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Abstract. Temporally continuous snow depth estimates are
vital for understanding changing snow patterns and impacts
on permafrost in the Arctic. We trained a random forest ma-
chine learning model to predict snow depth from variability
in snow–ground interface temperature. The model performed
well on Alaska’s Seward Peninsula where it was trained and
at Arctic evaluation sites (RMSE ≤ 0.15 m). It performed
poorly at temperate sites with deeper snowpacks, partially
due to training data limitations. Small temperature sensors
are cheap and easy to deploy, so this technique enables spa-
tially distributed and temporally continuous snowpack mon-
itoring at high latitudes to an extent previously infeasible.

1 Introduction

In the Arctic, snow is an important control on permafrost,
as it insulates the ground from cold winter temperatures
(Shirley et al., 2022a). Changing snow patterns (Bigalke and
Walsh, 2022) and associated ground insulation may acceler-
ate permafrost thaw, leading to the release of large amounts
of carbon into the atmosphere (Pedron et al., 2023). Further,
changing snow seasonality may alter growing season length
and carbon uptake by plants (Shirley et al., 2022b). Snow
depth is highly variable at fine spatial scales due to drifting
that is affected by topography, vegetation, and wind (Ben-

nett et al., 2022). Drifts form in topographic concavities
(e.g., stream beds), while tall shrubs entrap blowing snow.
As shrubs expand in the Arctic (Mekonnen et al., 2021), the
spatial distribution of snow drifts and subsequent impacts on
permafrost may change (Lathrop et al., 2024). Thus, moni-
toring and modeling fine-scale drifting processes are crucial
to understanding permafrost evolution.

These processes are poorly characterized in physics-based
models (Crumley et al., 2024), and improvements require ro-
bust and fine-scale snow depth validation. However, monitor-
ing the spatio-temporal variability of snow remains a chal-
lenge. Satellite data can be used to estimate snow depth
(Besso et al., 2024), but spatial and temporal resolutions are
too coarse to capture the complexity of Arctic snowpacks.
End-of-winter snow surveys in remote, high-latitude regions
are logistically difficult but capture the fine-scale spatial dis-
tribution of peak snow (Bennett et al., 2022). Machine learn-
ing (ML) models can be used to extrapolate snow survey
data, but these estimates still only represent a single point in
time (Bennett et al., 2022). The temporal evolution of snow
can be monitored using automated instruments (e.g., snow
sonic sensors deployed at Snow Telemetry (SNOTEL) sta-
tions; Fleming et al., 2023), but spatially distributed deploy-
ment is time-consuming and expensive.

To overcome these challenges, we designed a ML model to
extract snow depth from small, inexpensive temperature sen-

Published by Copernicus Publications on behalf of the European Geosciences Union.



394 C. L. Bachand et al.: Monitoring snow depth using snow–ground interface temperature sensors

sors located at the snow–ground interface. The model was
trained at 2 small sites on the Seward Peninsula, Alaska,
USA, and evaluated at 10 sites distributed across Alaska,
Colorado, and New Mexico (USA); Svalbard (Norway);
and Siberia (Russia). Snow dampens temporal variability in
snow–ground interface temperature (TSG), and thus snow
presence/absence and other snow properties can be identi-
fied from TSG data (Lundquist and Lott, 2008; Staub and De-
laloye, 2017). Yet, to our knowledge, this is the first time that
a complete time series of snow depth has been extracted from
TSG measurements alone.

2 Methods

We used data collected at two sites on the Seward Penin-
sula, Alaska (Fig. S1 in the Supplement): (1) a 2.3 km2 gently
sloping watershed located at mile marker 27 along the Nome-
Teller Highway near Nome, Alaska (hereafter Teller27), and
(2) a 2.5 km2 hillslope at mile marker 64 of the Nome-
Taylor Highway (hereafter Kougarok64). According to end-
of-winter snow surveys, the average peak snow depth from
2017–2019 at Teller27 was 0.96 m, with an average density
of 310 kg m−3 (Bennett et al., 2022). In 2018, snow depth
was shallower at Kougarok64 than at Teller27, with an aver-
age end-of-winter depth of 0.75 m and density of 290 kg m−3

(Bennett et al., 2022). Vegetation at Teller27 consisted of
mixed sedge–willow–Dryas tundra and mixed shrub–sedge
tussock tundra–bog, with some areas of tall willow shrubs
(Bennett et al., 2022). Vegetation at Kougarok64 consisted
of tussock–lichen tundra, alder savanna, tall willow shrubs
in willow–birch tundra, tall alder shrubs in alder shrublands,
and rocky areas with birch–ericaceous–lichen and sparse
Dryas–lichen dwarf shrub tundra (Bennett et al., 2022; Breen
et al., 2020).

