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Abstract. The West Antarctic Ice Sheet (WAIS) is the focus
of current research due to its susceptibility to collapse, which
could potentially contribute to rising sea levels. To accurately
predict future glacier evolution, precise ice sheet models are
essential. The ice discharge of outlet glaciers into the ocean
is one key factor here, primarily caused by the basal sliding
of ice. Since we cannot directly measure basal properties on
a large scale, inverse models can be used to infer the basal
drag coefficient by minimizing a cost function that depends
on a velocity misfit and a regularization term.

We conduct various basal drag inversions to obtain an im-
proved basal drag distribution for the WAIS. Additionally,
we perform L-curve analyses to determine the optimal trade-
off between the cost function terms that result in smooth L-
curves. The domain L-curve is divided into eight subdomains
of the study area to assess how well the inverse method per-
forms in different glaciological settings. Pine Island Glacier
exhibits the smoothest L-curves, while slow-flowing regions
such as Roosevelt Island reveal rather poorly shaped L-curve
behavior for the basal drag inversion. This highlights the im-
portance of performing a subdomain L-curve analysis for
large-scale inversions to discover potential problematic re-
gions and to establish suitable regularization for different
physical conditions.

Comprehensive basal drag inversion experiments allow us
to test the dependence of both the L-curves and the basal
drag results on the nonlinearity of sliding and the inclusion
of subglacial effective pressure in the friction law. The anal-
ysis suggests that nonlinear friction laws are preferable to

linear sliding because of reduced variance in the overall in-
ferred friction coefficient and steeper L-curves leading to a
more well-defined corner region. We show that a Budd-type
friction law that incorporates effective pressure from a sub-
glacial hydrology model rather than a simple geometry-based
approximation achieves improved performance in our inverse
model in terms of the total model variance ratio, along with
faster convergence and smoother L-curves. Further compar-
ison reveals that the basal drag coefficient field has a less
variable spatial structure when an effective pressure from the
hydrology model is used instead of a parameterized effective
pressure, allowing us to interpret the inverted drag coefficient
more precisely in terms of the basal properties rather than the
basal hydrology.

1 Introduction

The West Antarctic Ice Sheet (WAIS) experiences massive
ice loss and is currently the major Antarctic contributor to
sea-level change (Shepherd et al., 2018; Naughten et al.,
2023). The instability of the WAIS and the related ongoing
melt may lead to a future global sea-level rise of about 3.3m
(Bamber et al., 2009).

The ongoing development of ice sheet models (e.g., Blat-
ter et al., 2010; Seroussi et al., 2019) is driven by advance-
ments in research and the resulting improved understanding
of ice sheet behavior. These improvements enhance our in-
sights into key processes, such as ice dynamics and the on-
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going melting. Consequently, more accurate initial states for
ice sheet models can be established, further minimizing un-
certainties in future projections (Seroussi et al., 2019). In the
context of a deeper understanding of ice sheet processes and
improved initial conditions, it is particularly important to ex-
amine friction distribution at the ice–bed interface. This pro-
cess has a major influence on ice velocity, especially in fast-
flowing areas (e.g., Engelhardt and Kamb, 1998), but cannot
be measured on large scales. However, since remote sens-
ing data, such as ice surface velocities, are available, the
problem of determining the basal drag can be mathemati-
cally identified as an inverse problem. Solving such prob-
lems through optimal control methods can help to represent
unknown parameters. The use of inversion techniques to in-
fer the basal drag coefficient is a common approach within
the glaciology community (MacAyeal, 1993; Joughin et al.,
2004, 2009; Morlighem et al., 2010, 2013; Habermann et al.,
2012; Sergienko and Hindmarsh, 2013; Sergienko et al.,
2014; Zhao et al., 2018; Wolovick et al., 2023a).

To account for sliding beneath a glacier, a friction law
(Weertman, 1957) is applied at the ice-base boundary condi-
tion of ice sheet models. The accuracy of the unconstrained
parameters in this law plays an important role in modeling
glaciers in realistic settings. In general, the friction law de-
scribes the basal drag as a function of basal velocity, the basal
drag coefficient, and the influence of subglacial hydrology
incorporated through effective (water) pressure (Budd et al.,
1979). This emphasizes the relationship between glacier mo-
tion due to sliding at the base and subglacial hydrology (Cuf-
fey and Paterson, 2010; Benn and Evans, 2010), as, simply
put, the occurrence of water at the bed acts as a lubricant, fa-
cilitating sliding. Since effective pressure is thus a key com-
ponent of the friction law, achieving a robust representation
of subglacial hydrology is crucial for distinguishing basal
properties driven by hydrological processes from those influ-
enced by other factors. It is therefore desirable to use a more
realistic and physically based representation of subglacial
water pressure than has typically been done so far in the
community (e.g., Werder et al., 2013; Flowers, 2015; Barnes
and Gudmundsson, 2022; Dow, 2022; Kazmierczak et al.,
2022; Ehrenfeucht et al., 2025). Here, we compare a com-
monly used parameterized effective pressure (e.g., McArthur
et al., 2023; Wolovick et al., 2023a) with an effective pressure
from a subglacial hydrology model (Sect. 2) to demonstrate
the relevance of an improved description of water pressure.

In the inversion process, the basal drag coefficient is con-
trolled by minimizing a cost function of the misfit between
simulated and observed surface velocities. Due to the general
ill-posedness of such inverse problems (Hadamard, 1902),
it is difficult to solve these problems. Even small measure-
ment errors in the observed surface velocities vobs

s can lead
to significant and unrealistic artifacts in the unknown basal
drag coefficient k. The integration of a regularization term
(Tikhonov and Arsenin, 1977) in the cost function of the
basal drag inversion ensures that unrealistic structures in the

solution are smoothed by penalizing oscillations in the basal
drag coefficient. To achieve a trade-off between the two cost
function terms, it is necessary to determine a weight for the
regularization term with the help of an L-curve (Hansen,
1992; Hansen and O’Leary, 1993; Hansen, 2001; Wolovick
et al., 2023a). For this purpose, we follow Wolovick et al.
(2023a) and perform an L-curve analysis that identifies the
best weight for the regularized cost function term at the max-
imum curvature of the resulting L-shaped curve.

In the literature of the glaciological community, the reg-
ularization and the related L-curve analysis are not always
applied when an inversion is performed (e.g., MacAyeal,
1993; Joughin et al., 2004, 2009; Arthern and Gudmunds-
son, 2010). Furthermore, we are not aware of any literature
in which the basal drag inversion for the entire WAIS region
(compare Fig. 1) is performed using both a regularization
term and an explicit L-curve analysis (e.g., Joughin et al.,
2004, 2009; Ranganathan et al., 2021). In addition, previous
studies usually consider only individual glaciers or regions
of the WAIS, such as Joughin et al. (2004), who focus on the
Ross Ice Shelf; Ranganathan et al. (2021), who concentrate
on MacAyeal Ice Stream; Morlighem et al. (2010) and Gillet-
Chaulet et al. (2016), who deal with Pine Island Glacier; and
Joughin et al. (2009) and Sergienko and Hindmarsh (2013),
who examine both Pine Island Glacier and Thwaites Glacier.
Although Morlighem et al. (2013) and Arthern et al. (2015)
model the entire Antarctic ice sheet, the results of those stud-
ies are nevertheless not based on a high-resolution mesh.
In the literature, instead of a Budd-type friction law (Budd
et al., 1979), a Weertman friction law (Weertman, 1957) is
often used (e.g. Morlighem et al., 2010, 2013; Joughin et al.,
2004; Ranganathan et al., 2021) in which no effective pres-
sure is taken into account. It is also common when using a
Budd-type friction law to use a simple geometry-based pa-
rameterization for the effective pressure (e.g., Arthern et al.,
2015; Barnes and Gudmundsson, 2022; Kazmierczak et al.,
2022). As this parameterization is not ideal due to its strong
simplifications of subglacial processes (e.g., a perfect con-
nection to the ocean of marine parts of the ice sheet), it is
desirable to leverage the results of hydrology models (e.g.,
Koziol and Arnold, 2017; Beyer et al., 2018; Gilbert et al.,
2022; McArthur et al., 2023).

The disadvantage of inverse methods is the numerical in-
stability, as all existing errors in the system are reflected in
the unknown basal drag coefficient to be determined, which
leads to an inaccurate result. These errors can, for example,
be based on incorrect model physics, such as assumptions
for the flow law regarding anisotropy, which can influence
the ratio of deformation to sliding flow, as described in Mc-
Cormack et al. (2022). Rathmann and Lilien (2022) point out
that neglecting the crystal-orientation fabric in the flow law
can influence the inferred basal drag coefficient, which can
be remedied by including an isotropic enhancement factor
and inverting both the rheology and the basal drag coeffi-
cient. In addition, the basal drag coefficient is sensitive to
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temperature assumptions and thus to the determination of ice
rheology (Zhao et al., 2018). Kyrke-Smith et al. (2018) find
that the accuracy of the bed elevation data affects the derived
basal conditions, and they suggest inverting for both the basal
drag coefficient and the basal topography. The importance
of friction laws and thus the capture of subglacial hydrol-
ogy contribute to a more realistic basal drag coefficient de-
termined from inversions (Schroeder et al., 2013; McArthur
et al., 2023). Overall, there are many assumptions behind ev-
ery inversion of basal drag, as, for example, there are not nec-
essarily enough data available or the aim of the studies dif-
fers. However, in this paper, we focus primarily on the choice
of the friction law and the associated subglacial hydrology to
reduce uncertainty in the resulting basal drag coefficient.

One objective of this paper is to test whether an improved
description of the effective pressure results in a more reli-
able basal drag distribution for a major part of the WAIS.
Therefore, we leverage the effective pressure from a phys-
ically based subglacial hydrology model in the friction law
and apply the common basal drag inversion. We use the
effective pressure of a confined–unconfined aquifer system
model (CUAS-MPI; Beyer et al., 2018; Fischler et al., 2023),
as it was shown to perform well in SHMIP (Subglacial Hy-
drology Model Intercomparison Project) (De Fleurian et al.,
2018) and is able to describe different states of the water
system. In addition, we conduct a subdomain L-curve analy-
sis to explore how the regularization of the inverse problem
varies with glaciological settings. Based on the simulations
performed, we examine the basal drag distribution and an-
alyze the influence of the different effective pressure maps,
the linear and nonlinear friction law on the L-curve, and the
spatial variability in the basal drag coefficient.

In the following paper, we firstly describe the methods
and data that we use to perform the inversion for the WAIS
(Sect. 2). We present our results regarding the spatial distri-
bution of the basal drag and the basal drag coefficient, along
with the L-curves obtained and the subdomain L-curve anal-
ysis (Sect. 3). Finally, we discuss our findings and compare
them with other studies (Sect. 4).

