Articles | Volume 19, issue 3
https://doi.org/10.5194/tc-19-1259-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-1259-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impacts of air fraction increase on Arctic sea ice density, freeboard, and thickness estimation during the melt season
Evgenii Salganik
CORRESPONDING AUTHOR
Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Odile Crabeck
Chemical Oceanography Unit, Université de Liège, Liège, Belgium
Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium
Niels Fuchs
Institute of Oceanography, University of Hamburg, Hamburg, Germany
Nils Hutter
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Philipp Anhaus
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Institut für den Schutz maritimer Infrastrukturen, Deutsches Zentrum für Luft- und Raumfahrt e. V., Bremerhaven, Germany
Jack Christopher Landy
Department of Physics and Technology, UiT Arctic University of Norway, Tromsø, Norway
Related authors
Madison M. Smith, Niels Fuchs, Evgenii Salganik, Donald K. Perovich, Ian Raphael, Mats A. Granskog, Kirstin Schulz, Matthew D. Shupe, and Melinda Webster
The Cryosphere, 19, 619–644, https://doi.org/10.5194/tc-19-619-2025, https://doi.org/10.5194/tc-19-619-2025, 2025
Short summary
Short summary
The fate of freshwater from Arctic sea ice and snowmelt impacts interactions of the atmosphere, sea ice, and ocean. We complete a comprehensive analysis of datasets from a 2020 central Arctic field campaign to understand the drivers of the sea ice freshwater budget and the fate of this water. Over half of the freshwater comes from surface melt, and a majority fraction is incorporated into the ocean. Results suggest that the representation of melt ponds is a key area for future development.
Evgenii Salganik, Benjamin A. Lange, Christian Katlein, Ilkka Matero, Philipp Anhaus, Morven Muilwijk, Knut V. Høyland, and Mats A. Granskog
The Cryosphere, 17, 4873–4887, https://doi.org/10.5194/tc-17-4873-2023, https://doi.org/10.5194/tc-17-4873-2023, 2023
Short summary
Short summary
The Arctic Ocean is covered by a layer of sea ice that can break up, forming ice ridges. Here we measure ice thickness using an underwater sonar and compare ice thickness reduction for different ice types. We also study how the shape of ridged ice influences how it melts, showing that deeper, steeper, and narrower ridged ice melts the fastest. We show that deformed ice melts 3.8 times faster than undeformed ice at the bottom ice--ocean boundary, while at the surface they melt at a similar rate.
Siqi Liu, Shiming Xu, Wenkai Guo, Yanfei Fan, Lu Zhou, Jack Landy, Malin Johansson, Weixin Zhu, and Alek Petty
EGUsphere, https://doi.org/10.5194/egusphere-2025-1069, https://doi.org/10.5194/egusphere-2025-1069, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
In this study, we explore the potential of using synthetic aperture radars (SAR) to predict the sea ice height measurements by the airborne campaign of Operation IceBridge. In particular, we predict the meter-scale sea ice height with the statistical relationship between the two, overcoming the resolution limitation of SAR images from Sentinel-1 satellites. The prediction and ice drift correction algorithms can be applied to the extrapolation of ICESat-2 measurements in the Arctic region.
Madison M. Smith, Niels Fuchs, Evgenii Salganik, Donald K. Perovich, Ian Raphael, Mats A. Granskog, Kirstin Schulz, Matthew D. Shupe, and Melinda Webster
The Cryosphere, 19, 619–644, https://doi.org/10.5194/tc-19-619-2025, https://doi.org/10.5194/tc-19-619-2025, 2025
Short summary
Short summary
The fate of freshwater from Arctic sea ice and snowmelt impacts interactions of the atmosphere, sea ice, and ocean. We complete a comprehensive analysis of datasets from a 2020 central Arctic field campaign to understand the drivers of the sea ice freshwater budget and the fate of this water. Over half of the freshwater comes from surface melt, and a majority fraction is incorporated into the ocean. Results suggest that the representation of melt ponds is a key area for future development.
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
The Cryosphere, 19, 325–346, https://doi.org/10.5194/tc-19-325-2025, https://doi.org/10.5194/tc-19-325-2025, 2025
Short summary
Short summary
Snow on sea ice is vital for near-shore sea ice geophysical and biological processes. Past studies have measured snow depths using the satellite altimeters Cryosat-2 and ICESat-2 (Cryo2Ice), but estimating sea surface height from leadless landfast sea ice remains challenging. Snow depths from Cryo2Ice are compared to in situ data after adjusting for tides. Realistic snow depths are retrieved, but differences in roughness, satellite footprints, and snow geophysical properties are identified.