2.1 Data collection at Teller27 and Kougarok64

Collocated snow depth and TSG data were obtained at 151 lo-
cations across Teller27 and Kougarok64 over the 2021–2022
snow season via distributed temperature profiling (DTP) sys-
tems (locations shown in Fig. S1; conceptual schematic in
Fig. S2) (Dafflon et al., 2022; Wang et al., 2024b). DTP sys-
tems were deployed in late September 2021, and snowfall
started on 20 October 2021. DTP systems measured temper-
atures vertically above the ground in 5 cm increments (seven
lowest temperature sensors) to 10 cm increments (eight high-
est sensors), to a maximum height of 1.67 m. When a sen-
sor is covered by snow, high-frequency fluctuation in tem-
perature drops dramatically, allowing snow depth to be esti-
mated from sensor heights. The estimated snow depths have
an uncertainty of ±2.5 cm or ±5 cm, depending on the sen-
sor spacing. We estimated TSG from the temperature sensor
closest to the snow–ground interface, which ranged from 1 to
5 cm above the ground surface, and thus avoided impacts of

soil or moss on the TSG estimate. Additionally, we extracted
shallow subsurface temperature measurements recorded 1 to
5 cm below the ground surface from soil DTP systems de-
ployed into the ground (Wang et al., 2024a). The 15 min DTP
data were averaged into 4 h intervals to match the temporal
resolution of the miniature temperature sensors described be-
low.

Miniature iButton temperature sensors deployed at the
sites (237 total, Figs. S1, S2) recorded TSG from 1 Octo-
ber 2022 to 18 September 2023 in 4 h intervals. iButtons were
placed in vacuum-sealed bags and distributed across variable
topography and vegetation to capture a broad range of snow
conditions. We use the term tall shrubs to refer to decidu-
ous shrubs greater than 0.4 m tall with the capacity to reach
heights over 2 m (Sulman et al., 2021). A total of 59 iBut-
tons were placed in tall shrubs (89 outside of tall shrubs) at
Teller27, while 41 were placed in tall shrubs (48 outside of
tall shrubs) at Kougarok64.

2.2 Machine learning model development

Using collocated DTP TSG and snow depth estimates
(Sect. 2.1), we developed a random forest ML model to pre-
dict snow depth from TSG-derived features, which we refer
to hereafter as “RF-Seward”. We also tested a linear model,
a simple neural network, and a long short-term memory
(LSTM) model. We chose a random forest as it outperformed
or performed similarly to other models. A random forest is
simple to design, computationally inexpensive, and easy to
interpret. We identified key model features using permutation
importance, which reflects how model performance changes
when an input feature is randomly shuffled (Breiman, 2001).
Larger decreases in performances indicate greater feature im-
portance.

We trained RF-Seward on features derived from the 4 h
DTP TSG data using the hyperparameter values listed in Ta-
ble S1 in the Supplement. For each day, we calculated daily
TSG maximum and range. We also considered TSG minimum,
mean, and standard deviation, but these features were highly
correlated (Pearson’s r > 0.9) with other higher-performing
features. To temporally situate RF-Seward (i.e., incorporate
information on neighboring snow conditions) and to smooth
its predictions, we included daily TSG standard deviations av-
eraged over a 30 d window (length tuned using the validation
dataset) prior to, surrounding, and following each day as fea-
tures in the model. Further, we tested air-temperature-derived
features, but they did not measurably improve RF-Seward.
Ultimately, RF-Seward generated a snow depth prediction
for each individual day based on the following TSG-derived
features (listed in order of permutation feature importance):
window surrounding, window following, window prior, daily
TSG range, and daily TSG maximum. After finalizing RF-
Seward, we retrained the model on all training (96 DTP sys-
tems) and validation (24 DTP systems) data and evaluated its
performance on the randomly selected test dataset (31 DTP
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systems). More details on how the training, validation, and
test datasets were applied are available in the Supplement,
Fig. S3.

