Articles | Volume 19, issue 7
https://doi.org/10.5194/tc-19-2387-2025
https://doi.org/10.5194/tc-19-2387-2025
Research article
 | 
03 Jul 2025
Research article |  | 03 Jul 2025

The impact of regional-scale upper-mantle heterogeneity on glacial isostatic adjustment in West Antarctica

Erica M. Lucas, Natalya Gomez, and Terry Wilson

Related authors

Advancing geodynamic research in Antarctica: reprocessing GNSS data to infer consistent coordinate time series (GIANT-REGAIN)
Eric Buchta, Mirko Scheinert, Matt A. King, Terry Wilson, Achraf Koulali, Peter J. Clarke, Demián Gómez, Eric Kendrick, Christoph Knöfel, and Peter Busch
Earth Syst. Sci. Data, 17, 1761–1780, https://doi.org/10.5194/essd-17-1761-2025,https://doi.org/10.5194/essd-17-1761-2025, 2025
Short summary
Impact of glacial isostatic adjustment on zones of potential grounding line stability in the Ross Sea Embayment (Antarctica) since the Last Glacial Maximum
Samuel T. Kodama, Tamara Pico, Alexander A. Robel, John Erich Christian, Natalya Gomez, Casey Vigilia, Evelyn Powell, Jessica Gagliardi, Slawek Tulaczyk, and Terrence Blackburn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3465,https://doi.org/10.5194/egusphere-2024-3465, 2024
Short summary
Mapping geodetically inferred Antarctic ice surface height changes into thickness changes: a sensitivity study
Natasha Valencic, Linda Pan, Konstantin Latychev, Natalya Gomez, Evelyn Powell, and Jerry X. Mitrovica
The Cryosphere, 18, 2969–2978, https://doi.org/10.5194/tc-18-2969-2024,https://doi.org/10.5194/tc-18-2969-2024, 2024
Short summary
Quantifying the uncertainty in the Eurasian ice-sheet geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6)
Oliver G. Pollard, Natasha L. M. Barlow, Lauren J. Gregoire, Natalya Gomez, Víctor Cartelle, Jeremy C. Ely, and Lachlan C. Astfalck
The Cryosphere, 17, 4751–4777, https://doi.org/10.5194/tc-17-4751-2023,https://doi.org/10.5194/tc-17-4751-2023, 2023
Short summary
Resolving glacial isostatic adjustment (GIA) in response to modern and future ice loss at marine grounding lines in West Antarctica
Jeannette Xiu Wen Wan, Natalya Gomez, Konstantin Latychev, and Holly Kyeore Han
The Cryosphere, 16, 2203–2223, https://doi.org/10.5194/tc-16-2203-2022,https://doi.org/10.5194/tc-16-2203-2022, 2022
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
Bathymetry-constrained warm-mode melt estimates derived from analysing oceanic gateways in Antarctica
Lena Nicola, Ronja Reese, Moritz Kreuzer, Torsten Albrecht, and Ricarda Winkelmann
The Cryosphere, 19, 2263–2287, https://doi.org/10.5194/tc-19-2263-2025,https://doi.org/10.5194/tc-19-2263-2025, 2025
Short summary
Satellite data reveal details of glacial isostatic adjustment in the Amundsen Sea Embayment, West Antarctica
Matthias O. Willen, Bert Wouters, Taco Broerse, Eric Buchta, and Veit Helm
The Cryosphere, 19, 2213–2227, https://doi.org/10.5194/tc-19-2213-2025,https://doi.org/10.5194/tc-19-2213-2025, 2025
Short summary
Review article: Feature tracing in radio-echo sounding products of terrestrial ice sheets and planetary bodies
Hameed Moqadam and Olaf Eisen
The Cryosphere, 19, 2159–2196, https://doi.org/10.5194/tc-19-2159-2025,https://doi.org/10.5194/tc-19-2159-2025, 2025
Short summary
Viscoelastic mechanics of tidally induced lake drainage in the grounding zone
Hanwen Zhang, Richard F. Katz, and Laura A. Stevens
The Cryosphere, 19, 2087–2103, https://doi.org/10.5194/tc-19-2087-2025,https://doi.org/10.5194/tc-19-2087-2025, 2025
Short summary
A facet-based numerical model to retrieve ice sheet topography from Sentinel-3 altimetry
Jérémie Aublanc, François Boy, Franck Borde, and Pierre Féménias
The Cryosphere, 19, 1937–1954, https://doi.org/10.5194/tc-19-1937-2025,https://doi.org/10.5194/tc-19-1937-2025, 2025
Short summary

Cited articles

Adhikari, S., Milne, G. A., Caron, L., Khan, S. A., Kjeldsen, K. K., Nilsson, J., Larour, E., and Ivins, E. R.: Decadal to centennial timescale mantle viscosity inferred from modern crustal uplift rates in Greenland, Geophys. Res. Lett., 48, e2021GL094040, https://doi.org/10.1029/2021GL094040, 2021. 
Afonso, J. C., Salajegheh, F., Szwillus, W., Ebbing, J., and Gaina, C.: A global reference model of the lithosphere and upper mantle from joint inversion and analysis of multiple data sets, Geophys. J. Int., 217, 1602–1628, https://doi.org/10.1093/gji/ggz094, 2019. 
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W.: The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories, Geophys. J. Int., 198, 537–563, https://doi.org/10.1093/Gji/Ggu140, 2014. 
Austermann, J., Mitrovica, J. X., Latychev, K., and Milne, G. A.: Barbados-based estimate of ice volume at Last Glacial Maximum affected by subducted plate, Nat. Geosci., 6, 553–557, https://doi.org/10.1038/ngeo1859, 2013. 
Balco, G., Brown, N., Nichols, K., Venturelli, R. A., Adams, J., Braddock, S., Campbell, S., Goehring, B., Johnson, J. S., Rood, D. H., Wilcken, K., Hall, B., and Woodward, J.: Reversible ice sheet thinning in the Amundsen Sea Embayment during the Late Holocene, The Cryosphere, 17, 1787–1801, https://doi.org/10.5194/tc-17-1787-2023, 2023. 
Download
Short summary
We investigate the effects of incorporating regional-scale lateral variability (ca. 50–100 km) in upper-mantle structure into models of Earth deformation and sea level change associated with ice mass changes in West Antarctica. Regional-scale variability in upper-mantle structure is found to impact relative sea level and crustal rate predictions for modern (last ca. 25–125 years) and projected (next ca. 300 years) ice mass changes, especially in coastal regions that undergo rapid ice mass loss.
Share