet model
projections. The questions relevant for the MME design (detailed in
Table 2) are related to the modelling choices made for each of the
boxes.

are explained in Appendix E. The inputs below the double
line in Table 1 are those used for the building of the RF
emulator, in particular with the use of global annual mean
surface air temperature change relative to 1995–2014, de-
noted GSAT, that corresponds to a combination of SSP-RCP
and GCM by following a similar approach as Edwards et
al. (2021).

One input setting, i.e., a particular combination of inputs,
defines a member of the MME. Formally, the inputs are ei-
ther treated as continuous variables (e.g., for κ , minimum
resolution), or as categorical variables (e.g., RCM or ISM
choice). Figures 2 and 3 show the histograms for a selec-
tion of the continuous and categorical variables described
in Table 1. For sake of space, we focus here on the 7 of
11 variables identified as having the largest influence on slc
in 2100 (see Sect. 3 and Appendix C). Both Figs. 2 and 3
show that the design of experiments is unbalanced: some
categories (like CISM model for instance for ISM in Fig. 2,
top, left) or some values (like minimum resolution at 16 km,
Fig. 3, centre) are more frequent than others. The design
is also incomplete with large gaps in the continuous class.
This is for instance the case for κ between −0.9705 and
−0.3700 km (m3 s−1)−0.4 °C (Fig. 2, left), because this pa-
rameter was sampled for only 3 different values by most
models (the median, the 25 % and the 75 % percentile), and
the additional 2 values were only sampled by one ISM at a
later stage to broaden the parameter range.

The considered MME comprises n= 1343 members,
which are used to estimate slc in 2100. In this study, we
assume that each member has the same weight, in particu-
lar, without differentiating members based on their reliability
(e.g., low-resolution models compared with high-resolution
models) or any observational constraints (as done for in-
stance by Aschwanden and Brinkerhoff, 2022). Under this
assumption of uniform weighting, Fig. 4 shows a probabil-
ity density distribution of slc constructed directly using the
members of the MME, which has a median value of 8.7 cm
SLE and 17 % and 83 % quantiles of 4.1 and 14.0 cm; the lat-
ter being used to define the 66 % confidence interval named
“likely” following the IPCC terminology (Mastrandrea et al.,
2010).
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Table 1. Inputs considered in the GrIS MME. The inputs below the double line are those used for the building of the RF emulator described
in Sect. 2.2.

Type Name Type of variable Value range/Categories

Future climate and
societal conditions

SSP-RCP Categorical 5 scenarios: 3 Shared Socio-economic Pathways {SSP1-2.6,
SSP2-4.5, SSP5-8.5} and 2 Representative Concentration
Pathways {RCP2.6, RCP8.5}. The latter, older, scenarios are
grouped with the nearest equivalent SSPs (RCP2.6 with
SSP1-2.6; RCP8.5 and SSP5-8.5).

General Circulation
Model

GCM Categorical 15 global climate models: {ACCESS1.3, CESM2,
CESM2-Leo*, CESM2-WACCM, CNRM-CM6-1,
CNRM-ESM2-1, CSIRO-Mk3.6.0, HadGEM2-ES,
IPSL-CM5A-MR, IPSL-CM6A-LR, MIROC5,
MPI-ESM1-2-HR, NorESM1-M, NorESM2-MM,
UKESM1-0-LL-r1}

Global mean
temperature change
relative to 1995–2014

GSAT change Continuous The joint influence of SSP-RCP and GCM is treated with a
similar approach as Edwards et al. (2021), by relating each
“SSP-RCP and GCM” combination to the corresponding value
of global annual mean surface air temperature change since
2015. The range of GSAT changes is [≈ 0.71; 5.00] °C

Ice Sheet Model ISM Categorical 4 models: {CISM, Elmer/Ice, GISM, IMAUICE}

Regional Climate
Model

RCM Categorical 6 model approaches: {RCM MAR (v3.9, v3.12, v3.13-e05, and
v3.13-e55), RCM RACMO (v2.3p2), RCM HIRHAM (v5),
statistical downscaling (SDBN1)}

Retreat parameter κ Continuous [−0.9705; +0.0070] km (m3 s−1)−0.4 °C

Minimal spatial
resolution

res_min Continuous [1; 40] km

Sliding friction law sliding Categorical 5 laws: {Coulomb, Linear, Schoof, Weertman, Zoet-Iverson}

Account for
thermodynamics

thermodyn. Categorical {TRUE, FALSE}

RCM used for
initialisation

RCM_init Categorical 4 model variants: {IMAU-ITM, MAR (v3.9, v3.11.5, and
v3.12)}

Type of initialisation
method

init Categorical 3 types: {Data assimilation based on velocities (DAv), nudging
to ice mask (NDm), nudging to surface elevation (NDs)}

Number of years of the
initialisation period

init_yrs Continuous [20; 240 000] years

Location of the surface
elevation feedback

elev_feedback Categorical 3 locations: {in the ice sheet model (with two formulations of
the SMB-elevation gradient, X or B), in the RCM}

* CESM2-Leo is a variant pre-dating the official CESM2 release for CMIP6. It can be considered as another ensemble member of CESM2.

2.2 Emulator experiments related to design questions

In this study, we address a series of questions described in Ta-
ble 2 that are relevant for the design of MMEs. In general, the
central concern is to investigate what is the added value of in-
cluding a specific set of experiments in the projections. This
could be subsets in already defined value range/categories,
or subsets not currently categorised. For four different cate-
gories of inputs related to specific modelling choices (choice
in SSP-RCP, choice in RCM, choice in ISM, and range of

κ values), the design questions are formalised in Table 2.
To assess the added value of including a specific set of ex-
periments in the projections, we propose to construct emu-
lators by leaving out specific results from the original MME
without differentiating the members, i.e., by assuming that all
members have the same weight in the ensemble. The last col-
umn of Table 2 translates the design questions into a specific
emulator’s experiment. The modelling details are provided in
Sect. 2.3.
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Figure 2. Count number of the MME members with respect to the different inputs classified as “categorical” in Table 1: ISM (ice sheet
model), RCM (regional climate model used for downscaling climate projections), RCM init (regional climate model used for initialisation
climate), and elev_feedback (approach to representing the feedback between the ice sheet surface elevation and climate).

Figure 3. Count number of the MME members with respect to the different inputs classified as “continuous” in Table 1: κ (ice sheet tidewater
glacier retreat parameter), minimum spatial resolution of the ice sheet model, and GSAT diff (global mean surface air temperature change
relative to 1995–2014 during the driving global climate model simulation).

To measure the influence of removing specific members
from the original MME, we assess if the emulators con-
structed from the reduced MME can reproduce the results of
an emulator trained with the complete original MME, named
the “reference solution” in the following. We analyse the
changes in two types of criteria: (1) emulator performance
to predict slc in 2100 for input configurations unseen during
the training; (2) probabilistic predictions for slc in 2100 given
future GSAT change scenarios, here chosen at 2 °C (±0.5 °C)
or 4 °C (±0.5 °C) relative to 1995–2014. The details of this
assessment are explained in Sect. 2.4. Quantified criterion
changes are then used to rank the different emulator experi-

ments in terms of the magnitude of their impact on emulator
performance and emulator-based probabilistic predictions.