Because temperature sensors are often buried under a
small layer of soil to protect them from direct solar radi-
ation or to monitor soil temperatures (e.g., Lundquist and
Lott, 2008), we trained a second ML model, which we refer
to as “RF-Below”. We used the same hyperparameters and
features as RF-Seward but calculated features from shallow
subsurface temperatures measured by 95 soil DTP systems
(76 training and 19 test systems, locations shown in Fig. S1).

2.3 Additional model evaluation and application to
iButtons

2.3.1 Model transferability

To test model transferability, we trained RF-Seward and RF-
Below at Teller27 and tested at Kougarok64 and vice versa.
Further, we applied RF-Seward and RF-Below to 10 eval-
uation datasets where TSG and snow depth measurements
were collocated (within approximately 5 m of each other).
Sites were located in the United States (Alaska, Colorado,
and New Mexico), Norway (Svalbard) and Russia (Siberia),
with temperature sensors placed at the snow–ground inter-
face or within the top 5 cm of soil (see Table S3). Snow
depth was also recorded at the sites (e.g., snow sonic sen-
sors at automated weather stations) and was used to evaluate
model performance. End-of-season snowpack bulk densities
varied among sites and ranged from 180 kg m−3 (Samoylov
Island, Siberia, Russia) to 450 kg m−3 (Senator Beck Basin,
CO, USA). Vegetation also varied (Table S3). At Samoylov
Island, the temperature sensors were covered by a thick layer
of tundra vegetation, while at sites in New Mexico, USA,
vegetation consisted of sparse grasses. Prior to this evalua-
tion, we retrained RF-Seward and RF-Below on all available
DTP data (training, validation, and test data). By training on
all available data, we aimed to maximize model performance
by introducing the model to a broader range of snow depths
and temperature responses.

2.3.2 Performance in deep snow

The training data at our study sites were limited to a max-
imum of 1.77 m due to the length of DTP system probes,
and thus RF-Seward and RF-Below cannot predict depths
greater than 1.77 m. To test if ML could accurately predict
deeper snow depths, we trained a third ML model, which
we refer to as “RF-Deep”. To train this model, we supple-
mented our original Seward Peninsula training dataset with
additional data from two model evaluation sites in Senator
Beck Basin, CO, USA, with deeper snowpacks (Table S3).
The model was applied to one site and trained with data from
the other (in addition to the Seward Peninsula DTP data). To
mimic the distribution of snow depths at these sites, we en-

sured that 10 % of the training data consisted of snow depths
above 2 m. This reduced the training dataset size compared
to other models (Table S2).

2.3.3 Model application to iButtons

We applied RF-Seward to iButtons deployed at Teller27 and
Kougarok64 (Sect. 2.1) to assess how tall shrubs affect snow
depth and TSG. We divided the iButtons into two groups:
within and outside of tall shrubs. We averaged TSG mea-
surements and snow depth predictions over a period corre-
sponding to peak snow (20 March–9 April). We used the
non-parametric Wilcoxon rank-sum test (Wilcoxon, 1945) to
identify statistical differences in snow and TSG conditions be-
tween shrubs and no shrubs.