2 Methods

In the following subsections, we describe the ice flow model
setup for the study region covering the WAIS. Subsequently,
we present the forward model and the inversion process, in-
cluding regularization and the L-curve analysis.

2.1 Model setup

Our simulations are conducted within the open-source, finite-
element-based Ice-sheet and Sea-level System Model (ISSM;
Larour et al., 2012). In total, we perform six basal drag inver-
sions with an accompanying L-curve experiment (compare
Sect. 3). The experiments encompass setups with linear and

nonlinear sliding for both Weertman- and Budd-type fric-
tion laws. To evaluate the impact of varying effective pres-
sure fields, we either set this field to an effective pressure
from the subglacial hydrology of CUAS-MPI, apply a sim-
ple geometry-based parameterization, or neglect the effective
pressure entirely.

Application to the West Antarctic Ice Sheet

We choose the WAIS domain (Fig. 1) by using the defined
ice sheet drainage basins of Rignot (Glovinetto and Zwally,
2000; Rignot et al., 2011a, c, 2013) from the Ice Sheet
Mass Balance Inter-comparison Exercise (IMBIE-3; Rignot
et al., 2019). As ice shelves are not included in those basins,
we include them with the MEaSUREs Antarctic Boundaries
dataset (Mouginot et al., 2017). We exclude the so-called J-
Jpp basin describing the Filchner–Ronne catchment to keep
the computational effort at a manageable level. However, re-
sults of the basal drag of the J-Jpp basin have already been
published by Wolovick et al. (2023a), which we do not aim to
reproduce. We simulate the basins for Marie Byrd Land and
Ellsworth Land without the Weddell Sea Sector. For the sake
of simplicity, we will nevertheless refer to it as the WAIS in
the following.

Figure 1 illustrates that we are dealing with both slow-
and fast-flowing areas in this domain, including Thwaites
Glacier, Pine Island Glacier, and the Siple Coast ice streams.
In Fig. 2a, the bed elevation is displayed and clearly shows
that most of the WAIS area lies below sea level with the inte-
rior deeper than the margins, making it vulnerable to marine
ice sheet instability (e.g., Hughes, 1973; Weertman, 1974;
Thomas and Bentley, 1978; Schoof, 2007). The geometry is
based on the BedMachine Antarctica v2 dataset (Morlighem
et al., 2020; Morlighem, 2020). This dataset includes bed to-
pography (Fig. 2a), surface elevation (Fig. 2b), ice thickness
(Fig. 2c), and the mask for the WAIS (Fig. 2f).

Mesh construction

We construct a two-dimensional (2D) unstructured triangu-
lar mesh generated by using the Bidimensional Anisotropic
Mesh Generator (BAMG; Hecht, 2006). The horizontal mesh
is refined in dynamic active regions, such as the shear mar-
gins (Fig. 3a), the calving front, fast-flowing areas and outlet
glaciers, and the grounding line. The mesh is extruded into
10 vertical layers so that we get a three-dimensional prism
structure of the mesh.
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Figure 1. Map of the study domain covering a large part of the WAIS. The plots show the observed surface velocities (in myr−1) from
the MEaSUREsv2 dataset (Rignot et al., 2011b, 2017). The background imagery displays the ice surface elevation of Antarctica from the
BedMachine Antarctica v2 dataset (Morlighem et al., 2020; Morlighem, 2020). The black line represents the grounding line. Insets (a), (b),
and (c) show zoom-ins to Pine Island Glacier, Thwaites Glacier, and the Siple Coast (with the Mercer, Whillans, Kamb, Bindschadler, and
MacAyeal ice streams), respectively.

Figure 2. Model setup of the WAIS domain. (a) Bed topography (in m). (b) Surface elevation (in m). (c) Ice thickness (in m). (d) The initial
driving stress in flow direction (in kPa). (e) Observed surface velocity (in myr−1) in log scale from the MEaSUREsv2 dataset (Mouginot
et al., 2012; Rignot et al., 2011b, 2017). (f) WAIS mask, with mask parameter 0 describing the ocean, mask parameter 1 describing the
floating ice, mask parameter 2 describing the grounded ice, and mask parameter 3 describing exposed rock. Subplots (a)–(d) and (f) are
based on the BedMachine Antarctica v2 dataset (Morlighem et al., 2020; Morlighem, 2020). The white line in the subplots describes the
grounding line, and the black line delineates the study area. Plots (a)–(c) are overlaid on a hillshade background. Gray areas in panels (d)–(e)
indicate regions with no available data.
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The overall procedure to generate the mesh is based on
a control field construction as described in Wolovick et al.
(2023a). In Fig. 3, the underlying control field for the hori-
zontal mesh generation and the element sizes are shown. The
control field (Fig. 3a) indicates the basis of the refinement
strategy. For example, we want to achieve a high resolution
where the ice flow is fast, demonstrated by the yellow areas
in Fig. 3a, such as at the grounding line. The mesh resolu-
tion (Fig. 3b) is relatively low in the slow-flowing regions
with around 15km resolution, and the largest elements have
a resolution of 20 km. The red and orange areas indicate a
high resolution between 500m and 1km, exactly where the
grounding line and the shear margins are located. This reso-
lution is a factor of about 3–6 higher than in Morlighem et al.
(2013) (they use 3 km) and a factor of about 5–10 higher
than in Arthern et al. (2015) (they use 5km for the whole
domain of Antarctica). Overall, the resulting mesh consists
of 417 284 2D elements. At the end of the meshing pro-
cedure, all relevant gridded data, such as the bed topogra-
phy (Fig. 2a), the ice thickness (Fig. 2c), the observed sur-
face velocities (Fig. 2e), and the mask (Fig. 2f), are inter-
polated with a multi-wavelength interpolation introduced in
Wolovick et al. (2023a) onto the mesh.

2.2 Forward model

We use a forward model that represents the ice dynamics
in an approximated way and is explained by the follow-
ing higher-order (HO) Blatter–Pattyn approximation (Blat-
ter, 1995; Pattyn, 2003) that computes the horizontal ice ve-
locities vx,vy .
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The density of ice is denoted by ρi, g represents the accelera-
tion of gravity, hs is the surface elevation of the glacier, and η
is the ice viscosity. The latter is described by the constitutive
material law for ice, Glen’s flow law (Glen, 1953):

η =
B

2ε̇
n−1
n
e

, (2)

where B is the ice rheology parameter, ε̇e =
√

1
2 tr(ε̇2

ij ) is
the effective strain rate (with ε̇ij as the strain-rate tensor),
and n= 3 is the flow exponent. The temperature is com-
puted by using a one-dimensional (1D) vertical steady-state
advection–diffusion thermal model as described in Wolovick
et al. (2023a). To force this model, we use surface tem-
peratures (Comiso, 2000), accumulation rates (mean of Van

De Berg et al., 2005, and Arthern et al., 2006), and a geother-
mal heat flow (sum of Martos et al., 2017, and calculated
shear heating). Subsequently, we compute the flow-rate fac-
tor B (Cuffey and Paterson, 2010).

Boundary conditions are given at the ice–atmosphere 0s,
ice–bed 0b, and ice–margin 0− interfaces to constrain the
forward model. Towards the ice–atmosphere 0s, a traction-
free homogeneous Neumann boundary is assumed. The
lateral ice–margin boundary 0− is constrained by an in-
homogeneous Dirichlet condition in terms of observed sur-
face velocities v = vobs

s . At the ice–bed interface 0b, we em-
ploy a friction law acting beneath the ice sheet. This friction
law includes the unknown basal drag coefficient k, which we
want to determine with our inversion approach. In ISSM, the
basal friction law is implemented in terms of basal drag τ b
as

τ b =−k
2N r
||vb||

1−m
m

2 vb. (3)

Here, vb is the basal velocity, m is the friction law exponent,
r is the effective pressure exponent, andN = pi−pw denotes
the effective pressure as a function of ice pressure pi and wa-
ter pressure pw. If the exponent of the effective pressure is
r = 0, i.e., N is neglected in Eq. (3), we obtain a Weertman-
type friction law (Weertman, 1957). Otherwise, if r > 0, the
Budd-type friction law is applied. Form= 1, the law is linear
concerning velocity, whereas, for m> 1, it becomes nonlin-
ear in velocity. Throughout the study, we set r = 0 when a
Weertman sliding law is used and denote the corresponding
basal drag coefficient kW. We assign r = 1 when a Budd-type
sliding law is employed and denote the related basal drag
coefficient kB. We carry out experiments with these sliding
laws, considering both linear sliding (i.e., m= 1) and non-
linear sliding (i.e., m= 3). Details on the effective pressure
N are provided later in this subsection.

Our nonlinear forward model (Eq. 1) is solved with a Pi-
card iteration scheme (iterative fixed-point method; Hind-
marsh and Payne, 1996; Smedt et al., 2010) implemented
in ISSM. The remaining linear systems of equations are
solved with an iterative generalized minimal residual (GM-
RES) algorithm (Saad and Schultz, 1986) combined with a
block Jacobi preconditioner provided by PETSc (Balay et al.,
1997, 2019).

Subglacial hydrology

In the following, we compare a parameterized effective pres-
sure N :=Nop against one from a hydrology model N :=
NCUAS. The effective pressure Nop is described by Nop =

pi−pw = ρigH − ρwg(−hb) assuming a perfect hydrolog-
ical connection to the ocean, depending on the ice thickness
H , the bed topography hb, and the water density ρw. Note
that we allow a negative water pressure.

To overcome shortcomings in the effective pressure pa-
rameterizations, we leverage the simulated effective pres-
sure NCUAS from the MPI parallel version of the confined–
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Figure 3. Maps of mesh characteristics. (a) The control field used to guide the spatial pattern of mesh refinement. The white lines indicate
the detected shear margins, which are also used to create the mesh through refinement at this position. (b) The resolution of the mesh with
different element sizes ranges from 500m to ∼ 19km.