2.3 Prediction with random forest emulators

The objective is to predict slc in 2100 from any values (con-
figurations) of the different inputs (described in Table 1). We
replace the chain of numerical models described in Sect. 2.1
by a machine-learning-based proxy (named emulator) built
using the MME results. Among the different types of emula-
tors (see a recent overview by Yoo et al., 2025), we focus in
this study on the Random Forest (RF) regression model, as
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Table 2. Design questions and corresponding emulator’s experiments. Modelling choices are evaluated based on the RF emulator performance
and the probability estimate of slc in 2100 given GSAT change relative to 1995–2014 at 2, or 4 °C (±0.5 °C).

Input Question Definition of the emulator’s
experiment

Name of the experiment Number of members*

SSP-RCP scenario Does including
a medium
scenario
SSP2-4.5
improve the
results or is it
enough to use
the extreme
scenarios
SSP1-2.6 and
SSP5-8.5?

A RF emulator is trained using
only the results for SSP1-2.6 &
SSP2-4.5, i.e. without
SSP5-8.5

Without SSP5-8.5: “woSSP585” 418 (31 %);

SSP1-2.6 & SSP5-8.5, without
SSP2-4.5;

“woSSP245” 1155 (86 %)

SSP2-4.5 & SSP5-8.5, without
SSP1-2.6

“woSSP126” 1113 (83 %)

RCM choice What is the
added value of
including a new
RCM, i.e. is it
sufficient to
focus on MAR
regional
climate model
(Fettweis et al.,
2017) only?

A RF emulator is built using
only the results for MAR
(regardless of the version:
MARv3.12, MARv3.13-e05,
MARv3.13-e55, or MARv3.9).

“MAR” 1197 (89 %)

Built using only the results for
Regional Atmospheric Climate
Model RACMO (Ettema et al.,
2010), HIRHAM (Langen et
al., 2017), and the direct
statistical downscaling of the
GCM CESM2-WACCM
(SDBN1).

“woMAR” 146 (11 %)

ISM choice What is the
added value of
accounting for
all ISM except
for one?

A RF emulator is trained using
only the results for the most
selected ISM, namely the
Community Ice Sheet Model
(CISM; Lipscomb et al., 2019)

“CISM” 894 (66.5 %)

Built without the results of
CISM (experiment
“woCISM”).

“woCISM” 449 (33.5 %)

Range of κ values Should the
design cover a
large range of
values, i.e. is it
sufficient to
focus on
extreme
values?

A RF emulator is built using
the central value of −0.1700
and the endpoints, of −0.9705
and 0.007 km (m3 s−1)−0.4 °C
only, i.e. without intermediate
values.

“Med. & Extr.” 615 (46 %)

Built only with central and
medium values, from −0.37 to
0 km (m3 s−1)−0.4 °C.

“Narrow” 1.087 (81 %)

* % of the total number of members

introduced by Breiman (2001). RF has shown high efficiency
in diverse domains of application (sea level science, Tadesse
et al., 2020; water resources, Tyralis et al., 2019; flood as-
sessments, Rohmer et al., 2018), and more particularly for
sea level projection studies (Hough and Wong, 2022; Rohmer
et al., 2022; Turner et al., 2024).

The RF regression model is a non-parametric technique
based on a combination (ensemble) of tree predictors (using
regression tree, Breiman et al., 1984). By construction, tree
models are well adapted to deal with mixed types of vari-
ables, categorical or continuous, as is the case here (see Ta-
ble 1). Each tree in the ensemble (named forest) is built based
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Figure 4. Probability density function of the sea level contribution
of the Greenland ice-sheet in 2100, with respect to 2014, based
on the raw MME ensemble data considered in this study assum-
ing that each member has the same weight. The black straight line
provides the smoothed density function. The median value and the
likely range (66 % confidence interval) are also indicated.

on the principle of recursive partitioning, which aims at find-
ing an optimal partition of the input parameters’ space by
dividing it into disjoint subsets to have homogeneous slc val-
ues in each set by minimizing the variance splitting criterion
(Breiman et al., 1984). A more complete technical descrip-
tion is provided in Appendix A.

A key aspect of our study is to be able to handle many
categorical variables with large number of levels (unordered
values). However, the partitioning algorithm described above
tends to favour categorical predictors with many levels
(Hastie et al. (2009): Chap. 9.2.4). To alleviate this problem,
we rely on the computationally efficient algorithm proposed
by Wright and König (2019) based on ordering the levels a
priori, here by their slc mean response.

A second key aspect is to be able to predict for new lev-
els of the categorical variables, since the emulator experi-
ments defined in Sect. 2.1 involve leaving out specific mem-
bers from the original MME assigned to a given model,
RCM/ISM, or a given SSP-RCP scenario, i.e., some spe-
cific levels. This problem is related to the more general “ab-
sent levels” problem for RF models (Au, 2018), which arises
when a level of a categorical variable is absent when a tree
is grown, but is present in a new observation for prediction.
Here, the chosen ordering algorithm of Wright and König
(2019) alleviates this problem: by treating the categorical
variables as ordinal, levels not present at a given partition
during the splitting procedure can still be assigned to a next
partition in the next iteration by directing all observations
with absent levels down the same branch of the tree (in our
implementation, chosen as the “left” branch). In this manner,
the observations with absent levels are kept together and can

be split down the tree by another input variable. In our study,
this means that the emulator experiments test whether the in-
formation left in the MME after removing specific members
is sufficient to predict slc at a reasonable accuracy.

Finally, it is important to note that the emulator is a sta-
tistical approximation whatever the regression method used,
i.e. it uses only a limited number of numerical results,
i.e. inputs-slc pairs (corresponding to the training data), to
perform predictions given a “yet-unseen” inputs’ configura-
tion. Such an approximation introduces a new source of un-
certainty referred to as “emulator uncertainty” as discussed
by Storlie et al. (2009). To assess this type of uncertainty,
we rely on the RF variant specifically developed by Mein-
shausen (2006) for predicting quantiles, i.e. the quantile RF
model (qRF) as described in Appendix B. The advantage is
that prediction intervals can be calculated at any level, which
can be used to reflect the uncertainty of the RF emulator in
emulator predictions.

In summary, the emulator provides a “best estimate”, cor-
responding to the mean provided by the RF model (Ap-
pendix A), and prediction intervals at level α, denoted PIα ,
constructed from the conditional quantiles of the qRF model
(Appendix B). In what follows, we indifferently designate
the emulator used as the “RF model”.

2.4 Criteria for measuring the impact of the design
questions

2.4.1 Emulator performance

The first criterion measures the decrease in the predictive per-
formance of the emulator. It is assessed through a validation
test exercise that consists in repeating 25 times the following
procedure:

1. Split the original MME into a test set T composed of
ntest randomly selected test samples and a training set
MMEtr;

2. Apply the emulator experiments “exp” described in Ta-
ble 2 by removing specific members from MMEtr. The
resulting reduced set MMEexp

tr is used for the training of
the emulator RFexp;

3. The trained models RFexp are used in turn to predict slc
for the prediction samples of T ;

4. Train an emulator RFref with all samples of MMEtr.
This emulator is used to estimate the reference solution
using T .

In this study, we are more particularly interested in the ability
of the emulator to perform well over a wide range of GSAT
change values. This is important in our case, because con-
straining the predictions to temperature constraints can help
end-users to interpret the projections as illustrated by recent
projections for France by Le Cozannet et al. (2025), although
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it should be noted that our definition of GSAT change does
not correspond to the usual definition of global warming level
(GWL) as being relative to the preindustrial.

