Articles | Volume 19, issue 1
https://doi.org/10.5194/tc-19-267-2025
https://doi.org/10.5194/tc-19-267-2025
Research article
 | 
22 Jan 2025
Research article |  | 22 Jan 2025

Creep enhancement and sliding in a temperate, hard-bedded alpine glacier

Juan-Pedro Roldán-Blasco, Adrien Gilbert, Luc Piard, Florent Gimbert, Christian Vincent, Olivier Gagliardini, Anuar Togaibekov, Andrea Walpersdorf, and Nathan Maier

Related authors

Development of a Semi-Lagrangian advection scheme in the Finite Element Model Elmer (v9.0): Application to Ice dynamics
Cyrille Mosbeux, Peter Råback, Adrien Gilbert, Julien Brondex, Fabien Gillet-Chaulet, Nicolas C. Jourdain, Mondher Chekki, Olivier Gagliardini, and Gaël Durand
EGUsphere, https://doi.org/10.5194/egusphere-2025-3039,https://doi.org/10.5194/egusphere-2025-3039, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Qualification of an online device for the measurement of the oxidative potential of atmospheric particulate matter
Albane Barbero, Guilhem Freche, Luc Piard, Lucile Richard, Takoua Mhadhbi, Anouk Marsal, Stephan Houdier, Julie Camman, Mathilde Brezins, Benjamin Golly, Jean-Luc Jaffrezo, and Gaëlle Uzu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2021,https://doi.org/10.5194/egusphere-2025-2021, 2025
Short summary
How to model crevasse initiation? Lessons from the artificial drainage of a water-filled cavity on the Tête Rousse Glacier (Mont Blanc range, France)
Julien Brondex, Olivier Gagliardini, Adrien Gilbert, and Emmanuel Thibert
EGUsphere, https://doi.org/10.5194/egusphere-2025-2137,https://doi.org/10.5194/egusphere-2025-2137, 2025
Short summary
Saharan dust impacts on the surface mass balance of Argentière Glacier (French Alps)
Léon Roussel, Marie Dumont, Marion Réveillet, Delphine Six, Marin Kneib, Pierre Nabat, Kevin Fourteau, Diego Monteiro, Simon Gascoin, Emmanuel Thibert, Antoine Rabatel, Jean-Emmanuel Sicart, Mylène Bonnefoy, Luc Piard, Olivier Laarman, Bruno Jourdain, Mathieu Fructus, Matthieu Vernay, and Matthieu Lafaysse
EGUsphere, https://doi.org/10.5194/egusphere-2025-1741,https://doi.org/10.5194/egusphere-2025-1741, 2025
Short summary
Distributed surface mass balance of an avalanche-fed glacier
Marin Kneib, Amaury Dehecq, Adrien Gilbert, Auguste Basset, Evan S. Miles, Guillaume Jouvet, Bruno Jourdain, Etienne Ducasse, Luc Beraud, Antoine Rabatel, Jérémie Mouginot, Guillem Carcanade, Olivier Laarman, Fanny Brun, and Delphine Six
The Cryosphere, 18, 5965–5983, https://doi.org/10.5194/tc-18-5965-2024,https://doi.org/10.5194/tc-18-5965-2024, 2024
Short summary

Cited articles

Adams, C. J., Iverson, N. R., Helanow, C., Zoet, L. K., and Bate, C. E.: Softening of Temperate Ice by Interstitial Water, Front. Earth Sci., 9, 1–11, https://doi.org/10.3389/feart.2021.702761, 2021. a
Amundson, J. M., Truffer, M., and Lüthi, M. P.: Time-dependent basal stress conditions beneath Black Rapids Glacier, Alaska, USA, inferred from measurements of ice deformation and surface motion, J. Glaciol., 52, 347–357, https://doi.org/10.3189/172756506781828593, 2006. a
Arthern, R. J. and Gudmundsson, G. H.: Initialization of ice-sheet forecasts viewed as an inverse Robin problem, J. Glaciol., 56, 527–533, https://doi.org/10.3189/002214310792447699, 2010. a
Barnes, P., Tabor, D., and Walker, J. C. F.: The friction and creep of polycrystalline ice, P. Roy. Soc. Lond. A, 324, 127–155, https://doi.org/10.1098/rspa.1971.0132, 1971. a, b
Behn, M. D., Goldsby, D. L., and Hirth, G.: The role of grain size evolution in the rheology of ice: implications for reconciling laboratory creep data and the Glen flow law, The Cryosphere, 15, 4589–4605, https://doi.org/10.5194/tc-15-4589-2021, 2021. a
Download
Short summary
The flow of glaciers and ice sheets results from ice deformation and basal sliding driven by gravitational forces. Quantifying the rate at which ice deforms under its own weight is critical for assessing glacier evolution. This study uses borehole instrumentation in an Alpine glacier to quantify ice deformation and constrain ice viscosity in a natural setting. Our results show that the viscosity of ice at 0 °C is largely influenced by interstitial liquid water, which enhances ice deformation.
Share