Figure 4. Results of the 1D steady-state advection–diffusion thermal model. (a) Vertically averaged ice rheology parameter B. (b) The basal
melt rate of grounded ice is represented with a pseudo-log scale, with gray areas representing the floating ice. The thicker black line denotes
the study area, and the thinner black line represents the grounding line.

unconfined aquifer system model (CUAS-MPI; Beyer et al.,
2018; Fischler et al., 2023). The model is based on an effec-
tive porous media approach (single-layer Darcy-type flow)
and solves an evolution equation for the hydraulic head:

h=
pw

ρwg
+hb+ zw, (4)

where ρw is the density of water and 0≤ zw ≤ b is the ele-
vation within the aquifer of thickness b. The hydraulic trans-
missivity is spatially and temporally varying and evolves due
to channel wall melt, creep closure, and cavity opening. This
makes it possible to simulate both inefficient and efficient
water transport without resolving individual channels. The
ice sheet geometry for the hydrology model is also based on
the BedMachine v2 dataset but is cropped out for the area
shown in Fig. 2 and interpolated onto a 1 km regular grid.
CUAS-MPI also needs a mask to distinguish between active
points and boundary conditions. This mask is based on the in-
terpolated bed elevation and ice thickness datasets from Bed-
Machine, taking into account the floating condition. No-flow

boundary conditions are used along the grounded part of the
basin delineation (black line in Fig. 2) and next to ice-free
land (mostly rock outcrops). To avoid water flowing into ar-
eas that are most likely to be frozen to the bed, no-flow con-
ditions are imposed in areas where the ice thickness is below
10 m or the bed elevation is 2000 m above sea level. At the
ocean boundary, a Dirichlet condition (h= 0m) is applied.
We initialize the head so that the water pressure is 90 % of
the ice overburden pressure.

The subglacial hydrology model is forced with the steady
but spatially variable ice sheet basal melt distribution
(Fig. 4b) based on the 1D vertical steady-state advection–
diffusion thermal model that is also used for rheology B
(Fig. 4a) in the ISSM model setup (compare Sect. 2.2). Fig-
ure 4a reveals a belt in the center of the study area that ex-
hibits increased ice stiffness associated with low surface tem-
peratures (not shown here) and high surface elevations (com-
pare Fig. 2b). In contrast, we can observe relatively soft ice
at the margins of the domain, where warm surface tempera-
tures and lower surface elevations predominate. The thermal
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model suggests that about 30 % of the rectangular CUAS-
MPI domain enclosing the study area in Fig. 4b is frozen to
the bed. The basal melt rate in Fig. 4b reflects the velocity
field, which is reasonable, as it is included in the compu-
tation of the melt rates. The relatively high values of basal
melt rate result from high rates of shear heating. High melt
rates (> 0.5myr−1 w.e.) are located close to the grounding
line of Pine Island Glacier and Thwaites Glacier, but those
areas cover only about 0.2 % of the total warm-based area.
Most of the melt rates are in the millimeter range (median:
∼ 6mmyr−1 w.e.) and clearly show the fast-flowing areas.

We run the model with 1 h time steps for 10 years using
the same model parameters as in Beyer et al. (2018, Table 1
and Table 3), except we use an aquifer of thickness 1 m and
a smaller minimum transmissivity (Tmin = 10−14 m2 s−1).

Since we did not apply CUAS-MPI to ice rises, we set
NCUAS to the hydrostatic pressure Nop. In addition, the rock
outcrops shown in Fig. 2f need special treatment, as they do
not contain data entries. We interpolate over them on the
CUAS-MPI grid. Finally, we interpolate the mentioned re-
gions to the finite-element mesh. Since Thurston Island is
not included in the CUAS-MPI model domain, we set the ef-
fective pressure at this site to ice pressure pi and neglect the
water pressure pw due to the predominating low velocities at
this location.

The effective pressures Nop and NCUAS are displayed in
Fig. 5. In contrast to NCUAS (Fig. 5b), the simple parame-
terization of the effective pressure Nop (Fig. 5a) reaches a
much higher magnitude of 30MPa in the slow-flowing ar-
eas of the domain than the effective pressure NCUAS ranging
only up to 8MPa. Furthermore, the structure of the effective
pressure from the subglacial hydrology model NCUAS shows
a similar distribution to the velocity field (compare Fig. 1),
as expected.

2.3 Basal drag inversion

Parameter identification problems occur in ice sheet mod-
eling because some relevant parameters are difficult to ob-
serve directly, such as the distribution of the basal drag un-
derneath the ice sheets. These problems are referred to as
inverse problems in the sense that we want to infer from
an observed effect of a system the underlying but not mea-
surable cause. In ice sheet models, this can be represented
through the observed ice surface velocities as the observed
effect from which we determine the unknown basal drag co-
efficient. This demonstrates that the most relevant data for
the inversion procedure to fit the modeled horizontal ice ve-
locities vx,vy are the observed ice surface velocities vobs

s .
Here, we use the ice surface velocities of the MEaSUREs v2
dataset (Mouginot et al., 2012; Rignot et al., 2011b, 2017)
as the target of the inversion because it provides complete
spatial coverage within the modeling domain (Fig. 2e).

In glaciology, such inverse problems can be described by
minimizing a cost function (Eq. 5) while satisfying the un-

derlying forward model (Eq. 1) and controlling the unknown
basal drag coefficient k:

min
k
Jraw (vs,k)=

∫
0s

1
2

((
vx − v

obs
x

)2
+

(
vy − v

obs
y

)2
)

d0s

+ λ

∫
0b

1
2
||∇k||22 d0b. (5)

The first term of Eq. (5) describes the absolute velocity mis-
fit, with vobs

s = (v
obs
x ,vobs

y ) as the observed ice surface ve-
locity, vs = (vx,vy) as the modeled ice velocity, and k as the
respective control parameter for the inversion. We restrict our
cost function to an absolute misfit term and opt against using
a logarithmic misfit, as applied by Morlighem et al. (2013),
since we do not perform a rheological inversion (see Sect. 4
for details). To improve the instability of the inverse problem,
it is beneficial to add regularization. Therefore, the second
summand is added to the cost function (Eq. 5), describing
a typical Tikhonov regularization term (Tikhonov and Ars-
enin, 1977) by penalizing oscillations in the basal drag coef-
ficient k. This additional term is equipped with a weight λ,
which can be derived by performing an L-curve analysis. An
L-curve analysis is meant to be a trade-off curve between the
first cost function term Jraw,obs and the regularization term
Jraw,reg. The idea behind conducting an L-curve analysis is
to pick the best weight λ in the corner of the L shape.

For the L-curve analysis, we consider a range of λ cover-
ing 6 orders of magnitude (Sect. 4.1) with 25 logarithmically
spaced samples. A basal drag inversion is performed for each
sample, and the resulting costs Jobs and Jreg are recorded.
To avoid arbitrarily selecting the best λbest value by hand-
picking, we generate a smoothed L-curve using the 25 sam-
ple results in the (ln(Jreg), ln(Jobs)) space and determine the
λbest value by calculating the maximum curvature (second
derivative), following the method of Wolovick et al. (2023a).
Smoothing is required in this case because the second deriva-
tive tends to amplify noise. The smoothed trade-off curve is
obtained by subsampling the 25 model results into 1000 log-
arithmically spaced λ subsamples. Subsequently, 50 differ-
ent smoothing wavelengths are tested to identify the optimal
one in the ln(λ) space through a sort of meta-regularization.
Therefore, we calculate the variance for each wavelength
based on the curvature of the smoothed curve and the scat-
ter of the original model points. For further details on the
variance calculation, see Wolovick et al. (2023a). The wave-
length that minimizes the sum of both normalized variances
is selected. The total logarithmic curvature d2(ln(J ))

d2(ln(λ))2 is calcu-
lated, and the location of maximum curvature, representing
the sharpest corner, identifies the λbest value of the L-curve.
The curvature is also recorded when it drops to half (arbi-
trary value) of the maximum value, providing a complete
bracketed range from the minimum acceptable λmin to the
best-value λbest and the maximum acceptable λmax.
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Figure 5. Effective pressure distributions for the WAIS. (a) Geometry-based effective pressure Nop ranging from 0 to 36MPa. (b) Effective
pressure NCUAS based on the results from the subglacial hydrology model CUAS-MPI ranging from 0 to 8MPa, including the modifications
for areas that are not part of the CUAS-MPI domain.

Moreover, the initial guess of the basal drag coefficient k
impacts the convergence of the inversion (compare conver-
gence criteria in Eq. 9). Therefore, it must be well quanti-
fied. A good approximation for the initial basal drag coeffi-
cient kinit can be computed from the driving stress and the
observed ice velocity, e.g., as in Morlighem et al. (2013):

kinit =

(
max(0,τd)

N ||vobs
s ||

1/m
2

)1/2

, (6)

where τd =−ρigH∇hs · v
obs
s /||vobs

s ||2 describes the driving
stress in flow direction. In the case of Weertman friction,N is
set to 1 in Eq. (6), and, for the Budd-type friction law, a mini-
mum value of 100Pa is used. For velocity, we use a minimum
value of 0.1myr−1 to also prevent division by zero.

Following Wolovick et al. (2023a) again, we introduce a
characteristic scale to normalize our cost function in Eq. (5)
before we carry out the inversion procedure as described
above. This is important to ensure that the parameter space
(range of λ values) analyzed in the L-curve is easy to identify
and interpret, which occurs when λ values are unitless and of
order unity. Thus, the optimal regularization weight λ in the
maximum curvature can be found more easily in the param-
eter space, and it is easier to evaluate whether the degree of
regularization is small or large. The terms of the scaled cost
function J (vs,k) can be described as

J (vs,k)= Jobs (vs)+ λJreg(k), with

Jobs (vs)=
1
Sobs

∫
0s

1
2

((
vx − v

obs
x

)2
+

(
vy − v

obs
y

)2
)

d0s and

Jreg(k)=
λ

Sreg

∫
0b

1
2
||∇k||22 d0b. (7)

The scaling terms Sobs and Sreg, which are described through
the a priori estimation of the characteristic magnitudes of the

corresponding terms, are

Sobs =

∫
0s

||vobs
s ||

2
2 d0s = Aσ

2
obs and

Sreg = A

(
πσk

H

)2

. (8)

Here, Sobs is defined by the variance in the surface velocity
observations vobs

s , where A is the area of the grounded do-
main and σ 2

obs is the root-mean-square (RMS) variability in
the observed velocity magnitude. The scaled regularization
term Sreg has the same magnitude as the final drag coeffi-
cient guess kinit, where A is again the grounded domain area,
σk is the standard deviation of kinit (Eq. 6), andH is the mean
ice thickness. A more detailed description of the derivation
of Sreg can be found in Wolovick et al. (2023a).

The approach of constructing an adjoint model is used
to solve the inverse problem introduced. For simplification,
the viscosity is set independently of the velocity in the ad-
joint equations (e.g., MacAyeal, 1992; Morlighem et al.,
2013). The linear adjoint equations obtained represent a good
and common approximation to the exact adjoint equations
(Morlighem et al., 2013). To minimize the cost function
of our basal drag inversion, a limited quasi-Newton tech-
nique, the Limited-memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) algorithm (Nocedal, 1980) called M1QN3
(Gilbert and Lemaréchal, 1989) is used. This algorithm pro-
vides two different convergence criteria, the cost function
convergence criterion 1xmin and the relative gradient conver-
gence criterion εgttol, described as

||J (vi,ki)− J (vi+1,ki+1)||<1xmin ,

||∇J (vi,ki)||

||∇J (v0,k0)||
< εgttol. (9)
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where ∇J denotes the gradient of the cost function J at
(vi,ki), with i displaying the iteration steps. The initial guess
is described through v0 := v

obs
s and k0 := kinit.