We propose a procedure for selecting the test samples at
step (1) of the validation procedure as follows: (i) the GSAT
changes are classified into a finite number of intervals, the
ends of which are defined by the GSAT change percentiles,
with levels ranging from 0 % to 100 % with a fixed increase
of 25 %. This results in the following GSAT change intervals,
[0.705; 2.14 °C], [2.14; 3.34 °C], [3.34; 3.83 °C], and [3.83;
5.00 °C]; (ii) for each interval, 50 samples are randomly se-
lected. Consequently, for one iteration of the validation pro-
cedure, a total of ntest = 200 test samples are randomly se-
lected. By doing so, we ensure that the RF model is tested at
each of the 25 iterations on samples that cover the full range
of GSAT change values, with a fixed number of samples in
each interval. This would not necessarily be the case when
using the standard cross validation procedure (Hastie et al.,
2009), where the test samples would be randomly selected
regardless of their GSAT change value.

Five performance criteria (formally described in Ap-
pendix D) are considered:

– the mean relative absolute error, RAE, which measures
the RF predictive capability, i.e. whether the RF emula-
tor can predict slc with high accuracy given yet-unseen
instances of the inputs. High predictive capability is
achieved for a RAE value close to zero;

– the coefficient of determination, Q2, which also mea-
sures the RF predictive capability by quantifying the
amount of variance explained by the RF model. A high
predictive capability is achieved for a Q2 value close to
one. A negative Q2 means that the emulator performs
worse than simply predicting the mean as a constant
output prediction;

– the continuous ranked probability score, denoted CRPS,
as used for validating probabilistic weather forecast
(Gneiting et al., 2005), that jointly quantifies the cali-
bration of qRF probability distribution, i.e. the reliabil-
ity of the estimation, and its sharpness (i.e. the concen-
tration/dispersion of the probability distribution). The
lower CRPS, the higher the quality of the qRF proba-
bilistic predictions, with a lower limit of zero;

– the coverage αCA1− of the RF prediction intervals PIα

at significance level α, which measures the proportion
of slc values of the test set that falls within the bounds of
the intervals. If αCA1− is close to the theoretical value
of 1−α, this means that the prediction interval is statis-
tically well calibrated, and its reliability can be consid-
ered satisfactory;

– the ratio of performance to the interquartile distance
IQR (Bellon-Maurel et al., 2010), which compares the

emulator prediction uncertainty, measured by the dif-
ference between the 75th and the 25th quantiles –
named interquartile distance, with the prediction error
measured by the root mean square error. If IQR ≈ 1,
the interquartile distance provides valuable information
about the prediction error. If IQR < 1 (> 1), this means
that the emulator prediction uncertainty under-(over-
)estimates the prediction error, i.e., the emulator pro-
vides over-(under-)confident predictions.

2.4.2 Emulator-based probabilistic predictions

The second set of criteria measures the changes in the
emulator-based probabilistic predictions, which are assessed
through a Monte-Carlo random sampling procedure by con-
sidering two GSAT change scenarios of 2 and 4 °C. The pro-
cedure holds as follows:

1. Randomly and uniformly sample the GSAT change val-
ues within the range defined by the GSAT change sce-
nario value ±0.5 °C;

2. Randomly sample the input variables by assuming a
uniform discrete probability distribution for the categor-
ical variables, and a uniform probability distribution for
the continuous variables except for κ which is sampled
as in Edwards et al. (2021) from the smoothed version
of the empirical density function by Slater et al. (2019).
A total of 10 000 random samples is considered;

3. Apply the emulator experiments by removing specific
members from the original MME, and train the corre-
sponding emulator RFexp

;

4. Use RFexp to predict slc for each random sample and
estimate the median, i.e., the 50th percentile (denoted
Q50%) and the endpoints of the 66 % confidence inter-
val, named “likely range” following the IPCC terminol-
ogy, defined here by the 17th and 83rd percentile, de-
noted Q17% and Q83%.

To derive the reference solution of the quantiles of interest,
the afore-described procedure is applied to the RF emula-
tor trained with the original MME. In addition, the emulator
uncertainty is propagated by following the procedure based
on the quantile RF emulator (Appendix B). The emulator-
based probabilistic results thus jointly reflect the impact of
the uncertainty of the input variables and of the emulator
uncertainty. The probabilistic predictions should however
not be interpreted as calibrated uncertainty accounting for
model-observation misfits (e.g., Aschwanden and Brinker-
hoff, 2022), and neither do they represent the slc probability
distribution from the MME, because the uniform distribution
over the input space is not representative of the MME itself.
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3 Results

3.1 Emulator reference solution

We train a RF emulator to predict slc in 2100 using the re-
sults of the GrIS MME (see implementation details in Ap-
pendix A). A preliminary screening analysis was conducted
(detailed in Appendix C), and showed that four predictor
variables have no significant influence: the choice to account
for thermodynamics, the choice in sliding law, the type of
initialisation and the number of years for the initialisation
phase. We therefore build the RF emulator using only 7 out
of 11 possible input variables described in Sect. 2.

Based on the full MME, we compute the reference solu-
tion for the criteria used to investigate the influence of the de-
sign questions. First, the RF model’s predictive performance
is tested by applying the repeated validation procedure de-
scribed in Sect. 2.4.1. The performance of the RF emulator
shows satisfactory levels of predictive capability, with a me-
dian RAE value (calculated over all the validation tests de-
fined by the repeated validation procedure) of no more than
8 %, a median Q2 value close to 90 % and a median CRPS
value close to zero as indicated by the dashed red horizontal
line in Fig. 5a–c. In addition, the RF emulator appears to be
well calibrated both in terms of coverage of the prediction
intervals at the 10 % (Fig. 5d) and the 50 % (Fig. 5e) sig-
nificance level, and in terms of interquartile distance with a
median IQR close to 100 % (Fig. 5f).

The examination of the performance depending on the
GSAT change interval of the test samples (coloured box-
plots in Fig. 5) further shows that the highest performance
is achieved for low GSAT change below 2.14 °C (dark blue
boxplots in Fig. 5) although we note a small overestimation
of the coverage at 50 %, and a tendency for underconfident
predictions with IQR > 100 %. The worst performance is
achieved for GSAT change between 3.34 and 3.83 °C (green
boxplot in Fig. 5). The performance for the other GSAT
change intervals, and in particular for the highest GSAT
change values above 3.83 °C, can be considered satisfactory
with a median RAE not larger than 9 %, a median Q2 value
close to 90 %. The prediction intervals are well calibrated
with a median coverage CA90 and CA50 of 86 % and of 46 %,
and with a small tendency for overconfident predictions with
a median IQR of ≈ 82 %.

Second, the probability distribution of slc in 2100 rela-
tive to 2014 (Fig. 6) is constructed using the Monte-Carlo-
based procedure (with 10 000 random samples) described in
Sect. 2.4.2 given GSAT change values fixed at 2 and 4 °C
(±0.5 °C). The choice of GSAT change scenarios used here
is supported by the afore-described analysis, which points
out that the RF emulator should be used cautiously over the
range of GSAT change values around 3 °C. The emulator-
based probabilistic prediction results in a median value of
respectively 6.1 and 13.5 cm for slc with a likely range of
[4.6; 7.4] cm, and [10.4; 17.0] cm. The results are computed

using the mean of the RF emulator (Appendix A), and do
not include uncertainty arising from the emulator itself. The
procedure described in Appendix B is further applied to as-
sess the impact of the emulator uncertainty, and shows that
the width of the 90 % confidence interval for the percentiles
considered remains in the order of 0.1 cm, hence indicating
minor influence of the emulator uncertainty in this case.