3 Results and discussion

RF-Seward performed well on the test dataset (R2
= 0.87;

RMSE= 0.15 m; mean bias= 0.03 m; Fig. 1a) but un-
derestimated snow depths when trained at Teller27 and
tested at Kougarok64 (R2

= 0.85; RMSE = 0.17 m; mean
bias=−0.10 m; Fig. 1b) and overestimated snow depths
when trained at Kougarok64 and tested at Teller27 (R2

=

0.72; RMSE= 0.22 m; mean bias= 0.05 m; Fig. 1c). Dif-
fering air temperature regimes between Teller27 (warmer)
and Kougarok64 (colder) may have contributed to these bi-
ases (i.e., the same snow depth at the two locations corre-
sponded to different TSG). However, all RF-Seward features
were derived from TSG variability (not magnitudes), except
for TSG maximum. Excluding TSG maximum from the model
(not shown) did not eliminate the biases seen in Fig. 1b, c,
suggesting that these errors may be tied to factors that af-
fect TSG ranges (e.g., latent heat processes). RF-Below per-
formed worse than RF-Seward and did not transfer as well
between sites (Fig. 1d–f), likely due to variability in ground
insulation properties (i.e., soil type, vegetation, etc.), which
confound the snow insulation effect. Further, warmer and/or
wetter sites (e.g., Teller27) undergo more freezing and thaw-
ing than colder and/or drier sites (e.g., Kougarok64), produc-
ing zero-curtain periods where the key snow depth predic-
tor (temperature variability) flattens at 0 °C as water changes
phase (Staub and Delaloye, 2017).

RF-Seward performed well at the two sites where TSG
data were available in the Arctic: Bayelva Station in Nor-
way (RMSE= 0.15 m; mean bias= 0.02 m; Fig. 2a) and Im-
navait Creek, on Alaska’s North Slope (RMSE = 0.08 m;
mean bias=−0.04 m; Fig. 2b), indicating that the model
may be transferable to other pan-Arctic locations. Addi-
tionally, we tested RF-Seward and RF-Below at four sites
in the Arctic where temperature was recorded below the
ground surface. At Samoylov Island, Russia (Fig. 2e), sen-
sors were placed below an insulating layer of wet tundra veg-
etation, which caused RF-Seward to overpredict snow depth
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Figure 1. Performance of RF-Seward (a) evaluated using test data,
(b) when trained at Teller27 and tested at Kougarok64 and (c) vice
versa. (d–f) Same as (a)–(c) but for RF-Below. Time series plots of
DTP snow depth data vs. ML estimates when (g) trained at both
sites, (h) at Teller2, and (i) at Kougarok64. The dotted red line
shows the daily TSG range, with narrower temperature ranges oc-
curring under deeper snow cover. “Train N” refers to the number of
DTP sensors used to train each model.

(mean bias= 0.40 m). RF-Below decreased overestimations
at Samoylov Island (mean bias= 0.14 m) and at other sites
in Alaska (Fig. 2c, d, f). RF-Below performed best at sites
near Council on the Seward Peninsula, Alaska, USA, likely
because vegetation at these sites is most similar to vegetation
at the training study sites.

In New Mexico, USA, paired iButtons recorded above-
and belowground temperature data at two sites (A and B).
Predictions from iButtons placed above the ground surface
were averaged into a single RF-Seward estimate, while pre-
dictions from iButtons placed below the ground surface were
averaged into a single RF-Below estimate. At Site B, RF-
Seward and RF-Below underpredicted peak snow by about
0.07 m (Fig. 2g). RF-Seward performed better at Site A (ob-
served peak snow= 0.18 m; predicted= 0.16 m), although
RF-Below still underpredicted peak snow by 0.10 m, pos-
sibly because the model expected insulating tundra vege-
tation. Both models performed worse when applied in the
wrong context (i.e., RF-Seward overpredicted peak snow by
0.13 m when applied to belowground data; RF-Below under-
predicted peak snow by 0.16 m when applied to aboveground
data), indicating that excess insulation from a thin layer of
soil or vegetation will be confused for snow.