3 Results

Firstly, we analyze the corresponding L-curves of the six
experiments (two types of friction laws and three effective
pressure realizations) along with the convergence behavior.
We present a subdomain L-curve analysis for eight different
subdomains of our study area to explore the dependence of
regularization on glaciological settings. We examine the in-
fluence of the effective pressure configurations and the linear
and nonlinear friction laws on the inferred basal drag distri-
butions and on the L-curves. Subsequently, we present the
spatial distribution of the best basal drag estimate for our
study area.

3.1 L-curve analysis

In Fig. 6, the L-curves for the six experiments conducted are
shown. The first row of Fig. 6 displays the L-curves with
linear sliding (m= 1) for Weertman and Budd with Nop and
NCUAS; the second row shows the L-curves with nonlinear
sliding (m= 3). The red corner region highlights the range of
reasonable values between λmin and λmax for selecting λbest.
Visually, all of these six L-curves have the desired and good-
looking L shape. This impression can be trusted because we
use a log–log plot with the same scaling for both axes as
described in Wolovick et al. (2023a, e.g., Fig. 3). The smooth
trade-off curve of each L-curve fits the model points very
well.

We classify inversion runs as outlier models (gray dots in
Fig. 6) if they fail to fully converge or if the cost function
result exhibits non-monotonic behavior. In addition, we fur-
ther declare models as outliers if they lie over a certain dis-
tance from the next data cost or regularization cost model by
choosing a threshold value. All six L-curve runs exhibit few
outliers with a maximum of one outlier per L-curve.

However, we observed difficulties in achieving conver-
gence for λ values that are too small, especially when a
linear friction law (m= 1) is chosen for the inversion in
a range of λ ∈

[
10−3,103]. These outlier models probably

arise because the regularization term is weighted too low
and the misfit term is weighted too high at small λ val-
ues. Regularization is essential for transforming the ill-posed
inverse problem, characterized by numerous local minima,
into a more convex form, as convex functions have only a
single global minimum (Rockafellar, 1970). This helps the
optimization algorithm achieve an optimal solution. Insuffi-
cient regularization (small λ values) leaves the problem non-
convex, increasing the likelihood of outlier models. How-
ever, in this case, one possibility is to avoid small λ val-
ues, which are unimportant from a mathematical perspec-

tive anyway, by shifting the λ range upwards to higher val-
ues. Therefore, the L-curves of our study are presented such
that those with a linear friction law are shown for a range of
λ ∈

[
10−2,104], while those with a nonlinear friction law are

shown for a range of λ ∈
[
10−3,103]. Additionally, an ap-

propriate λ range is crucial to achieve L-curves with a well-
defined corner region to select the λbest value. For linear slid-
ing laws, a range of λ ∈

[
10−2,104] avoids overly flat curves

that make the corner region difficult to identify when the ver-
tical limb is barely recognizable. Conversely, for nonlinear
sliding laws (m= 3), a range of λ ∈

[
10−3,103] ensures a

clearer corner by extending the flat λ limb. In addition, the
characteristic scale (Eq. 8) helps us to find a matching λ
range that contains both limbs of the L-curve and thus guar-
antees a valid corner region.

Another approach to addressing the convergence issue in-
volves using nearest-neighbor averaging to smooth the ini-
tial drag coefficient kinit resulting from the driving stress (see
Eq. 6) for the runs with linear friction law. Unfortunately,
further smoothing (3 times nearest-neighbor averaging) was
needed for the runs with nonlinear friction to ensure the con-
vergence of all those runs. This is likely because fine-scale
structures in the initial basal drag coefficient kinit are too
complex for the solver to handle. Since the convergence cri-
terion depends on kinit (Eq. 9), such complexity can make it
difficult to achieve a solution for stress balance.

In general, it helps to further adjust the convergence cri-
teria εgttol and 1xmin (Eq. 9) if the convergence of optimiza-
tion is not achieved. For example, when an inversion only
converges with 1xmin during the line search, it is recom-
mended to set 1xmin more strictly. In our case, we achieved
the best results with εgttol = 10−3 and 1xmin = 10−5 for in-
version runs using a linear friction law. For convergence of
the L-curve runs with a nonlinear friction law, we had to set
the convergence criterion much more strictly to εgttol = 10−6

and 1xmin = 10−4. This was also observed in the study by
Wolovick et al. (2023a) when nonlinear friction laws were
used.

Overall, we were able to significantly reduce the outliers
of the different L-curves and achieved convergence for most
of the inversion runs. Admittedly, the mentioned adjustments
slightly limit the comparability between simulations with lin-
ear and nonlinear friction laws. Further details on the conver-
gence behavior of the inversion can be found in Appendix A.

3.2 Subdomain L-curve analysis

To explore how the optimal regularization of the inverse
problem depends on glaciological settings or prominent sub-
domains, we analyze L-curves for selected subsets of our do-
main. For each subdomain, we compute the components of
the cost function Jobs and Jreg, including only the model el-
ements within the respective subdomain region. Since we do
not recalculate the characteristic scaling factors (Eq. 8) for
these subdomains or adjust for the fact that we are integrat-
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Figure 6. All six conducted L-curves in a log–log plot for the regularization cost Jreg against the data cost Jobs. The black dots indicate
the inversion result for each λ value, the black line describes the smooth trade-off curve passing through the 25 different model samples,
and the red area shows the corner region of the L-curves. The red points describe the λmin and λmax values, and the red diamond marks
the λbest value. Gray dots indicate outliers. (a) L-curve result for the linear Weertman friction law with λbest = 0.33. (b) L-curve for the
linear Budd-type friction law including effective pressure from geometry Nop with λbest = 2.4. (c) L-curve result for the linear Budd-type
friction law using the effective pressure from CUAS-MPI NCUAS with λbest = 1.3. (d) L-curve for the nonlinear Weertman friction law with
λbest = 2.4. (e) L-curve result including the linear Budd-type friction law for the effective pressure from geometry Nop with λbest = 0.11.
(f) L-curve for the effective pressure NCUAS with λbest = 0.5. Note that λbest is a specific point determined by the maximum curvature and
does not necessarily correspond to one of the λ samples.

ing over a smaller area, these subdomain L-curves are shifted
towards smaller values relative to the full-domain L-curve.
However, their relative shapes reflect the glaciological dif-
ferences between these regions.

Here, the subdomain L-curve analysis is performed for a
linear and a nonlinear Budd-type friction law experiment,
both including NCUAS. Figure 7a shows the eight different
subdomains, aiming to include a wide variety of glaciolog-
ical settings and prominent subdomains. We choose subdo-
mains representing the main trunks of Pine Island Glacier
(Fig. 7b) and Thwaites Glacier (Fig. 7c), upstream tributaries
of Thwaites Glacier (Fig. 7d), a slow-flowing region around
the WAIS divide (Fig. 7e), tributary glaciers of Whillans Ice
Stream that cross the Transantarctic Mountains in the pres-
ence of many rock outcrops (Fig. 7f), the shear margin of

Whillans Ice Stream (Fig. 7g), the fast-flowing trunks of the
Bindschadler and MacAyeal ice streams (Fig. 7h), and a sub-
domain that includes Roosevelt Island (Fig. 7i).

When assuming a linear friction law (Fig. 7, blue), the L-
curves of the subdomains provide very smooth results and
outliers are only detected for very small λ. In particular
the subdomains in Fig. 7b, c, and f–h show a well-behaved
L-curve with a good curvature. In contrast, when assum-
ing a nonlinear friction law (Fig. 7, purple), we obtain the
smoothest L-curve for the subdomain, including Pine Island
Glacier (Fig. 7b). Furthermore, the subdomain including the
rock outcrop region (Fig. 7f) and the subdomain covering
Thwaites Glacier (Fig. 7c) reveal relatively smooth L-curves
with a well-defined curvature. Overall, we get many outliers
in the L-curves for larger λ using the nonlinear friction law,
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Figure 7. Subdomain L-curve using the data cost Jobs (y axis) and regularization cost Jreg (x axis) from the experiments m= 1, NCUAS
and m= 3, NCUAS. Panel (a) shows the study area plot from Fig. 1 with the eight selected subdomains marked by the dashed black lines.
The labels (b)–(i) of the different subdomains reflect the corresponding L-curves. Panels (b)–(i) display the eight L-curves associated with
the subdomains in blue for the experiment m= 1, NCUAS and in purple for the experiment m= 3, NCUAS. The non-filled circles indicate
outlier models.

such as in the subdomains of the WAIS divide (Fig. 7e), in
the area of shear margins from Whillans Ice Stream (Fig. 7g),
in the upstream tributary of Thwaites Glacier (Fig. 7c), and
in the L-curve of the MacAyeal and Bindschadler ice streams
(Fig. 7h). This shows us that the smooth L-curve incorporat-
ing the entire model domain (Fig. 6f) suppresses those out-
liers for increased λ values. However, we found that non-
linear sliding produced numerous outliers in the L-curves at
higher λ values, leading us to shift the λ range downward,
as discussed in Sect. 3.1. The shift for λ could already lead
to an improvement in the smoothness of the L-curve when
integrating over the entire domain but not for the individual
subdomains. This could also be explained by the fact that
some of the subdomain L-curves are very smooth and have
fewer outliers, and, if these predominate, the few outliers in
other areas are suppressed during integration over the entire
domain.

The subdomain covering Roosevelt Island generated quite
a steep L-curve for both linear and nonlinear sliding, with
only a slight hint of a corner at the lower end (e.g., Fig. 7i).
This region might show a stronger corner if we extended
the analysis to smaller λ values. However, observed veloc-
ities are very slow in this ice rise, and the apparent flatten-

ing at the low end may simply reflect the inability of the
inverse model to reduce the misfit below the noise level of
the observations. In that case, the straight-line (power-law)
shape of the Roosevelt Island L-curve may reflect the fact
that this ice rise is likely frozen to the bed (Martín et al.,
2006) and is thus poorly suited to a basal sliding inversion.
In contrast, we observe that the subdomain in the upstream
tributary of Thwaites Glacier (Fig. 7d) and the subdomain
in the WAIS divide (Fig. 7e) reveal a very flat L-curve. This
suggests that subdomain L-curves characterized by lower ve-
locities are not of major relevance for individual basal drag
inversions, as Jobs remains in a similar order of magnitude
for each regularization weight λ. This implies that not much
regularization is required, as these regions may exhibit lower
variability in the basal drag coefficient, especially when us-
ing linear sliding. It could be possible that a shift towards a
higher λ range would show a proper curve. For m= 3, this
is not the case, as we have significantly more outliers in both
regions for higher λ values. It is conspicuous that the subdo-
main covering many rock outcrops of the tributary glaciers
of Whillans (Fig. 7f) shows relatively smooth behavior for
m= 1 and m= 3. Since the modeling of rock outcrops is
not straightforward, this gives us confidence in our treatment
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of modeling those areas. In particular, when those inversions
lead to unexplainable issues, this analysis can be used to find
errors that are not directly accessible or even to discover spe-
cific regions that could cause these problems. Overall, we can
learn from this subdomain L-curve analysis how the L-curve
behaves for regions with different glaciological settings or
prominent subdomains. In general, Fig. 7 shows that differ-
ent regions require different λbest weights for regularization.