3.2 Impact of design decisions on the emulator
performance

We analyse in Fig. 7 the impact of design decisions on the
RF predictive capability and on the reliability of the RF pre-
diction intervals. The decrease of RF predictive capability is
measured by the decrease of the relative differences of RAE
and CRPS (Fig. 7a, c) and the increase of the relative differ-
ences of Q2 (Fig. 7b). The reliability of the RF prediction
intervals is measured by CA90 and CA50 (Fig. 7d, e), which
are respectively related to the prediction intervals at the 10 %
and 50 % significance level, and by IQR (Fig. 7f). This as-
sessment is conducted relative to the performance metrics
of the reference solution computed from the validation test
applied without excluding the experiments as explained in
Sect. 2.4.1.

Figure 7 shows that excluding MAR (experiment
“woMAR”) has the largest impact for every performance cri-
terion. This is also shown when considering a given GSAT
change interval in the validation procedure (Figs. 8 and 9
and Sect. S1). This means that excluding MAR impacts both
facets of the predictive capability of the emulator, i.e., the
explained variance of the emulatorQ2 and the relative errors
RAE (Fig. 7a, b). In particular, the resulting relative differ-
ence is > 100 %, i.e., Q2 < 0, hence showing that the emu-
lator performs worse than simply predicting the mean as a
constant output prediction. This performance decrease goes
with a decrease of the reliability in the prediction intervals
as shown by the increase in CRPS (Fig. 7c). This is con-
firmed by the coverage values which largely deviate from
the expected values (outlined in black in Fig. 7d, e). In ad-
dition, overconfident predictions are clearly shown by the
low value of IQR. The examination of the opposite situa-
tion, i.e., the “MAR” experiment, shows that training the RF
model with only the members associated with this particular
RCM cannot be considered satisfactory. This is highlighted
by the non-negligible changes in performance, specifically
in terms of increases in RAE and CRPS and decreases in
IQR (dark green box plots in Fig. 7), although they are sig-
nificantly smaller in magnitude than those in the “woMAR”
experiment.

The second most important driver of the emulator perfor-
mance is the exclusion of the extreme SSP scenario SSP5-8.5
(dark red boxplot in Fig. 7) which induces a performance re-
duction of around half that of “woMAR” for RAE and CRPS.
As for “woMAR”, theQ2 reduction is so high that the result-
ing performance is worse than that of simply taking the mean
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Figure 5. Boxplot of the RAE (a), Q2 (b), CRPS (c), CA90 (d), CA50 (e), and IQR (f) performance criterion for different ranges of GSAT
change values (indicated on the x axis). The performance statistics are computed over test samples unseen during emulator training by
applying the validation procedure described in Sect. 2.4.1 repeated 25 times. The horizontal red dashed line indicates the median value
calculated over all validation tests considering the whole range of GSAT change.

Figure 6. Emulator-based probabilistic predictions in the form of
the probability density function of slc in 2100 (with respect to 2014)
constructed using the Monte-Carlo-based procedure (with 10 000
random samples, see Sect. 2.4) for two GSAT change values of
2± 0.5 °C (green), and 4± 0.5 °C (orange) relative to 1995–2014.
This results in a median value of respectively 6.7 and 13.5 cm with
a likely range of [4.6; 7.4] cm, and [10.5; 17.0] cm. The straight line
corresponds to the smoothed density function. The number and in-
terval indicate the median value and the likely range. Note these
probability density functions are derived using the mean of the RF
emulator (Appendix A) and do not include uncertainty arising from
the emulator itself.

value for prediction. The reliability of the prediction intervals
appears to be very poor as well with large deviations from the
expected values. The third most important contributor of the
emulator performance is the exclusion of CISM with RAE
and CRPS median values close to that of “woSSP585”, but
with higher performance in terms of explained variance as in-
dicated by a lower Q2 relative difference, and more reliable
prediction intervals.

The ranking in terms of influence depends however on the
range of GSAT changes considered. On the one hand, the
following observations can be made for the highest GSAT
change values:

– the application of experiments “woSSP585” and
“woMAR” affects almost equivalently the emulator per-
formance by inducing large changes in terms of RAE
(Fig. 8d), Q2 (Fig. 8e) and CRPS (Fig. 8f) relative dif-
ferences. Here, the resulting predictive performance is
worse than that of simply taking the mean value for pre-
diction;

– the analysis of the prediction intervals (Fig. 9, bottom)
shows that their reliability for “woSSP585” is worse
than that of “woMAR” with very low coverage at any
level (Fig. 9d, e) and extremely high overconfidence in
the predictions (Fig. 9f);

– the influence of the “woCISM” experiment ranks third,
with a decline in predictive capability on the same order
of magnitude than that of “woSSP585” or “woMAR”,
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Figure 7. Relative difference (in %) of the performance criteria for RAE (a), Q2 (b), CRPS (c). Evolution of CA90 (d), CA50, and IQR (f).
The performance statistics are computed over test samples unseen during emulator training by applying the validation procedure described
in Sect. 2.4.1 repeated 25 times. The dashed black line in panel (b) indicates the threshold under which the emulator performs worse than
simply predicting the mean as a constant output prediction. The straight black line in panels (d)–(f) indicates the theoretical threshold that
the emulator should reach. The red dashed line indicates the median value of the RF reference solution.

Figure 8. Relative difference (in %) of the performance criteria considering the lowest GSAT change values below 2.14 °C (top) and the
highest GSAT change values above 3.83 °C (bottom) for RAE (a, d), Q2 (b, e), and CRPS (c, f). The performance statistics are computed
over the same test samples as in Fig. 7. The black line in panels (b) and (e) indicates the threshold under which the emulator performance is
worse than predicting the mean as a constant output prediction.
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Figure 9. Evolution of the performance criteria considering the lowest GSAT change values below 2.14 °C (top) and the highest GSAT
change values above 3.83 °C (bottom) for CA90 (a, d), CA50 (b, e), and IQR (c, f). The performance statistics are computed over the same
test samples as in Fig. 7. The red dashed line indicates the median value of the RF reference solution. The black line indicates the threshold
against which the performance criterion should be compared.

particularly in terms of RAE (Fig. 8d), but with higher
reliability of the prediction intervals (Fig. 9, bottom);

– the analysis of “woSSP126” and “woSSP245” shows
that the exclusion of these SSP scenarios has negligible
impact for the highest GSAT change values.

On the other hand, the following observations can be made
for the lowest GSAT change values:

– the experiment “woSSP585” is no longer the highest
contributor to the predictive capability. The prediction
intervals for “woSSP585” even reach coverage close to
the expected value and the interquartile distance com-
pares well with the prediction error;

– among the different SSP scenarios considered, it is
the “woSSP245” scenario and, to a lesser extent, the
“woSSP126” scenario, that causes the most significant
reduction in performance for the lowest GSAT change
scenario;

– the exclusion of CISM or of MAR drives here the most
the performance with almost the same order of magni-
tude (Fig. 8, top). It is however the exclusion of MAR
(Fig. 9a, b) that worsens the most the reliability of the
prediction intervals.