Jack C. Landy, Claude de Rijke-Thomas, Carmen Nab, Isobel Lawrence, Isolde A. Glissenaar, Robbie D. C. Mallett, Renée M. Fredensborg Hansen, Alek Petty, Michel Tsamados, Amy R. Macfarlane, and Anne Braakmann-Folgmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2904, https://doi.org/10.5194/egusphere-2024-2904, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
In this study we use three satellites to test the planned remote sensing approach of the upcoming mission CRISTAL over sea ice: that its dual radars will accurately measure the heights of the top and base of snow sitting atop floating sea ice floes. Our results suggest that CRISTAL's dual radars won’t necessarily measure the snow top and base under all conditions. We find that accurate height measurements depend much more on surface roughness than on snow properties, as is commonly assumed.
Niels Fuchs, Luisa von Albedyll, Gerit Birnbaum, Felix Linhardt, Natascha Oppelt, and Christian Haas
The Cryosphere, 18, 2991–3015, https://doi.org/10.5194/tc-18-2991-2024, https://doi.org/10.5194/tc-18-2991-2024, 2024
Short summary
Short summary
Melt ponds are key components of the Arctic sea ice system, yet methods to derive comprehensive pond depth data are missing. We present a shallow-water bathymetry retrieval to derive this elementary pond property at high spatial resolution from aerial images. The retrieval method is presented in a user-friendly way to facilitate replication. Furthermore, we provide pond properties on the MOSAiC expedition floe, giving insights into the three-dimensional pond evolution before and after drainage.
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
The Cryosphere, 18, 2321–2333, https://doi.org/10.5194/tc-18-2321-2024, https://doi.org/10.5194/tc-18-2321-2024, 2024
Short summary
Short summary
The CAA serves as both a source and a sink for sea ice from the Arctic Ocean, while also exporting sea ice into Baffin Bay. It is also an important region with respect to navigating the Northwest Passage. Here, we quantify sea ice transport and replenishment across and within the CAA from 2016 to 2022. We also provide the first estimates of the ice area and volume flux within the CAA from the Queen Elizabeth Islands to Parry Channel, which spans the central region of the Northwest Passage.
Evgenii Salganik, Benjamin A. Lange, Christian Katlein, Ilkka Matero, Philipp Anhaus, Morven Muilwijk, Knut V. Høyland, and Mats A. Granskog
The Cryosphere, 17, 4873–4887, https://doi.org/10.5194/tc-17-4873-2023, https://doi.org/10.5194/tc-17-4873-2023, 2023
Short summary
Short summary
The Arctic Ocean is covered by a layer of sea ice that can break up, forming ice ridges. Here we measure ice thickness using an underwater sonar and compare ice thickness reduction for different ice types. We also study how the shape of ridged ice influences how it melts, showing that deeper, steeper, and narrower ridged ice melts the fastest. We show that deformed ice melts 3.8 times faster than undeformed ice at the bottom ice--ocean boundary, while at the surface they melt at a similar rate.
Geoffrey J. Dawson and Jack C. Landy
The Cryosphere, 17, 4165–4178, https://doi.org/10.5194/tc-17-4165-2023, https://doi.org/10.5194/tc-17-4165-2023, 2023
Short summary
Short summary
In this study, we compared measurements from CryoSat-2 and ICESat-2 over Arctic summer sea ice to understand any possible biases between the two satellites. We found that there is a difference when we measure elevation over summer sea ice using CryoSat-2 and ICESat-2, and this is likely due to surface melt ponds. The differences we found were in good agreement with theoretical predictions, and this work will be valuable for summer sea ice thickness measurements from both altimeters.
Isolde A. Glissenaar, Jack C. Landy, David G. Babb, Geoffrey J. Dawson, and Stephen E. L. Howell
The Cryosphere, 17, 3269–3289, https://doi.org/10.5194/tc-17-3269-2023, https://doi.org/10.5194/tc-17-3269-2023, 2023
Short summary
Short summary
Observations of large-scale ice thickness have unfortunately only been available since 2003, a short record for researching trends and variability. We generated a proxy for sea ice thickness in the Canadian Arctic for 1996–2020. This is the longest available record for large-scale sea ice thickness available to date and the first record reliably covering the channels between the islands in northern Canada. The product shows that sea ice has thinned by 21 cm over the 25-year record in April.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Isolde A. Glissenaar, Jack C. Landy, Alek A. Petty, Nathan T. Kurtz, and Julienne C. Stroeve
The Cryosphere, 15, 4909–4927, https://doi.org/10.5194/tc-15-4909-2021, https://doi.org/10.5194/tc-15-4909-2021, 2021
Short summary
Short summary
Scientists can estimate sea ice thickness using satellites that measure surface height. To determine the sea ice thickness, we also need to know the snow depth and density. This paper shows that the chosen snow depth product has a considerable impact on the findings of sea ice thickness state and trends in Baffin Bay, showing mean thinning with some snow depth products and mean thickening with others. This shows that it is important to better understand and monitor snow depth on sea ice.