3.3 Effective pressure

To assess the influence of subglacial hydrology realizations
on basal drag inversion results, we test both Weertman and
Budd friction laws using effective pressure fields derived
from geometry (Nop; Fig. 5a) and the CUAS-MPI hydrol-
ogy model (NCUAS; Fig. 5b). We analyze their impact on the
six L-curves (Fig. 6) and the spatial distribution of basal drag
emphasized with statistical values.

Figure 8a displays the three different L-curves that we
obtain when using a nonlinear friction law (m= 3). The
turquoise L-curve with NCUAS, m= 3 shifts upwards to a
higher Jobs = 71.84 × 10−4, compared to Jobs = 39.90 ×
10−4 for m= 3, Nop (Table 1). Overall, using NCUAS in the
nonlinear Budd friction law resulted in fewer convergence
issues, as highlighted by the absence of outliers. In compar-
ison, Fig. 9a shows the three L-curves for the linear friction
law case. Here, the L-curve for Nop and the one for NCUAS
are almost identical in the linear case. This is emphasized by
the same order of magnitude from Jobs = 46.96 × 10−4 for
m= 1, NCUAS and Jobs = 58.55×10−4 form= 1, Nop. The
L-curve using a linear Weertman friction law shows a value
of Jobs = 38.49 × 10−4 which fits with the slight downward
shift in the L-curve (Fig. 9a). In total, we get the best per-
formance of the L-curves regarding the Jobs and Jreg for us-
ing Weertman sliding regardless of using linear or nonlinear
sliding (Fig. 8a, Fig. 9a). All Jobs values (Table 1, column
7) align with the λbest values of the L-curves for the vari-
ous experiments (Fig. 6), as higher λbest values correspond
to greater surface velocity mismatches and vice versa.

The λbest value, determined by the maximum curvature in
our curve-fitting procedure, generally coincides with the cor-
ner of most L-curves (visual perspective), except in Fig. 6a
and e, where it would probably be visually selected with a
slightly higher value. Looking at Figs. 8b–d and 9b–d repre-
senting the corresponding curvature of the total cost function
(gray line) for Fig. 6a and e, a broad region of high curvature
representing the visual corner with a narrow side peak (de-
scribing the maximum curvature) leads to selecting the latter
as λbest. This results in a slight deviation from the mean of
the broader region and, consequently, from the visual corner.

To compare the inferred basal drag based on Weertman-
and Budd-type sliding, we refer to Eq. (3), assuming k2

W =

k2
BN , to reproduce the same velocity and stress fields for

both sliding laws, where k2
W and k2

B are the squared basal
drag coefficients for Weertman and Budd sliding, respec-

tively. A strong linear and positive correlation between N
and k2

W results in a smooth k2
B field, as most variability is al-

ready captured by N , while a weak correlation requires more
structure in k2

B to fit observations. In an ideal scenario, N
would entirely capture the spatial variation in k2

W, while k2
B

would remain constant within a specific region (subglacial
substrate, geological formation) where no significant varia-
tions are expected on small length scales. Overall, while the
sliding-law change should minimally impact the basal drag
field, the inferred basal drag coefficients would differ signifi-
cantly. A positive correlation betweenN and k2

W ensures that
the basal drag inversion introduces minimal structure into k2

B,
as reflected in the positive R2 values for N versus k2

W shown
in Table 1 (sixth column). In total, NCUAS shows a slightly
stronger positive correlation with k2

W than Nop.
Figure 10 displays the resulting drag coefficient distribu-

tion k2 for m= 1 and m= 3 with Nop and NCUAS. To over-
come the issue of non-comparability with respect to vary-
ing degrees of smoothness, when using different λbest values,
each basal drag coefficient is evaluated at the nearest (dis-
crete) λ sample of the respective NCUAS experiment. When
comparing the structure of the basal drag coefficient shown
in Fig. 10a and b and the distribution of the basal drag coef-
ficient in Fig. 10c and d, we observe that, for all patterns, the
Nop experiments exhibit more structure in k2 than the exper-
iments with NCUAS. This finding is again emphasized by the
correlation result R2(N,k2

W) in Table 1. Especially when we
look more closely at Thwaites Glacier, a more ribbed struc-
ture can be identified, including Nop for both linear sliding
m= 1 and nonlinear sliding m= 3. The intention is to use
the subglacial hydrology model CUAS-MPI to obtain an ef-
fective pressure NCUAS that captures most of the structure of
the hydrology at the base, making k2 smoother than with a
Weertman friction law or with the often-used effective pres-
sure from geometry, such as Nop. This would allow us to
interpret the basal drag coefficient k2 in terms of the phys-
ical properties of the subsurface rather than basal hydrology,
since the hydrology is already included in the model. Over-
all, k2 is 1 order of magnitude higher forNCUAS compared to
Nop form= 1 andm= 3 (Fig. 10). This can be explained by
the significantly higher magnitude of Nop in the whole study
domain compared to NCUAS (compare Fig. 5). This differ-
ence in magnitude is likely reflected in a higher basal drag
coefficient k2 for the NCUAS experiments.

We can evaluate the variance σ 2(ln(k2)) (Table 1, col-
umn 3) to analyze a scale-independent measure of the struc-
ture generated by the basal drag inversion as described in
Wolovick et al. (2023a). Incorporating effective pressure
NCUAS into the nonlinear sliding law results in the overall
lowest variance value compared among the six experiments.
An investigation of the total variance ratio of the basal drag
inversion shows us the overall quality of the different exper-
iments for the grounded domain (Table 1, column 9). Here,
we observe a decrease whenever the effective pressure is in-
cluded in the friction law.
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Table 1. Table of statistical values for the grounded domain (Fig. 2f) of all six conducted experiments, each evaluated at its λbest point.
The reference experiment with the Weertman sliding is denoted by k2

W and Jobs,W with m= 1 and m= 3, respectively, depending on which
experiment is considered. We consider the variance σ 2 in the logarithmic squared basal drag coefficient ln(k2) and the logarithmic basal drag
ln(τb), along with the variance ratio of both. The correlation R2 of effective pressure N and basal drag coefficient k2 regarding the reference
experiment k2

W is taken into account. The table displays the observational costs Jobs and the velocity equivalent of Jobs scaled by the velocity
RMS. For the valuation of the whole model, we inspect the total model ratio with respect to the variance σ 2 in the ratio ln(k2) to ln(k2

W)
times the ratio of velocity misfit Jobs. Table 1 from Wolovick et al. (2023a) serves as a reference for this table.

k2 var τb var Var ratio Correlation Obs cost Equiv 1vs Total var ratio

Experiments λbest σ 2(ln(k2)) σ 2(ln(τb))
σ 2(ln(k2))
σ 2(ln(τ b))

R2(N,k2
W) Jobs RMS×

√
Jobs

σ 2(ln(k2))

σ 2(ln(k2
W))
×

Jobs
Jobs,W

(grounded domain) (unitless) (unitless) (unitless) (unitless) (unitless) (×10−4) (myr−1) (unitless)
m= 1, Weertman 0.3 9.07 4.14 2.19 – 38.49 20.48 1.00
m= 1, Budd, Nop 2.4 4.86 2.54 1.91 0.28 58.55 25.26 0.81
m= 1, Budd, NCUAS 1.3 6.28 2.78 2.26 0.38 46.96 22.62 0.84

m= 3, Weertman 2.4 1.91 1.29 1.48 – 86.46 30.70 0.47
m= 3, Budd, Nop 0.1 3.96 3.09 1.28 0.28 39.90 20.85 0.45
m= 3, Budd, NCUAS 0.5 1.72 1.77 0.97 0.38 71.84 27.98 0.35

Figure 8. L-curves with nonlinear Weertman- and Budd-type friction laws. (a) The L-curve for nonlinear Weertman sliding is in yellow,
and the L-curves for the nonlinear Budd friction law including Nop and NCUAS are in dark blue and turquoise, respectively. The solid line
represents the smooth trade-off curve, the thicker line characterizes the corner region, and the white diamond marks the λbest value in each
of these L-curves. One inversion run is detected as an outlier for Weertman sliding and Budd with Nop and is illustrated with the non-filled

circles. Panels (b–d) display the cost curvature d2(ln(J ))
d(ln(λ))2

dependent on λ in the order for Weertman sliding (no N ) and for Budd with Nop

and NCUAS, where the gray line represents the total cost function J , the purple line represents the regularization cost function term Jreg, and
the blue line represents the velocity misfit cost function term Jobs in each of these three plots. The square marker displays the λmin, the circle
displays the λmax, and the diamond displays the λbest value.
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Figure 9. L-curves with linear Weertman- and Budd-type friction laws. The description is equivalent to the one in Fig. 8, only for the linear
friction law instead of the nonlinear friction law. One inversion run is detected as an outlier (non-filled circles) for each of the three L-curves.

3.4 Nonlinear versus linear sliding

In the following section, the effect of a linear versus nonlin-
ear friction law on the L-curves is examined and emphasized
with statistical values from Table 1.

Figure 11 shows the L-curve for the linear Budd friction
law m= 1, NCUAS experiment (blue) alongside the nonlin-
ear Budd-type friction law m= 3, NCUAS experiment (pur-
ple). To get an impression of the different λ ranges used for
linear and nonlinear sliding, we also show the L-curve of
the m= 3, NCUAS experiment in Fig. 11 with the shifted λ
range

[
10−2,104] (gray), which is also applied for the m=

1, NCUAS experiment. The results in Fig. 11 show steeper L-
curves for both cases of nonlinear sliding than for the L-curve
results using the linear friction law. All four other experi-
ments also exhibit this different shape behavior between lin-
ear (Fig. 6a–c) and nonlinear friction law (Fig. 6d–f). It can
be recognized when comparing Fig. 8b–d to Fig. 9b–d that
this could be explained by the increasing Jobs term and the
more attenuated Jreg cost function term. Despite the choice
of a different, upward-shifted λ interval, the L-curves with a
linear friction law are still very flat in shape (Fig. 6a–c) com-
pared to those of the nonlinear friction law (Fig. 6d–f). The
corner region (e.g., Fig. 6) is defined by the range from λmin
to λmax, which separates the flat and vertical limbs of the L-
curve. The L-curves in the first row (Fig. 6, m= 1, linear
friction law) display a broader corner region, encompassing
both lower and higher λ values compared to those in the sec-

ond row (m= 3). A narrower range between λmin and λmax
simplifies the selection of an optimal λ, enhancing the relia-
bility of the L-curves, which is evident in experiments with
steeper nonlinearity.