Regardless of the GSAT change scenario considered, restrict-
ing the analysis to a unique ISM or RCM model, here CISM

or MAR, has a non-negligible impact on the emulator per-
formance, both in terms of predictive capability and relia-
bility of the prediction intervals as shown by the analysis of
the dark green and light orange boxplots in Figs. 8 and 9.
The analysis for another GSAT change interval, i.e., [3.34;
3.83] °C (Sect. S1) shows that the impact of the “CISM” ex-
periment can be as high as that of “woSSP585”. Finally, the
experiments for κ appear not to affect much the performance
regarding the predictive capability (Fig. 8); both experiments
having the lowest influence. The conclusion is to some ex-
tent the same for the reliability of the prediction intervals at
the exception of the coverage at low GSAT change value,
where the exclusion of extreme κ values (experiment “Nar-
row Kappa”) appears to be the most influential between both
experiments.

3.3 Impact of design decisions on the emulator-based
probabilistic predictions

In this section, we analyse the impact of removing specific
groups of members from the original MME on the RF-based
probabilistic predictions. To do this, we use a different set of
samples from the one used for Sect. 3.2, applying the proce-
dure explained in Sect. 2.4.2 to draw random samples used
for probabilistic predictions. Since the impact on the per-
centiles has more interest from the perspective of end-users,
we primarily focus the analysis on the changes in the slc per-
centiles, Q17%, Q50% and Q83% in Fig. 10. The interested
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reader can refer to Sect. S2 for an analysis of the whole slc
probability distributions’ changes. Here the results include
estimates of uncertainty arising from the emulator itself.

Figure 10 shows that the probabilistic predictions are per-
turbed in different ways, depending on the GSAT change sce-
nario and on the level of the considered percentile.

For the highest GSAT change scenario, Fig. 10 (right)
shows the following results:

– as expected from Sect. 3.2, the exclusion of MAR has
a significant impact leading to absolute changes of the
percentiles on the order of 10 % regardless of the per-
centile level;

– the higher the percentile level, the higher the influence
of excluding SSP5-8.5 with absolute changes ranging
from < 10 % to > 30 % when the level increases from
17 % to 83 %.

For the lowest GSAT change scenario, Fig. 10 (left) shows
the following results:

– the exclusion of MAR has a significant impact with
a particularly high absolute change up to ∼ 20 % for
Q83%;

– the influence of “woCISM” as the percentile level
increases goes in oppositive direction compared to
“woSSP5-8.5” experiment for the highest GSAT change
scenario. The higher the percentile level, the lower the
influence of excluding CISM with absolute changes
ranging from ∼ 30 % to ∼ 5 % when the level increases
from 17 % to 83 %;

– for this GSAT change scenario, excluding SSP5-8.5
only substantially influences Q17%, with an absolute
change of ∼ 20 %.

Similarly as for the performance analysis in Sect. 3.2, in-
cluding a unique ISM, here CISM, or a unique RCM, here
MAR, in the MME has a non-negligible influence leading to
absolute changes between∼ 10 % to∼ 20 % mainly for low-
to-moderate percentile levels regardless of the GSAT change
scenario considered. Overall, the design decision for κ has
only a minor impact, which can be considered negligible
since its influence is on the same order of the emulator uncer-
tainty indicated by the width of the error-bars for most GSAT
change scenarios and percentiles considered with the excep-
tion of “Narrow Kappa” experiment for Q17% and GSAT
change of 2 °C. This result agrees well with the analysis on
the RF predictive capability in Sect. 3.2.

4 Synthesis and Discussion

4.1 Implications for MME design

Table 3 summarises the main results from the emulator’s ex-
periments for each design question considering the MME

of this study. In the following, we take the viewpoint of a
MME designer, and derive the practical recommendations
from these results.

On the one hand, some conclusions were expected before-
hand, namely the highest influence of the emulator exper-
iment leading to the highest decrease in the MME size of
≈ 90 %, i.e., “woMAR”. This decrease logically degrades the
predictive capability and the reliability of the prediction in-
tervals since the RF is trained on a small dataset (Sect. 3.2).
The comparison in Fig. 11a of the slc cumulative distribu-
tion function (CDF) of the original MME and that of the re-
duced MME illustrates the gaps in the training data as indi-
cated by the step-like shape of the CDF. On the other hand,
some other conclusions could not necessarily have been an-
ticipated in detail more particularly the implications on the
percentile assessment (Sect. 3.3). Our results show that the
magnitude of the influence depends on the GSAT change
scenario considered, the performance criterion and the tar-
get percentile level. For the high GSAT change scenario, the
exclusion of SSP5-8.5 has as much impact as the exclusion of
MAR on emulator performance, and is even the biggest con-
tributor to changes in the high percentiles. For the low GSAT
change scenario, excluding CISM has as much impact as ex-
cluding MAR on the emulator performance, and contributes
most to changes in the low percentiles. The decrease in MME
size induced by “woCISM” and “woSSP585” is smaller than
that induced by “woMAR”, on the order of 70 %, suggest-
ing that it is not only a problem of “size” but also a problem
of the type of information that is removed from the MME.
Figure 11c shows that, when applying “woSSP585” experi-
ment, the emulator is learned with slc spanning a restricted
range lower than that of the original MME. This means that
the emulator is built with little information on large slc val-
ues, and to predict cases associated to high GSAT change
scenarios, the RF model mainly relies on extrapolation. This
is a situation where emulator methods such as RF can fail
completely; see e.g., Buriticá and Engelke (2024). Analysis
of Fig. 11a and b helps to understand why “woMAR” and
“woCISM” induce roughly equivalent changes for the 2 °C
GSAT change scenario, as the slc CDF appears to be simi-
larly disrupted by the application of these experiments with
a CDF shifted towards low-to-moderate slc values, particu-
larly in the slc range of ∼ 5 to ∼ 15 cm. This means that the
emulators are built on members whose slc values span ap-
proximately the same range.

The oppositive experiments that consist in using MME re-
stricted to members to a specific ISM or a particular RCM,
here CISM or MAR respectively, are also informative. Al-
though the corresponding emulator experiments imply a re-
duction of less than 30 % of the MME size, the decline in
emulator performance or changes in percentiles cannot be
considered negligible. This suggests that removing members
associated with other ISMs/RCMs from the training set has
an impact, because these members contain information rele-
vant to the RF emulator capability to make predictions, es-
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Figure 10. Relative difference (in %) between the RF reference solution and the RF model trained when considering the experiments
indicated in the y axis (see Table 2 for full details) for the estimates of three slc percentiles in 2100 relative to 2014, the median and the
quantile at 17 % (Q17%) and at 83 % (Q83%), using the random samples generated via the procedure described in Sect. 2.4.2 considering two
GSAT changes, 2 °C (±0.5 °C), and 4 °C (±0.5 °C). The endpoints of the error-bars correspond to the 5 % and the 95 % quantiles calculated
by applying 100 times the procedure described in Appendix B to reflect the emulator uncertainty.

Figure 11. Comparison between the Cumulative Distribution Function (CDF) of slc in 2100 of the original MME (reference) and of the
reduced MME after application of the emulator experiments, “woMAR” (a), “woCISM” (b), “woSSP585” (c).
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Table 3. Summary of the results from the emulator’s experiments for each design question considering the MME of this study.

Input Question Results for the considered MME

SSP-RCP Does including a medium scenario
SSP2-4.5 improve the results or is it
enough to use the end members
SSP1-2.6 and SSP5-8.5?

Excluding the medium scenario has a small-to-moderate impact, and
mainly affects the emulator performance for low GSAT change values.
The main reason is likely to be the importance of the end member
scenarios, as shown by the experiment excluding SSP5-8.5, but also
the relatively small number of medium scenario simulations in this
ensemble and the strong linearity of the Greenland ice sheet response
for the 2100 timescale with global temperature in these models (other
models could be more non-linear).

