Articles | Volume 19, issue 1
https://doi.org/10.5194/tc-19-393-2025
https://doi.org/10.5194/tc-19-393-2025
Brief communication
 | 
28 Jan 2025
Brief communication |  | 28 Jan 2025

Brief communication: Monitoring snow depth using small, cheap, and easy-to-deploy snow–ground interface temperature sensors

Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren N. Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett

Related authors

Brief Communication: Decadal changes in topography, surface water and subsurface structure across an Arctic coastal tundra site
Jonathan Bachman, John Lamb, Craig Ulrich, Neslihan Taş, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2341,https://doi.org/10.5194/egusphere-2025-2341, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Runoff Evaluation in an Earth System Land Model for Permafrost Regions
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753,https://doi.org/10.5194/egusphere-2025-1753, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Environmental controls on observed spatial variability of soil pore water geochemistry in small headwater catchments underlain with permafrost
Nathan Alec Conroy, Jeffrey M. Heikoop, Emma Lathrop, Dea Musa, Brent D. Newman, Chonggang Xu, Rachael E. McCaully, Carli A. Arendt, Verity G. Salmon, Amy Breen, Vladimir Romanovsky, Katrina E. Bennett, Cathy J. Wilson, and Stan D. Wullschleger
The Cryosphere, 17, 3987–4006, https://doi.org/10.5194/tc-17-3987-2023,https://doi.org/10.5194/tc-17-3987-2023, 2023
Short summary
Disentangling the effect of geomorphological features and tall shrubs on snow depth variation in a sub-Arctic watershed using UAV derived products
Ian Shirley, Sebastian Uhlemann, John Peterson, Katrina Bennett, Susan S. Hubbard, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2023-968,https://doi.org/10.5194/egusphere-2023-968, 2023
Preprint archived
Short summary
Brief Communication: Effects of different saturation vapor pressure calculations on simulated surface-subsurface hydrothermal regimes at a permafrost field site
Xiang Huang, Charles J. Abolt, and Katrina E. Bennett
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-8,https://doi.org/10.5194/tc-2023-8, 2023
Manuscript not accepted for further review
Short summary

Related subject area

Discipline: Snow | Subject: Arctic (e.g. Greenland)
Predicting avalanche danger in northern Norway using statistical models
Kai-Uwe Eiselt and Rune Grand Graversen
The Cryosphere, 19, 1849–1871, https://doi.org/10.5194/tc-19-1849-2025,https://doi.org/10.5194/tc-19-1849-2025, 2025
Short summary
Impact of snow thermal conductivity schemes on pan-Arctic permafrost dynamics in the Community Land Model version 5.0
Adrien Damseaux, Heidrun Matthes, Victoria R. Dutch, Leanne Wake, and Nick Rutter
The Cryosphere, 19, 1539–1558, https://doi.org/10.5194/tc-19-1539-2025,https://doi.org/10.5194/tc-19-1539-2025, 2025
Short summary
Long-term development of a perennial firn aquifer on the Lomonosovfonna ice cap, Svalbard
Tim van den Akker, Ward van Pelt, Rickard Petterson, and Veijo A. Pohjola
The Cryosphere, 19, 1513–1525, https://doi.org/10.5194/tc-19-1513-2025,https://doi.org/10.5194/tc-19-1513-2025, 2025
Short summary
Assessment of Arctic seasonal snow cover rates of change
Chris Derksen and Lawrence Mudryk
The Cryosphere, 17, 1431–1443, https://doi.org/10.5194/tc-17-1431-2023,https://doi.org/10.5194/tc-17-1431-2023, 2023
Short summary
Observed and predicted trends in Icelandic snow conditions for the period 1930–2100
Darri Eythorsson, Sigurdur M. Gardarsson, Andri Gunnarsson, and Oli Gretar Blondal Sveinsson
The Cryosphere, 17, 51–62, https://doi.org/10.5194/tc-17-51-2023,https://doi.org/10.5194/tc-17-51-2023, 2023
Short summary

Cited articles

Bachand, C.: cbachand-LANL/iButton-SnowDepth-ML: Code for “Brief Communication: Monitoring snow depth using small, cheap, and easy-to-deploy snow-ground interface temperature sensors” (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.14657741, 2025. 
Bachand, C., Wang, C., Dafflon, B., Thomas, L., Shirley, I., Maebius, S., Iversen, C., and Bennett, K.: Machine learning snow depth predictions at sites in Alaska, Norway, Siberia, Colorado and New Mexico, Next-Generation Ecosystem Experiments (NGEE) Arctic, ESS-DIVE repository [data set], https://doi.org/10.15485/2371854, 2024. 
Bennett, K. E., Miller, G., Busey, R., Chen, M., Lathrop, E. R., Dann, J. B., Nutt, M., Crumley, R., Dillard, S. L., Dafflon, B., Kumar, J., Bolton, W. R., Wilson, C. J., Iversen, C. M., and Wullschleger, S. D.: Spatial patterns of snow distribution in the sub-Arctic, The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, 2022. 
Bennett, K., Bachand, C., Thomas, L., Gasarch, E., Thaler, E., and Crumley, R.: iButton and Tinytag snow/ground interface temperature measurements at Teller 27 and Kougarok 64 from 2022–2023, Next-Generation Ecosystem Experiments (NGEE) Arctic, ESS-DIVE repository [data set], https://doi.org/10.15485/2319246, 2024. 
Besso, H., Shean, D., and Lundquist, J. D.: Mountain snow depth retrievals from customized processing of ICESat-2 satellite laser altimetry, Remote Sens. Environ., 300, 113843, https://doi.org/10.1016/j.rse.2023.113843, 2024. 
Download
Short summary
Temporally continuous snow depth estimates are important for understanding changing snow patterns and impacts on frozen ground in the Arctic. In this work, we developed an approach to predict snow depth from variability in snow–ground interface temperature using small temperature sensors that are cheap and easy to deploy. This new technique enables spatially distributed and temporally continuous snowpack monitoring that has not previously been possible.
Share