When comparing the behavior of linear sliding (m= 1)
with nonlinear sliding (m= 3), we recognize a decrease in
variance in ln(k2) for both Weertman and Budd (Table 1,
column 3). The decrease is especially high when consider-
ing Weertman and Budd sliding includingNCUAS. Form= 1
usingNCUAS, we get velocity errors of∼ 23myr−1, whereas
we can determine an increase to ∼ 28myr−1 when consider-
ing a nonlinear friction law. However, overall, we recognize
the strongest increase in velocity misfit of ∼ 10myr−1 when
using a nonlinear Weertman friction law instead of a linear
one. In total, only the velocity misfit of the friction law, in-
cluding Nop, decreases when changing from linear to nonlin-
ear sliding. This increase in velocity error is naturally linked
to the decreasing weight of the regularization term λbest (Ta-
ble 1, column 2). Considering the variance ratio of ln(k2) and
τ b (Table 1, column 5), we get an overall decrease when us-
ing a nonlinear friction law. When comparing the total vari-
ance ratio of our basal drag inversion (Table 1, column 9), we
get an improved performance for nonlinear sliding, indepen-
dent of Weertman or Budd, reflected by a strong decrease in
the total variance ratio.

If we compare the L-curves of the subdomains in Fig. 7
for experiment m= 3, NCUAS to those of experiment m=
1, NCUAS, we can recognize that there are significantly fewer
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Figure 10. Drag coefficient maps of log10(k2) evaluated at the nearest (discrete) samples of λbest of the L-curves. (a–b) The first row shows
the drag coefficient of the inversion run, including a linear Budd friction law withm= 1 and Nop (a) or NCUAS (b). Both are evaluated at the
λbest ≈ 1 of the L-curve usingm= 1 and NCUAS for better comparison. (c–d) The second row describes the drag coefficient of the inversion
run using a nonlinear Budd friction law with m= 3 and Nop (c) or NCUAS (d). Again, both are evaluated at the λbest ≈ 0.562 value of the
m= 3 and NCUAS experiment for better comparison. Note the different units of the first and second rows.

outliers for the linear sliding case, which only occur for very
small λ, and the L-curves also appear smoother. In general,
this result is consistent with the results we obtained for the
six L-curve experiments we carried out for the entire domain
(compare Fig. 6). It can be recognized that outliers in the lin-
ear L-curves (Fig. 6a–c) only occur for very small λ values,
and the L-curves with the nonlinear sliding law (Fig. 6d–f)
only show outliers for larger λ. The general shape in terms of
steepness and flatness of the L-curves remains the same for
nonlinear and linear sliding across all subdomains. However,
as shown in Fig. 6, the domain L-curves including nonlinear
sliding exhibit a steeper behavior. We conclude that linear
sliding laws produce smooth subdomain L-curves with few
outliers (Fig. 7), but different regions show varying λbest val-
ues, indicating an influence of glaciological settings. How-
ever, when a nonlinear sliding law is applied, the impact of
different glaciological factors appears to become more sig-
nificant regarding the smoothness and outliers. We therefore
suggest performing a subdomain L-curve analysis whenever
a basal drag inversion for a larger model domain is consid-
ered, such as the WAIS.

3.5 Best drag estimate

In this section, we focus on the nonlinear Budd-type fric-
tion law experiment with NCUAS, λbest = 0.5, as it repre-
sents the best estimate of basal drag τ b and basal drag co-
efficient k2 that we achieved (Fig. 6f). For this particular
λbest, the cost curvature (Fig. 8d) corresponding to the L-
curve in Fig. 6f (NCUAS, m= 3) shows a clear peak at which
our picking method selects the λbest value. This would also
be the position where the λbest value would be chosen based
on visual inspection of the L-curve. Although using λmin
yields a smaller velocity misfit (Fig. 14g versus Fig. 14h),
this outcome is expected, as the L-curve method balances
both cost function terms, making λbest the optimal trade-off.
Furthermore, we can emphasize our choice by showing in
Sect. 3.3 that the inclusion of hydrology model results, such
as NCUAS in the Budd friction law, leads to a faster conver-
gence (Fig. A1b) and to improvements in the resulting fields
in terms of the reduction in the total variance ratio (Table 1,
column 9) and the variance in k2 (Table 1, column 3). Fur-
thermore, we can point out in Sect. 3.4 that the use of nonlin-
ear friction laws is advantageous, which is also reflected by
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Figure 11. L-curve comparison plot for linear sliding m= 1 and
nonlinear sliding m= 3 with NCUAS. The blue curve illustrates the
L-curve for linear sliding and NCUAS with λ ∈ [10−2,104

]. The
purple curve illustrates the nonlinear friction law with NCUAS and
λ ∈ [10−3,103

]. For a better comparison, the L-curve for the non-
linear friction law with NCUAS in a range of [10−3,103

] is also
given in gray. The dots explain the different inversion runs, the solid
line indicates the smooth trade-off curve, the thicker line describes
the corner region, and the white diamonds mark the λbest for the
L-curves shown. One inversion run for the L-curve with the linear
friction law (m= 1) including NCUAS is detected as an outlier.

the reduction in the total variance ratio of the derived basal
drag parameter by half.

Figure 12d shows the resulting spatial distribution of the
basal drag τ b. As expected, all glaciers with fast-flowing
areas (Fig. 2e) are characterized by a relatively low basal
drag (Fig. 12a–c). This can be recognized in Pine Island
Glacier and at the Siple Coast (Mercer, Whillans, Bind-
schadler, and MacAyeal ice streams; compare Fig. 1). Pine
Island Glacier and MacAyeal Ice Stream display a rippled
structure (Fig. 12c). Thwaites Glacier is particularly promi-
nent in this regard, as the structure of the basal drag alter-
nates between high and low basal drag (Fig. 12b). This par-
ticular structure is recognizable in the basal drag coefficient
in Fig. 13b and could be caused by the underlying bed to-
pography, which reveals a bumpy terrain (Fig. 2a). Overall,
Fig. 13d shows a low drag coefficient over the entire study
area, apart from Kamb Ice Stream, Roosevelt Island, and re-
gions further upstream where slow-flowing areas dominate.
Kamb Ice Stream exhibits a very high drag, which is in line
with the findings of Joughin and Tulaczyk (2002) and Beem
et al. (2014), indicating that the glacier is frozen to its bed.

In addition, Fig. 13 reveals that large parts of the domain,
excluding the Siple Coast, exhibit high values of basal drag
coefficient (red areas) near the grounding line, a pattern also
reflected in the basal drag field (Fig. 12).

We conduct comparisons of λmin, λmax, and λbest from the
associated L-curve (Fig. 6f) for the basal drag coefficient k2,
the basal drag τ b, and the velocity error vs− v

obs
s given by a

symmetric logarithmic scale (Fig. 14). It should be noted that
we do not use λbest = 0.5 to show the fields in Fig. 14 but in-
stead use the nearest-neighbor λ sample of λbest, λmin, and
λmax from the resulting L-curve in Fig. 6f. When comparing
our results for λmin = 0.0562, λbest = 0.562, and λmax = 10
in the first row of Fig. 14, we can observe the effect of the dif-
ferent weighting of regularization. The basal drag coefficient
k2 for λmax displays a very smooth distribution with barely
any structure. On the other hand, λmin shows a patchy struc-
ture with possible artifacts. This occurrence can also be rec-
ognized in the same way in the basal drag τ b (Fig. 14d–f). In
addition, Fig. 14i has a rather high velocity error (vs− v

obs
s )

widespread on the entire domain. However, this is not sur-
prising, as λmax = 10 provides a high weighting for the reg-
ularization term Jreg, which is minimized together with the
first velocity misfit cost term Jobs. Therefore, the velocity
misfit can not become as small as in Fig. 14g. The striking
feature here is the large velocity error at the edge of the whole
domain in Fig. 14h and i. In general, the velocity misfit re-
sults in a patchy distribution of both overestimated surface
velocities vs, indicated by pink areas, and underestimated
modeled surface velocities, indicated by green areas.

Figure 15 displays the ratio of basal and surface velocity,
which provides us with information on the creep-to-sliding
behavior of the WAIS. The result shows that a high pro-
portion of the velocity is caused due to sliding at the base
(blue areas) exactly in those locations where high veloci-
ties (Fig. 1) and a low basal drag τ b (Fig. 12d) predominate.
When focusing on Thwaites Glacier again, a ribbed structure
of velocities caused by alternating sliding and creep is visi-
ble. Another striking feature is the high percentage of creep
in some locations of the Thwaites grounding line, which
matches with the high basal drag (Fig. 12b). Assuming that
Roosevelt Island is frozen to the bed, the high proportion of
velocity represented by creep (red and white areas) seems to
be very suitable at this location. The high percentage of creep
in the area of Kamb Ice Stream also aligns with the expecta-
tion that Kamb is sticking to its bed.

4 Discussion

4.1 L-curves

We observe different problems in our L-curve procedure,
e.g., many outliers for λ < 10−2 when using linear friction
laws, and convergence problems for nonlinear sliding. Most
problems could be solved by shifting the λ range towards
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Figure 12. Map of the best-estimated basal drag result τb from WAIS inversion using λbest = 0.5 and nonlinear Budd slidingm= 3 incorpo-
rating NCUAS. The distribution is given (in kPa) within a range of [0,600]. Panels (a)–(c) display the zoom-in boxes for Pine Island Glacier,
Thwaites Glacier, and the Siple Coast, as shown in Fig. 1.

higher values, further smoothing the initial drag coefficient
kinit or by choosing different values for the convergence crite-
ria1xmin and εgttol in Eq. (9). The smoothness of our L-curves
serves as an indicator of whether the model and numerics are
performing correctly, with many outliers suggesting issues in
the setup or underlying assumptions. As already mentioned,
the occurrence of outlier models at small λ values is proba-
bly related to the non-convexity of the inverse problem due to
poor regularization, which makes it difficult for the optimiza-
tion algorithm to find a global minimum. Overall, the results
of the six experiments, which consistently show smooth L-
curves with few or no outliers, give us confidence that our
model procedure is trustworthy.