RCM choice What is the added value of including
new RCM, i.e. is it sufficient to focus
on MAR regional climate model only?

This is the most impactful decision, whatever the GSAT change
scenario or the criteria, i.e., emulator performance or percentile
assessment. This result is strongly linked to the high number of
members using MAR. The opposite situation, i.e. limiting the MME to
MAR, leads to non-negligible changes as well, but of lower magnitude.

ISM choice What is the added value of accounting
for all ISMs except for one?

Excluding the most frequently selected ISM in the considered MME,
i.e., CISM, has a significant impact on emulator performance and
percentile values with a more pronounced effect for low GSAT change
values. The opposite situation, i.e., limiting to CISM, leads to changes
of lower magnitude.

Range of κ values Should the design cover a large range
of values, i.e. is it sufficient to focus on
extreme values?

This decision is the least impactful relatively to the others in the
considered MME. Results suggest that restricting to the “Medium and
Extreme” scenario is sufficient for this parameter, which has a
relatively linear relationship with ice sheet response, though for other
parameters this would not be known a priori and test simulations
would be needed for multiple values to characterise whether the
relationship was non-linear.

pecially in the situations explained in Sect. 2.3, for levels of
categorical variables not seen in the training dataset.

The interaction between the reduction in the size of the
MME and the type of information important for the training
of the emulator is however complex to analyse due to the
multiple joint effects to be taken into account between the
inputs. Analysis of Fig. 11 reveals certain similarities in the
effect of the different emulation experiments, but is not suffi-
cient to explain all aspects of the problem; for example, this
type of analysis does not fully explain why “woCISM” has a
stronger impact on performance at GSAT change of 2 °C than
4 °C. From a methodological viewpoint, this calls for further
developments, in particular by relying on the data valuation
domain (Sim et al., 2022). These types of tools aim to study
the worth of data in machine learning models based on sim-
ilar methods as the ones used by Rohmer et al. (2022) in the
context of sea level projections. Transposed to the MME con-
text, these tools could be used in future studies to assess the
impact of each member in the emulator’s predictions, i.e. the
worth of each member. From a broader perspective on col-
laborative research, our results on the influence of RCM and
ISM models can be seen as an additional justification for in-
tensifying the model intercomparison efforts initiated in the
past, in particular ISMIP6 (Nowicki et al., 2016), which in-

cluded coupled ISMs as well as stand-alone ISMs in CMIP
for the first time. They also support, to some extent, a poste-
riori, the choices that have been made for the construction of
the MME considered here (based on Goelzer et al., 2020).

Finally, a very practical implication can be derived from
the κ experiments: results indicate that restricting to the ex-
treme and medium scenario is sufficient here because of the
lesser impact between the two experiments, “Med. & Extr.”
or “Narrow”. This result is interpreted as being linked to
a quasi-linear relationship between κ and slc as shown in
Rohmer et al. (2022) using the MME of ISMIP6 for Green-
land. This was confirmed by the analysis detailed in Sect. S3.
In practice, this result implies that the number of scenarios
explored in the MME can be limited to a three-scenario ap-
proach (low-medium-high value), i.e. the number of mem-
bers can be reduced, thus reducing the number of long nu-
merical simulations required.

4.2 Implications from stakeholders’ point of view

Our work can help stakeholders in several ways. First, our
study contributes to a better understanding of the estimated
contribution of Greenland ice sheet melting to sea level rise.
According to the latest authoritative sea level projections de-
veloped by the IPCC (Fox-Kemper et al., 2021) the GIS

https://doi.org/10.5194/tc-19-6421-2025 The Cryosphere, 19, 6421–6444, 2025



6436 J. Rohmer et al.: Lessons for multi-model ensemble design drawn from emulator experiments

contribution to sea level rise is projected to reach 8 cm [4;
13] (median [likely range]) by 2100 for the SSP2-4.5 sce-
nario. This means Greenland has a sizeable share to the to-
tal global mean sea level rise and their uncertainties, which
were estimated at 56 cm [44; 76] for this scenario accord-
ing to the same report. Here, we showed that some choices
made by modelers, such as the tidewater glacier retreat pa-
rameter, have a minor impact on the spread of the Green-
land sea level rise contribution, whereas others, such as us-
ing only MAR as RCM, have a large impact. These findings
can be useful to inform future modelling experiments, and
could help identifying where modelling efforts could focus
to better characterize the spread of the projected contribution
of the Greenland ice-sheet and to increase our understand-
ing of that spread. Second, our results support coastal adap-
tation practitioners in their decision-making. Our emulator
experiments in Sect. 3.2 and 3.3 highlight how the different
modelling choices affect differently the median or the upper
tail (here measured by the Q83% percentile). This difference
is important, because the literature on adaptation decision-
making has clearly shown that knowing the median is not
sufficient for coastal adaptation practitioners managing long-
living critical infrastructures or making strategic decisions
for regions or countries (Hinkel et al., 2019). These practi-
tioners need credible assessments of the uncertainties in ice
mass losses in Greenland, including for the low probability
scenarios corresponding to the tail of probabilistic projec-
tion. For example, France selected a unique climate scenario
of 3 °C GWL used in France within its 3rd development plan
published in 2025. To define the associated sea level scenar-
ios to be mainstreamed in public policies, a detailed consid-
eration of uncertainties is required to understand which secu-
rity margins are taken (Le Cozannet et al., 2025). Thus, our
study supports the need for improved experimental designs
by making some practical recommendations, especially re-
garding the consideration of ISM, RCM and RCP8.5/SSP5-
8.5 simulations.

Finally, the importance of SSP5-8.5, although expected,
also underlines the fact that a wide range of emissions sce-
narios and climate simulations should continue to be consid-
ered in the future. The SSP5.8-5 scenario in this ensemble
contains many simulations and covers a wide range of global
warming levels at 2100. To represent plausible outcomes of
failure of states to meet their own commitments, or political
backlashes leading to climate policy setbacks (see recent dis-
cussion by Meinshausen et al., 2024), medium and medium-
high emissions scenarios (e.g. radiative forcing reaching be-
tween 4.5 and 7.0 W m−2 in 2100) should continue to be used
for simulations of climate impacts such as for the Green-
land ice sheet, so that these do not rely too much on em-
ulators interpolating from end member scenarios. Further-
more, the current design of the SSP3-7.0 involves very high
aerosol emissions, so that the resulting simulations need to be
considered carefully (Shiogama et al., 2023). Being able to
use more intermediate climate simulations reaching radiative

forcing between 4.5 and 7.0 W m−2 in 2100 is all the more
important as another need is now emerging: projections of
ice mass loss for specific levels of global warming relative to
preindustrial (as in the IPCC: Fox-Kemper et al., 2021). For
example, the latest adaptation plan in France requires adap-
tation practitioners to test their adaptation measures against
a climate change scenario reaching 2 °C in 2050 and 3 °C
in 2100 globally (Le Cozannet et al., 2025). Motivations for
considering these GWLs rather than SSP or RCP scenarios
include their perceived clarity for a wide range of adaptation
practitioners, as well as the direct links that can be made with
the climate objectives set out in the Paris agreement to stabi-
lize climate change well below 2 °C GWL. For all scenarios,
including global warming levels, the development of proba-
bilistic projections requires emulators, whose accuracy and
precision can be improved by better experimental design.