Performance at the New Mexico, USA, sites fell within
RF-Seward and RF-Below’s typical ranges, despite the
higher end-of-season bulk density compared to Arctic snow
(∼ 400 kg m−3 vs. 300 kg m−3). However, zero-curtain peri-
ods (ZCPs) caused the model to occasionally overestimate
snow depth. For the aboveground iButtons, ZCPs were likely
caused by water pooling and freezing on top of the iButton’s
vacuum-sealed bag and by water freezing at the bottom of
the snowpack following rain on snow (ROS; Staub and De-
laloye, 2017). In New Mexico, USA, ROS occurred from 21–
25 January 2024, leading to an erroneous snow accumulation
event in Fig. 2g. ZCPs were more prevalent in the below-
ground data due to the repetitive freeze–thaw of the soils dur-
ing snow-free periods of the winter, causing erroneous RF-
Below predictions (e.g., early snow accumulation in Fig. 2g).
Our results suggest that RF-Below will perform poorly for
warm, ephemeral snowpacks, which are expected to become
more common as the climate warms (Wieder et al., 2022).
ZCPs completely dampen TSG variability and therefore un-
couple TSG from snow depth. Even given training data more
representative of ZCPs, snow depth estimates may remain
unreliable during these periods. Incorporating features into
the model which indicate the presence of ZCPs may reduce
these errors. Further, deploying iButtons at the snow–ground
interface (rather than below the ground) decreases the num-
ber of ZCPs in the temperature data.

Belowground temperature data were recorded at Grand
Mesa, Colorado, USA (Fig. 2h), while TSG was recorded at
two sites in Senator Beck Basin, Colorado, USA (Fig. 2i–
j). These sites accumulated more snow (up to 2.85 m)
than the sites where RF-Seward was trained (maximum
depth= 1.77 m), resulting in underpredictions of deep snow
at these sites (Fig. 2h–j). RF-Deep predicted deeper snow
depths than RF-Seward, although predictions still leveled off
prematurely for some years (e.g., 2008–2009 in Fig. 2j). RF-
Deep also appeared visually noisy compared to RF-Seward,
possibly due to the smaller training dataset (Table S2) and
lower-quality training data (i.e., temperature and snow depth
measurements were not perfectly collocated). RF-Deep’s
poor performance indicates that at a certain depth, TSG may
be dampened to the extent that ML can no longer accurately
predict snow depth. Past research has shown that snow depths
greater than 0.5 m can completely insulate the ground, al-
though even snowpacks deeper than 4 m are not always fully
insulating (Slater et al., 2017; Staub and Delaloye, 2017,
their Fig. 5). Because of this, it is likely that deep snow de-
creases the predictive value of TSG measurements, which will
have a minimal effect on understanding soil temperature but
could cause major errors when estimating water availability
from snow depth predictions.

Model application to iButtons

Shrubs can entrain blowing snow, resulting in snow
drifts (Bennett et al., 2022). Averaged from 20 March–
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Figure 2. ML performance at (a) Bayelva Station, Svalbard, Norway (Boike et al., 2017, 2018); (b) Imnavait Creek, Alaska, USA (Sturm
and Holmgren, 1994; Stuefer et al., 2020); (c, d) Council, Alaska, USA (Hinzman et al., 2016); (e) Samoylov Island, Siberia, Russia (Boike
et al., 2019a, b); (f) Ivotuk, Alaska, USA (Hinzman et al., 2016); (g) Los Alamos, New Mexico, USA (Thomas et al., 2024); (h) Grand
Mesa, Colorado, USA (Houser et al., 2022); and (i, j) Senator Beck Basin, Colorado, USA (Center for Snow and Avalanche Studies, 2024;
Landry et al., 2014). Locations are shown on a map, with the yellow star indicating the Seward Peninsula of Alaska, USA, where RF-Seward
was trained. The black lines show measured snow depth at each site. The y-axis and RMSE values indicate snow depth in meters. Note the
adjusted y axis for Los Alamos, New Mexico, USA (g). For this site, we also show RF-Seward and RF-Below predictions when RF-Below
was applied above the ground and RF-Seward was applied below the ground (dotted lines).

9 April 2023, the ML model estimated 0.29 m more snow for
iButtons deployed in tall shrubs than outside of tall shrubs
(p < 0.001). This result may be biased low as RF-Seward
rarely predicted more than 1.5 m of snow due to training
data limitations. TSG averaged from 20 March to 9 April
was 1.94 °C warmer in tall shrubs than outside of tall shrubs
(p < 0.001). This provides evidence that increasing Arctic
shrubification (Mekonnen et al., 2021) may increase snow
depths, insulate the subsurface in winter, and accelerate per-
mafrost thaw as suggested by Sturm et al. (2001). However,

topographic and landscape characteristics can drive the for-
mation of deep snow drifts even without the presence of
tall shrubs (Parr et al., 2020). The iButton with the fourth-
highest snow depth prediction, averaged from 20 March to
9 April (1.45 m), was placed in short grasses adjacent to a
stream bed, which likely experienced snow drifting due to
topographic concavity (Parr et al., 2020). Similarly, the iBut-
ton with the fifth-highest snow depth prediction (1.44 m) was
placed near the edge of dense tall shrubs, where snow may
have also accumulated (Currier and Lundquist, 2018).
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4 Conclusions