From a practical perspective, it would be preferable to se-
lect a single λbest value for the whole of Antarctica. However,
the results of our L-curve procedure and subdomain analysis
reveal a range of λbest values, making it challenging to se-
lect a single λbest suitable for the entire domain. One way
to overcome this issue is to apply a method as in Wolovick
et al. (2023a), where different experiments are used to find
the best overall drag distribution. Compared to the values for
the λbest values of the Filchner–Ronne region in Wolovick
et al. (2023a), we obtain even higher λbest values for the
WAIS region. However, one should note here that our exper-
iments are based on the higher-order equations (see Eq. 1)

and that their inversion runs are based on the shelfy stream
approximation (SSA equations). Simulating our region with
the SSA equations (not shown in the paper) yields λbest val-
ues of the same order of magnitude as described in Wolovick
et al. (2023a). This fact would imply that an SSA inversion
can resolve finer structures than an HO inversion.

Another approach for selecting optimal λbest values could
involve relying on a subdomain L-curve analysis, as demon-
strated in Sect. 3.2. A key finding of this paper is that dif-
ferent regularization weights may be required for areas with
fundamentally distinct physical conditions, leading to signif-
icant differences in ice flow. One potential method would be
to determine λbest values using an analysis setup similar to
the control field approach (compare Fig. 3a, used for mesh
generation with varying refinements). This could include a
classification based on factors such as ice speed, surface and
bed slopes, thickness gradients, or other notable physical dif-
ferences. Overall, our subdomain L-curve analysis reveals
that shear margin regions pose the greatest challenge when
using nonlinear sliding laws. In contrast, slow-flow areas like
the WAIS divide or upstream tributaries of Thwaites Glacier
show minimal influence on regularization, regardless of lin-
ear or nonlinear sliding law. Similarly, rock outcrop regions
affect the L-curve less than expected. Fast-flow regions such
as Thwaites Glacier, Pine Island Glacier, and the Siple Coast

https://doi.org/10.5194/tc-19-2133-2025 The Cryosphere, 19, 2133–2158, 2025



2150 L.-S. Höyns et al.: Improved basal drag of the West Antarctic Ice Sheet from L-curve analysis

Figure 13. Map of the best-estimated basal drag coefficient result k2 from WAIS inversion using λbest = 0.5 and nonlinear Budd sliding
m= 3 incorporating NCUAS. The distribution is given within a range of [0,6] (myr−1)−1/3. Panels (a)–(c) display the zoom-in boxes for
Pine Island Glacier, Thwaites Glacier, and the Siple Coast, as shown in Fig. 1.

exhibit relatively smooth subdomain L-curves for both linear
and nonlinear sliding.

4.2 Utilizing hydrology models in inverse modeling

We discuss the influence of effective pressure and how our
results differ for linear and nonlinear Budd and Weertman
sliding. Like Wolovick et al. (2023a), we can argue that our
results (Sect. 3.3) suggest that it is reasonable to use a non-
linear friction law for a basal drag inversion. Although our
results show a strongly increased velocity equivalent for the
misfit Jobs compared to Wolovick et al. (2023a), which even
increases with nonlinear sliding, except for using Nop, we
see an overall improvement when m= 3 is used. This dis-
crepancy from Wolovick et al. (2023a) could be justified by
the higher-order equations used in our study or even due
to our higher λbest values. We observe a reduction by half
of the total variance (Table 1, column 9) when switching
from linear sliding m= 1 to nonlinear sliding m= 3. This
gives us a measure of the overall performance of our inver-
sion, whereby the increased velocity costs in Jobs are com-
pensated by the reduction in the variance in ln(k2). Beyond
that, the analysis of linear versus nonlinear sliding reveals
flatter L-curves for m= 1 and steeper ones for m= 3. The
steeper curves result in a narrower acceptable corner range

for λ (Fig. 6), simplifying the determination of λbest. These
distinct curve behaviors between sliding laws are notable,
with steeper L-curves for nonlinear sliding helping to pre-
cisely bracket the range from λmin to λmax, an observation
also made by Wolovick et al. (2023a).

We agree with Wolovick et al. (2023a) regarding the non-
linearity of friction laws used in basal drag inversion, but
our results concerning the use of effective pressure N dif-
fer somewhat. The location of the L-curve for the linear
and nonlinear Weertman cases shows a slightly better per-
formance than the L-curves for Budd sliding with NCUAS
(Fig. 8, Fig. 9). However, the velocity equivalent (Table 1,
column 8) for nonlinear sliding is reduced from 30.70myr−1

to 27.98myr−1 when switching from Weertman to Budd in-
cluding NCUAS. On top of this result, we get the best per-
formance using a nonlinear Budd friction law incorporating
NCUAS when looking at the total variance ratio (Table 1, col-
umn 9). McArthur et al. (2023) obtained a positive correla-
tion between the effective pressure N and the basal drag co-
efficient k when using a Schoof sliding law but not when they
referred to a Budd-type sliding law. This differs from our re-
sults, as we also obtain a positive correlation when using the
Budd-type sliding law (compare Table 1, column 6). Regions
with a lower effective pressure NCUAS also exhibit a lower
basal friction coefficient k, again demonstrating the control-
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Figure 14. Map of the best drag coefficient, best drag estimate, and velocity error from left to right for the minimum acceptable λmin, the
λbest, and the maximum acceptable λmax of the experiment with nonlinear Budd-type sliding including NCUAS. Panels (a)–(c) show the
basal drag coefficient log10(k2) (in (myr−1)−1/3) within a range of [−4,−0.5]. Panels (d)–(f) display plots for basal drag τb (in kPa)
within a range of [0,600]. Panels (g)–(i) illustrate the velocity error on a symmetric logarithmic scale (in myr−1).

Figure 15. Map of the slip ratio between basal and surface velocity
vb/vs for the experiment with nonlinear Budd-type sliding includ-
ing NCUAS at λbest = 0.5.

ling role of the hydrological system (compare Fig. 5b and
Fig. 13). The slightly increased correlation ofNCUAS with k2

W
compared toNop with k2

W shows thatNCUAS does not need to
produce too much structure when computing Jobs. This is fur-
ther supported by our result in Fig. 10, which demonstrates
that NCUAS leads to a smoother distribution of the basal drag
coefficient k2, which is our goal when includingNCUAS from
a subglacial hydrology model. This confirms that the nonlin-
ear Budd friction law with NCUAS performs well with our
model setup. Equally, the results of McArthur et al. (2023)
show a smoother basal drag coefficient when the effective
pressure of a subglacial hydrology model is included. Such a
smooth and only slightly variable basal drag coefficient is de-
sirable because the effective pressure field N should account
for the entire structure by including the subglacial hydrology
(recall k2

W = k
2
BN ).

In addition, our experiments show that for nonlinear slid-
ing using Weertman or Budd including NCUAS, the conver-
gence of the optimization process is achieved in significantly
fewer iteration steps (Fig. A1). Overall, we have to admit
that the convergence results could be specific to the par-
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ticular ISSM inversion process with the chosen optimiza-
tion algorithm of M1QN3. Even if we recognize that the
M1QN3 algorithm achieves good convergence, there are cer-
tainly improved algorithms that might achieve better conver-
gence. However, we cannot say whether other algorithms,
e.g., an interior point algorithm (Byrd et al., 1999), as shown
in Barnes et al. (2021), perform better without further com-
parisons.

The confidence in this experimentm= 3, NCUAS is further
supported by the experience of better convergence and the
resulting smoother L-curves when including NCUAS. These
key findings justify our argumentation in Sect. 3.5 to define
the basal drag τ b and the drag coefficient k2 as our best esti-
mate when using the experiment for NCUAS, m= 3. In gen-
eral, our study, along with that of McArthur et al. (2023),
demonstrates a more realistic representation of the ice sheet
model when using the output of subglacial hydrology mod-
els, revealing the importance of coupling ice sheet models
with subglacial hydrology models.

Joughin et al. (2019) recommend using a Coulomb friction
law, which accounts for cavitation effects on sliding (Schoof,
2005), as it improved simulation fidelity, especially for Pine
Island Glacier. Notably, Joughin et al. (2019, Fig. 1) illustrate
that nonlinear power laws, such as m= 3 used in our study,
approximate the regularized Coulomb friction law form> 1.
Consistent with our results and those of Wolovick et al.
(2023a), nonlinear sliding laws improve model performance.
However, incorporating subglacial hydrology provides better
insights into basal water pressure, and a regularized Coulomb
law, which is nonlinear concerning effective pressure, could
further enhance the dependency of basal motion on hydraulic
conditions. Therefore, adopting the Coulomb friction law
from Joughin et al. (2019), which accommodates both weak
till and hard bedrock, together with the effective pressure of
the CUAS-MPI hydrology model, could improve accuracy in
future studies.

4.3 Comparison with previous studies/findings in the
WAIS

In this section, we compare our best drag and our best drag
coefficient with findings of previous studies. When analyz-
ing our best estimate of the basal drag τ b and the basal drag
coefficient k2, we find high variability in the Thwaites re-
gion (Fig. 12b, Fig. 13b) and predominantly high velocities
(Fig. 2e). Here, we observe characteristic rib-like patterns,
so-called traction ribs (Sergienko and Hindmarsh, 2013),
which vary between high basal drag τ b around 200kPa and
very low regions of drag close to 0kPa. Rib-like features
are also observed in paleo-ice streams (Stokes et al., 2016).
Stokes et al. (2016) suggest that the ribbed bedforms found
under the ice masses could be caused by a topographic ex-
pression. Comparing our results with existing seismic mea-
surements of the glacier bed reflection in the Thwaites region
could provide us with further insights in the future. How-

ever, when we examine the Siple Coast for our best maps of
basal drag (Fig. 12c) and basal drag coefficient (Fig. 13c),
we have low variability, especially for the Mercer, Van der
Veen, and Whillans ice streams. Nevertheless, when apply-
ing SSA instead of the HO equations, it would be possible to
find a higher variability in this region due to the lower λbest
values we obtain when using SSA. In that case, the struc-
ture might not be smoothed as much as we observe here at
higher λbest values. Pine Island Glacier in Figs. 12a and 13a
is represented by a relatively low basal drag and basal drag
coefficient compared to the drag obtained from Morlighem
et al. (2010). While our drag is quite equally distributed, the
basal drag for Pine Island Glacier in Morlighem et al. (2010)
shows a very patchy structure, but this could also be caused
by the higher mesh resolution used in the study. Figures 12a
and 13a highlight regions of increased basal drag and drag
coefficient near the grounding line in large parts of the study
area, except the Siple Coast. A similar pattern, with high drag
concentrated along the margins, was identified by Höyns et
al. (2024) and extends to the East Antarctic Ice Sheet and
parts of the WAIS. This increased basal drag near the ground-
ing line may play a crucial role in delaying future ice sheet
retreat.