5 Concluding remarks and further work

Developing robust protocols to design balanced and com-
plete numerical experiments for MME is a matter of active
research that has called for multiple studies either for sea
level projections via selection criteria (Barthel et al., 2020) or
from an uncertainty assessment’s perspective (Aschwanden
et al., 2021), and more generally for regional impact assess-
ment (Evin et al., 2019; Merrifield et al., 2023). In this study,
we took advantage of a large MME produced for Greenland
ice sheet contributions to future sea level by 2100 to define
a series of emulator’s experiments that are closely related
to practical MME design decisions. Our results confirm the
high importance of including the SSP5-8.5 scenario in terms
of emulator performance and percentile estimates. They also
show that an ensemble designed only with a unique ISM and
RCM model, i.e., here with the one that is most frequently
selected in the considered MME, has non-negligible implica-
tions. These results point to the size of the training set as the
key driver of the changes in the emulator performance and
percentile estimates, hence underlying the need for building
large ensembles to develop accurate and reliable emulators.
Broad participation in projects such as ISMIP, with as many
simulations as possible contributed by numerous groups, ap-
pears to be an effective option to this end. Finally, the less
impactful choice in this ensemble is the one in the sampling
of the Greenland tidewater glacier retreat parameter, because
it has a relatively linear relationship with sea level contribu-
tion. These recommendations (detailed in Table 3) can be in-
formative for the design of next generation MME for Green-
land (ISMIP7: Nowicki et al., 2023).

Although the MME considered in this study covers a large
spectrum of situations (multiple SSP scenarios, different
RCMs and ISMs), with more than 1,000 members, a series of
aspects need to be considered in the future to further increase
the robustness of these results. First, our procedure should be
tested on additional MMEs of interest to improve the trans-
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ferability of our results, in particular for Antarctica (Seroussi
et al., 2020), for multi-centennial projections (e.g., Seroussi
et al., 2024), and for glaciers (Marzeion et al., 2020). These
tests should also include new types of MMEs that are com-
bined with calibration (e.g., Aschwanden and Brinkerhoff,
2022). They make it possible to circumvent an assumption in
our study, namely that all members have the same weight, by
taking into account the reliability of the different members
or observational constraints, provided that good-quality data
are available over a sufficiently long period in the past and
that the numerical implementation of the ISMs is suitable for
calibration. To address this question, a wider range of uncer-
tainties should be considered, more specifically model and
structural uncertainties (i.e., uncertainty in the formulation
of the model and its ability to represent the physics of the
system), in addition to uncertainties in model parameters (re-
lated to ice dynamics and atmospheric/oceanic forcing), but
also irreducible uncertainties such as internal climate vari-
ability as investigated by Verjans et al. (2025) on Greenland
sea level contribution projections. Here, emulators are ex-
pected to play a key role to explore this wide uncertain space
thoroughly.

Second, our results are based on the use of an emulator,
i.e., a statistical approximation of the “true” chain of numer-
ical models. The RF emulator trained in our study showed
satisfactory predictive capabilities for low and high levels of
warning (GSAT changes of respectively 2 and 4 °C). The em-
ulator performance remained however unsatisfactory at inter-
mediate levels of warming (3 °C). Despite, the efforts made
in our study to nuance the results by including indicators of
the emulator uncertainty, the emulator training should be im-
proved in the future by considering alternative emulator mod-
els (e.g., Yoo et al., 2025) but also more robust approaches for
hyperparameter tuning (Bischl et al., 2023), and more partic-
ularly more advanced categorical variables’ encoding (Au,
2018; Smith et al., 2024), which is key to apply the proposed
emulator experiments.

Finally, our recommendations are derived, by construc-
tion, a posteriori, i.e., based on the available members of a
large-size MME. Therefore, a third avenue here is to derive
recommendations earlier on in the process, i.e., early during
the construction of the MME design. This could be done it-
eratively. The procedure could alternate between simulation
phases, i.e. either test simulations to assess sensitivity to dif-
ferent inputs, or small exploratory sets that do not use all
the available computing time/human/project resources, and
training and retraining of the emulator.

Appendix A: Random Forest regression model

Let us first denote slci=1,...,n the ith value of sea level con-
tribution calculated relative to the ith vector of p input pa-
rameters’ values xi=1,...,n = {x1,x2, . . .,xp}i=1,...,n where n
is the total number of experiments. The Random Forest (RF)

regression model is a non-parametric technique based on a
combination (ensemble) of tree predictors (using regression
tree, Breiman et al., 1984). By construction, tree models can
deal with mixed types of variables, categorical or continu-
ous. Each tree in the ensemble (forest) is built based on the
principle of recursive partitioning, which aims at finding an
optimal partition of the input parameters’ space by dividing it
intoL disjoint setsR1, . . . ,RL to have homogeneous slci val-
ues in each set Rl=1,...,L by minimizing a splitting criterion,
which is chosen in this study as the sum of squared errors
(Breiman et al., 1984). The minimal number of observations
in each partition is termed nodesize (denoted “ns”).

The RF model, as introduced by Breiman (2001), aggre-
gates the different regression trees as follows: (1) random
bootstrap sample from the training data and randomly select
mtry variables at each split; (2) construct ntree trees T (α),
where αt denotes the parameter vector based on which the
t th tree is built; (3) aggregate the results from the prediction
of each single tree to estimate the conditional mean of slc as:

E(slc|X= x)=
n∑
j=1

wj (x)slcj , (A1)

whereE is the mathematical expectation, and the weightswj
are defined as

wj (x)=

ntree∑
t=1

wj (x,αt )

ntree
,

with wj (x,α)=
I{Xj εRl(x,α)}

#
{
i :XiεRl(x,α)

} , (A2)

where I{A} is the indicator operator which equals 1 if A is
true, 0 otherwise; Rl(x,α) is the partition of the tree model
with parameter α which contains x.

The RF hyperparameters considered in the study are ns
and mtry which have shown to have a large impact on the
RF performance (Probst et al., 2019). To select values for
these parameters, we rely on an approach based on a 10-fold
cross validation exercise (Hastie et al., 2009), which consists
in varying ns from 1 to 10, and mtry from 1 to 7, and in se-
lecting the most optimal combination with respect to cross-
validation predictive error. The number of random trees is
fixed at 1000; preliminary tests having showed that this latter
parameter has little influence provided that it is large enough.

An additional difficulty of our study is the presence of
a large number of categorical variables with large number
of levels (unordered values). The partitioning algorithm de-
scribed above tends to favour categorical predictors with
many levels (Hastie et al., 2009: Chap. 9.2.4). To alleviate
this problem, we rely on the computationally efficient algo-
rithm proposed by Wright and König (2019) based on order-
ing the levels a priori, here by their slc mean response.

https://doi.org/10.5194/tc-19-6421-2025 The Cryosphere, 19, 6421–6444, 2025



6438 J. Rohmer et al.: Lessons for multi-model ensemble design drawn from emulator experiments

Appendix B: Accounting for the emulator uncertainty

The RF method described in Appendix A is very flexible and
can be adapted to predict quantiles, which can be used to
assess the RF emulator uncertainty. To do so, we rely on the
quantile regression forest (qRF) model, which was originally
developed by Meinshausen (2006), who proposed to estimate
the conditional quantile τq(slc|x) at level τ as

qτ (slc|x)= inf(x : FSLC|X(slc|x)≥ τ), (B1)

where inf(.) is the infimum function, and,

FSLC|X (slc|x)=
n∑
j=1

wj (x)I{slcj≤slc}, (B2)

where the weights are calculated in the same manner as for
the regression RF model (described in Appendix A). The ma-
jor difference with the formulation for regression RF is that
the qRF model computes a weighted empirical cumulative
distribution function of slc for each partition instead of com-
puting a weighted average value.