We trained a ML model to predict snow depth from variabil-
ity in snow–ground interface temperature. The model per-
formed well on the test dataset and at two Arctic evaluation
sites (RMSE≤ 0.15 m). Small temperature sensors are cheap
and easy to deploy, so this technique enabled spatially dis-
tributed and temporally continuous snowpack monitoring to
an extent previously infeasible. Additional collocated TSG
and snow depth observations could be used to retrain the
model and enhance its transferability. While the model gen-
erally performed well, rain on snow and zero-curtain peri-
ods caused the model to erroneously predict snow accumula-
tion events. Further, the model failed to replicate deep snow
(greater than 1.5 m) observed in Colorado, USA. For optimal
performance, the model should be applied to temperatures
recorded at the snow–ground interface. Predictions made us-
ing subsurface temperatures were impacted by varying soil
types, vegetation properties, and latent heat processes. Us-
ing ML predictions, we found that snow at Teller27 and
Kougarok64 was significantly deeper in patches of tall shrubs
than outside of tall shrubs, and TSG averaged from 20 March
to 9 April was on average 1.94 °C warmer within tall shrubs.

Future research should focus on developing this technique
for locations where peak snow depths exceed 1.5 m (e.g.,
Colorado, USA), as these regions are crucial for water se-
curity across the world. While deep snow may completely
dampen TSG, it is possible that the ML model will per-
form better given a larger and more representative training
dataset and/or additional input features. Alternatively, this
technique could be combined with other monitoring and/or
modeling efforts. For example, snow depth estimates made
early in the snow season (e.g., when snow is shallow) could
be used to estimate snow variability across the landscape and
to downscale coarse model or remote sensing snow depth es-
timates. Further, the application of a ML model tailored to-
wards time series estimates (e.g., a long short-term memory
model; LSTM) could improve predictions. In this study, we
only had 1 year of data, which likely limited the LSTM’s
performance. With a longer-term dataset, we could provide
the LSTM with more training points and a longer look-back
window (e.g., an entire snow season), which would likely
enhance its performance. Additionally, how snow stratigra-
phy and density affect model results remains unclear. The
sites examined here typically experienced frozen soil prior to
snowmelt, and therefore, how unfrozen soils affect ML pre-
dictions should also be explored.

Code and data availability. Snow depth predictions are avail-
able on the Environmental System Science Data Infrastruc-
ture for a Virtual Ecosystem (ESS-DIVE) data portal (Bac-
hand et al., 2024; https://doi.org/10.15485/2371854). The data
package includes a *.csv file of RF-Seward and RF-Below
predictions at sites in the United States (Alaska, Colorado,
and New Mexico), Norway, and Russia (Siberia). The ma-
chine learning model is available on GitHub (https://github.com/
cbachand-LANL/iButton-SnowDepth-ML, last access: 22 Jan-
uary 2025, https://doi.org/10.5281/zenodo.14657741, Bachand,
2025). The code package includes a *.joblib file of the trained
RF-Seward model, which can be downloaded and directly ap-
plied to new datasets. Example workflows for cleaning data
inputs, training machine learning models, and making pre-
dictions are also included in an *.ipynb file. iButton tem-
perature measurements at Teller27 and Kougarok64 (Bennett
et al., 2024; https://doi.org/10.15485/2319246) and at the Los
Alamos, New Mexico, USA, study sites (Thomas et al., 2024;
https://doi.org/10.15485/2338028) are available on ESS-DIVE, to-
gether with the DTP temperature and snow depth data used in this
study (https://doi.org/10.15485/2475020, Wang et al., 2024b).
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