Morlighem et al. (2021) highlight that even small varia-
tions in basal friction significantly impact glacier dynamics
when using automatic differentiation. In addition, Barnes and
Gudmundsson (2022) show that simulations with lower basal
friction coefficients exhibit greater sensitivity to changes in
forcing. Although their study employs a constant basal drag
coefficient to explore this effect, accurately characterizing
the sliding laws and the basal drag coefficient remains cru-
cial for reliable predictions of future ice sheet evolution. Our
Fig. 14 illustrates how varying λ values influence the simu-
lated basal drag fields, again demonstrating the importance
of precise regularization values and the application of a sub-
domain L-curve analysis in the future.

Rathmann and Lilien (2022) assume that sticky spots are
difficult to detect and that bed bumps could be misinterpreted
when deriving the basal drag coefficient using Glen’s flow
law (Eq. 2). Indeed, some sticky spots identified in the lit-
erature, e.g., the sticky spot of Kamb Ice Stream (Luthra
et al., 2017), are not visible in our resulting basal drag coeffi-
cient field (Fig. 13c) or in the basal drag field (Fig. 12c). We
hypothesize that this could be due to the neglect of crystal-
orientation fabric when inferring the basal drag coefficient k.
However, the sticky spot could also be obscured by the reg-
ularization process; the lower mesh resolution in this region
(Fig. 3b); or, in general, the fact that we consider a Budd-type
sliding law incorporating an effective pressure field instead
of using only Weertman sliding like Rathmann and Lilien
(2022). In the latter case, the sticky spot could already occur
in the effective pressure field, which is not recognizable in
our case (compare Fig. 5).

Overall, we cannot argue if our basal drag coefficient
would significantly change when considering anisotropic ice
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instead of isotropic ice as with Glen’s flow law. In addition,
the choice of flow law, e.g., using an anisotropic flow law or
including an enhancement factor instead of using Glen’s flow
law (Eq. 2), could also further impact our results regarding
the deformation-to-sliding ratio (Fig. 15). Considering our
map in Fig. 15, it becomes apparent that most of the glaciers
and ice streams in our study domain are controlled by sliding-
dominated flow. Comparing these results with those of Mc-
Cormack et al. (2022), who show that experiments with
ESTAR (Empirical Scalar Tertiary Anisotropy Regime) and
Glen using the enhancement factor E = 5 (experiment G5)
reveal an increase in deformation-induced flow, especially
in the defined deformation–sliding zone and the bed-parallel
shear deformation zone, our results could change if the ES-
TAR flow law or at least an enhancement factor is included
in Glen’s flow law.

According to Kyrke-Smith et al. (2018), our inferred basal
drag conditions should be interpreted with caution, as they
recommend separating skin and form drag. When perform-
ing the inversion with detailed bed topography data, they ob-
served a reduced skin drag, indicating that the results could
include drag, which is due to unresolved topography rather
than inherent bed and sediment conditions. Uncertainties in
the basal topography could contribute to errors in the inferred
basal drag. In addition, Kyrke-Smith et al. (2018) suggest
basing the inversion in areas where traction ribs can be found,
such as in the Thwaites region, on high-resolution topogra-
phy data, which was not implemented in this study. However,
Schroeder et al. (2013) investigated the transition of the water
system beneath Thwaites Glacier based on geophysical anal-
ysis. They found concentrated channels (no effect on basal
drag) near the grounding line, followed by a transition to
distributed channels (reducing basal drag) further upstream.
Comparison of our basal drag distribution with these find-
ings agrees well (Fig. 12b), as we observe a distribution of
low drag further upstream that transitions into a distribution
of higher drag near the grounding line.

The inversion method and the L-curve analysis presented
could, of course, be extended to other iterative schemes, as
demonstrated in Zhao et al. (2018), or to flow-rate-factor in-
versions (e.g., Arthern et al., 2015; Ranganathan et al., 2021;
McArthur et al., 2023). Various studies suggest performing a
combined inversion of basal drag and flow-rate factor; e.g.,
Rathmann and Lilien (2022) recommend such joint inversion
to reduce mass-flux errors by compensating for missing fab-
ric information when using Glen’s flow law. Simultaneous
determination of the flow-rate parameter and the basal drag
coefficient would be necessary, as the ice velocity is con-
trolled by both. When performing a single inversion, such
as our basal drag inversion, we have to assume erroneous
rheology and thus insert uncertainties into the resulting basal
conditions (Ranganathan et al., 2021). However, we argue
that both an iterative scheme and joint inversion need a good
temperature–depth profile to get a good initial state after in-
version, e.g., what Zhao et al. (2018) aim for, or to get a good

joint inversion result. This is the reason why we restrict our
inversion to an absolute misfit term in the cost function J . In-
clusion of the logarithmic misfit term (e.g., Morlighem et al.,
2013) would perform better if a rheology inversion were con-
sidered. The observed surface velocities in the interior of the
study area are relatively slow, and, without proper choice of
the rheology (temperature), the velocity contribution from
ice deformation could already lead to a higher surface ve-
locity than observed. In this case, the basal drag inversion
could not correct for this bias, and the logarithmic misfit in
these regions would likely be very high. Overall, changing
the misfit term does not change the presented approach for
the inversion of the basal drag with the used L-curve analysis.
However, incorporating more knowledge into the calculation
of rheology, such as a better temperature–depth distribution,
could help in the future to obtain better results. Neverthe-
less, our aim was not to achieve the best steady state, e.g.,
as in Zhao et al. (2018). Our statement is that focusing on
a smooth L-curve result in an inversion is also of great im-
portance, as we experienced that any ill-formed L-curve was
always due to difficulties in the inversion process, caused ei-
ther by the input data or the numerics involved. For example,
if the λ value is not selected in the corner of the L, whether
due to an incorrect representation, e.g., not based on a log–
log scale, or due to a subjective choice of the λ value, we
would produce unrealistic artifacts in the basal conditions.

5 Conclusions

In this paper, we analyzed a total of six basal drag inversion
experiments for a large part of the WAIS using both linear
and nonlinear Weertman- and Budd-type friction laws with
two different effective pressure descriptions. We particularly
focused on a basal drag inversion using a Budd-type fric-
tion law incorporating an effective pressure from a hydrology
model to improve the basal drag field for a major part of the
WAIS. We developed a strategy to handle poorly shaped L-
curves when weighting the regularization term and achieved
six well-defined, smooth curves. We find that ill-shaped L-
curves with many outliers are most likely the result of incon-
sistencies in the model setup that should be addressed. In all
cases, we were able to achieve a smoother L-shaped curve if
different actions, e.g., shifting the λ range, took place. The
subdomain L-curve analysis reveals that subdomains with
different geometry settings have an effect on the shape and
smoothness of the L-curves. We can identify problematic ar-
eas in the study area through outliers in the L-curves of spe-
cific subdomains. Overall, this paper highlights the need for
varying regularization values for different physical or geo-
metric settings, leading to significant differences in ice flow
and more accurate basal drag results.

Our results suggest, as in previous studies, that it might be
useful to rely on a nonlinear friction law when using basal
drag inversions. We demonstrate that, by including effective
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pressure from the subglacial hydrology model, CUAS-MPI
can further improve the resulting maps of a basal drag inver-
sion. We were able to show that the incorporated effective
pressure field explains a significant fraction of the variance
in the drag coefficient. However, we believe that we could
achieve even better results for the basal drag coefficient by
further improving the effective pressure of CUAS-MPI. The
ribbed structure that we recognize in parts of Thwaites in our
resulting basal drag and basal drag coefficient distributions
could be confirmed in the future with seismic measurements.
As we have high confidence in our results, our achieved basal
drag can serve as an initial stress state for further models con-
sidering a major part of the WAIS. In the future, the behavior
of the L-curves and their analysis should also be compared
with the other areas of Antarctica or even the entire Antarc-
tic.

Appendix A: Convergence of inversion

Figure A1 shows the convergence of the total cost function J
for all six experiments of the optimization based on the λbest
weight (labeled in Fig. 6). The x axis displays the number of
iterations required for the cost function J to reach an opti-
mum. In the case of a linear friction law (Fig. A1a), 200 iter-
ations are required on average. However, if a nonlinear fric-
tion law is used (Fig. A1b), fewer iteration steps of around
120 are required until convergence is reached. It is remark-
able that the run with a nonlinear Budd friction law employ-
ing Nop requires up to 60 iterations more than the other two
runs using a nonlinear friction law. In the case of the linear
friction law (Fig. A1a), the inversion using a Weertman fric-
tion law requires significantly more iterations (about 70) for
convergence than the two with the Budd-type friction law. In
both the linear and nonlinear cases, the inversions involving a
Budd friction law with the effective pressure NCUAS require
the fewest iterations until convergence is reached.

Figure A1. Convergence of cost function J for the respective best
weight λbst of all six optimization runs. Note the different ranges
of iteration steps for the x axis. (a) Convergence for the three ex-
periments using a linear friction law. (b) Convergence for the three
experiments with a nonlinear friction law. The yellow line indicates
the convergence of the inversion using a Weertman friction law; the
dark-blue line denotes the convergence of the inversion run with
Budd-type and Nop; and the turquoise line characterizes the con-
vergence of the run with Budd-type using NCUAS, respectively, for
panel (a) and panel (b).
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Code and data availability. The open-source Ice-sheet and
Sea-level System Model (ISSM v. 4.22; Larour et al.,
2012) used is available at https://issm.jpl.nasa.gov/ (last ac-
cess: 17 June 2025). The inversion scripts are available at
https://doi.org/10.5281/zenodo.7798650 (Wolovick et al., 2023a;
Wolovick et al., 2023b). All parameters that were adjusted for
this study and all scripts used to create the figures are available at
https://doi.org/10.5281/zenodo.10974434 (Höyns et al., 2024). The
results of the inverse model are saved in NetCDF format and are
also available at https://doi.org/10.5281/zenodo.10974434 (Höyns
et al., 2024). For the geometry of our model and for the CUAS-MPI
model, we use the BedMachine Antarctica v2 dataset (Morlighem
et al., 2020) provided at https://doi.org/10.5067/E1QL9HFQ7A8M
(Morlighem, 2020). The observed surface velocities used from
the MEaSUREs v2 dataset (Mouginot et al., 2012; Rignot et al.,
2011b) are accessible at https://doi.org/10.5067/D7GK8F5J8M8R
(Rignot et al., 2017). For the 1D thermal model, we use sur-
face climate inputs of surface temperature (Comiso, 2000)
and accumulation rate (mean of Van De Berg et al., 2005,
and Arthern et al., 2006). All those data can be found at
https://doi.org/10.1594/PANGAEA.734145 (Le Brocq et al.,
2010a; Le Brocq et al., 2010b). The output of the 1D thermal model
and the effective pressure from CUAS-MPI are provided within a
NetCDF file at https://doi.org/10.5281/zenodo.10974434 (Höyns et
al., 2024).
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