The quantiles computed using the qRF model can directly
be used to define the prediction intervals at any level α:
PI(x∗)=

[
q
α
2 (slc|x∗) ;q1− α2 (slc|x∗)

]
, which can be used to

reflect the RF emulator uncertainty when providing the emu-
lator predictions.

When performing the probabilistic predictions
(Sect. 2.4.2), the emulator uncertainty is propagated in
addition to the uncertainty of the different input variables
based on the following procedure:

Step 1. Draw N random realizations of the input variables
x̃;

Step 2.1. Draw N random number ũ between 0 and 1 by
assuming a uniform random distribution;

Step 2.2. Approximate the cumulative distribution func-
tion of slc|x̃ by computing the N values ˜slc= q ũ (slc|x̃)
given ũ and x̃ using the qRF model;

Step 2.3. Compute the quantile Qτ at the chosen level τ
from the set of N values of ˜slc. The range

[
Q

α
2 ;Q1− α2

]
then

provides the 1−α confidence interval of the emulator predic-
tion for (slc|x̃);

Step 3. Repeat N0 times Steps 2.1 to 2.3. At Step 2.2, ˜slc
are calculated for the same set of random input variables x̃
defined at Step 1, but each time a newly randomly generated
set of levels ũ is used based on Step 2.1. This means that, at
Step 2.3, the newly calculated quantiles Qτ vary for each of
the repetitions.

The output of the procedure is a set of N0 quantile values
(Qτ

(1),Q
τ
(2) , . . .,Q

τ
(N0)

). The variability among these values
reflects the emulator uncertainty and can be summarized by
the 1−α% confidence interval with lower and upper bounds
defined by the α/2, and the 1−α/2 quantile of Qτ . In this
study, we choose N =10,000, N0 =100 and α = 10 %.

Appendix C: Screening analysis

We rely on the hypothesis testing of Altmann et al. (2010).
To identify the significant predictor variables, the null hy-
pothesis “no association between slc and the corresponding
predictor variable” is tested. The corresponding p value is
evaluated by (1) computing the probability distribution of the
importance measure of each predictor variable through mul-
tiple replications (here 1000) of permuting slc; (2) training
a RF model; and (3) computing the permutation-based vari-
able importance. In this procedure, the p values quantify how
unlikely the variable importance in the non-permuted data is
with respect to the null distribution of variable importance
reached from the permutations. In practice, when the p value
is below a given significance threshold (typically of 5 %), it
indicates that the null hypothesis should be rejected, i.e., the
considered predictor variable has a significant influence on
slc. Figure C1 shows that four predictor variables have non-
significant influence with p values above 5 %, namely the
choice in the account for thermodynamics, the choice in the
sliding law, the type of initialisation and the number of years
for initialisation phase.

Figure C1. Screening analysis showing the p values of the RF
variable importance-based test of independence of Altmann et
al. (2010). The vertical red line indicates the significance thresh-
old at 5 %. When the p value is below 5 %, it indicates that the null
hypothesis should be rejected, i.e., the considered variable has a sig-
nificant influence, and should be retained in the RF construction.
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Figure C2. Count number of the MME members with respect to the variables identified as non-influential.

Appendix D: Formal definition of the performance
criteria

Let us consider the slc prediction error, i.e. e(i) = slc(i)−
ˆslc(i) for each test sample i = 1, . . . , ntest with ˆslc the mean

value provided by the RF model (see Appendix A). We con-
sider the following performance criteria:

– the relative absolute error (quoted as a percentage),

RAE=
1
ntest

ntest∑
i=1

∣∣∣∣ e(i)slc(i)

∣∣∣∣ , (D1)

– the coefficient of determination,

Q2
= 1−

ntest∑
i=1

(
e(i)
)2

ntest∑
i=1

(
slc(i)− slc

)2 (D2)

where slc is the average value of slc calculated over the
test set;

– the continuous rank probability score CRPS, that jointly
quantifies the calibration of qRF probability distribu-
tion, i.e. the reliability of the estimation, and its sharp-
ness (i.e. the concentration/dispersion of the probability
distribution). To evaluate CRPS, the formulation based
on quantiles (Bracher et al., 2021: Sect. 2.2) is used:

CRPS= 2

1∫
0

B(qτ
(
slc|x∗

)
,slctrue)dτ

≈
2
P

∑
τ∈0

B
(
qτ
(
slc|x∗

)
,slctrue) (D3)

where the term τB
(
qτ (slc|x∗) ,slctrue) is the quantile

loss function and defined as:{
(1− τ)

(
qτ (slc|x∗)− slctrue) if slctrue < qτ (slc|x∗)

τ
(
slctrue

− qτ (slc|x∗)
)

if slctrue
≥ qτ (slc|x∗)

,

where slctrue is the true value of the sea level contribu-
tion, and where the quantiles qτ (slc|x∗) are evaluated
using the trained qRF model at given instance of the in-
put variables x∗ for an equidistant dense grid of quantile
levels (τ1, . . ., τP ) with τi < τi+1 and τi+1− τi = 1/P .
In this study, we consider level τ1 = 5 % and τP =95 %
with 1/P = 5 %.

– the coverage αCA1− of the prediction intervals PIα at
significance level α defined as

CA1−α
=

1
ntest

ntest∑
i=1

I{slci∈PIα(xi)} , (D4)

where I{A} is the indicator function. CA1−α evaluates
the proportion of “true” slc that fall within the bounds
of the prediction interval. The interval PIα is well cali-
brated when CA1−α is close to the theoretical value of
1−α;

– the inter-quartile ratio iqri =(
q0.75 (slc|x∗)− q0.25 (slc|x∗)

)
/RMSE for the ith
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element of the test set (Bellon-Maurel et al., 2010).
This ratio allows to assess whether the emulator
prediction uncertainty measured by the difference
q0.75 (slc|x∗)− q0.25 (slc|x∗) is on the same order than
the prediction error measured by the root mean square

error RMSE=

√
1
ntest

ntest∑
i=1
(e(i))2. If iqr < 1 (> 1), this

indicates over- (under-) confidence in the emulator
prediction. An aggregated score is defined as:

IQR=
1
ntest

ntest∑
i=1
(iqri) (D5)

Appendix E: List of acronyms/abbreviations

AR Assessment Report
CMIP Coupled Model Intercomparison Project
CRPS Continuous Ranked Probability Score
GCM Global Climate Model
GrIS Greenland Ice-Sheet
GSAT Global Surface Atmosphere Temperature
GWL Global Warming Level
IPCC Intergovernmental Panel on Climate Change
IQR Ratio of performance to the interquartile distance
ISM Ice-Sheet Model
ISMIP Inter-Sectoral Impact Model Intercomparison Project
PI Prediction interval
qRF Quantile Random Forest
MME Multi-model ensemble
RAE Relative Absolue Error
RCM Regional Climate Model
RCP Representative Concentration Pathway
RF Random Forest
RMSE Root Mean Square Error
slc Sea level contribution
SMB Surface Mass Balance
SSP Shared Socio-economic Pathways
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