Articles | Volume 19, issue 6
https://doi.org/10.5194/tc-19-2133-2025
https://doi.org/10.5194/tc-19-2133-2025
Research article
 | 
23 Jun 2025
Research article |  | 23 Jun 2025

Improved basal drag of the West Antarctic Ice Sheet from L-curve analysis of inverse models utilizing subglacial hydrology simulations

Lea-Sophie Höyns, Thomas Kleiner, Andreas Rademacher, Martin Rückamp, Michael Wolovick, and Angelika Humbert

Related authors

On the evolution of an ice shelf melt channel at the base of Filchner Ice Shelf, from observations and viscoelastic modeling
Angelika Humbert, Julia Christmann, Hugh F. J. Corr, Veit Helm, Lea-Sophie Höyns, Coen Hofstede, Ralf Müller, Niklas Neckel, Keith W. Nicholls, Timm Schultz, Daniel Steinhage, Michael Wolovick, and Ole Zeising
The Cryosphere, 16, 4107–4139, https://doi.org/10.5194/tc-16-4107-2022,https://doi.org/10.5194/tc-16-4107-2022, 2022
Short summary

Cited articles

Arthern, R. and Gudmundsson, G.: Initialization of ice-sheet forecasts viewed as an inverse Robin problem, J. Glaciol., 56, 527–533, https://doi.org/10.3189/002214310792447699, 2010. a
Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res.-Atmos., 111, D06107, https://doi.org/10.1029/2004JD005667, 2006. a, b
Arthern, R. J., Hindmarsh, R. C. A., and Williams, C. R.: Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations, J. Geophys. Res.-Earth, 120, 1171–1188, https://doi.org/10.1002/2014JF003239, 2015. a, b, c, d
Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: Modern Software Tools for Scientific Computing, chap. Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries, 163–202, Birkhäuser, Boston, MA, ISBN 978-1-4612-1986-6, https://doi.org/10.1007/978-1-4612-1986-6_8, 1997. a
Download
Short summary
The sliding of glaciers over bedrock is influenced by water pressure in the underlying hydrological system and the roughness of the land underneath the glacier. We estimate this roughness through a modeling approach that optimizes this unknown parameter. Additionally, we simulate water pressure, enhancing the reliability of the computed drag at the ice sheet base. The resulting data are provided to other modelers and scientists conducting geophysical field observations.
Share