Robbie D. C. Mallett, Julienne C. Stroeve, Michel Tsamados, Jack C. Landy, Rosemary Willatt, Vishnu Nandan, and Glen E. Liston
The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021, https://doi.org/10.5194/tc-15-2429-2021, 2021
Short summary
Short summary
We re-estimate pan-Arctic sea ice thickness (SIT) values by combining data from the Envisat and CryoSat-2 missions with data from a new, reanalysis-driven snow model. Because a decreasing amount of ice is being hidden below the waterline by the weight of overlying snow, we argue that SIT may be declining faster than previously calculated in some regions. Because the snow product varies from year to year, our new SIT calculations also display much more year-to-year variability.
Stephen E. L. Howell, Randall K. Scharien, Jack Landy, and Mike Brady
The Cryosphere, 14, 4675–4686, https://doi.org/10.5194/tc-14-4675-2020, https://doi.org/10.5194/tc-14-4675-2020, 2020
Short summary
Short summary
Melt ponds form on the surface of Arctic sea ice during spring and have been shown to exert a strong influence on summer sea ice area. Here, we use RADARSAT-2 satellite imagery to estimate the predicted peak spring melt pond fraction in the Canadian Arctic Archipelago from 2009–2018. Our results show that RADARSAT-2 estimates of peak melt pond fraction can be used to provide predictive information about summer sea ice area within certain regions of the Canadian Arctic Archipelago.
Robbie D. C. Mallett, Isobel R. Lawrence, Julienne C. Stroeve, Jack C. Landy, and Michel Tsamados
The Cryosphere, 14, 251–260, https://doi.org/10.5194/tc-14-251-2020, https://doi.org/10.5194/tc-14-251-2020, 2020
Short summary
Short summary
Soils store large carbon and are important for global warming. We do not know what factors are important for soil carbon storage in the alpine Andes and how they work. We studied how rainfall affects soil carbon storage related to soil structure. We found soil structure is not important, but soil carbon storage and stability controlled by rainfall are dependent on rocks under the soils. The results indicate that we should pay attention to the rocks when studying soil carbon storage in the Andes.
Philipp Anhaus, Lars H. Smedsrud, Marius Årthun, and Fiammetta Straneo
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-35, https://doi.org/10.5194/tc-2019-35, 2019
Revised manuscript not accepted
Short summary
Short summary
Atlantic Water flows towards the Arctic and under floating glaciers on Greenland. Observations in a rift on the 79 North Glacier show presence of such water with temperature of 1 °C at 600 m. We simulate how this warm water melts the floating ice. Melt rates are largest where the glacier starts floating, are smaller where the water rises, and increase linearly with rising ocean temperature. Our results improve the understanding of ocean processes driving melting of floating glaciers.
N.-X. Geilfus, R. J. Galley, O. Crabeck, T. Papakyriakou, J. Landy, J.-L. Tison, and S. Rysgaard
Biogeosciences, 12, 2047–2061, https://doi.org/10.5194/bg-12-2047-2015, https://doi.org/10.5194/bg-12-2047-2015, 2015
Short summary
Short summary
We investigated the evolution of inorganic carbon within landfast sea ice in Resolute Passage during the spring and summer melt period.
Low TA and TCO2 concentrations observed in sea ice and brine were associated with the percolation of meltwater from melt ponds. Meltwater was continuously supplied to the ponds which prevented melt ponds from fully equilibrating with the atmospheric CO2 concentration, promoting a continuous uptake of CO2 from the atmosphere.
Related subject area
Discipline: Sea ice | Subject: Mass Balance Obs
Observations of preferential summer melt of Arctic sea-ice ridge keels from repeated multibeam sonar surveys
Changes in the annual sea ice freeze–thaw cycle in the Arctic Ocean from 2001 to 2018
Evgenii Salganik, Benjamin A. Lange, Christian Katlein, Ilkka Matero, Philipp Anhaus, Morven Muilwijk, Knut V. Høyland, and Mats A. Granskog
The Cryosphere, 17, 4873–4887, https://doi.org/10.5194/tc-17-4873-2023, https://doi.org/10.5194/tc-17-4873-2023, 2023
Short summary
Short summary
The Arctic Ocean is covered by a layer of sea ice that can break up, forming ice ridges. Here we measure ice thickness using an underwater sonar and compare ice thickness reduction for different ice types. We also study how the shape of ridged ice influences how it melts, showing that deeper, steeper, and narrower ridged ice melts the fastest. We show that deformed ice melts 3.8 times faster than undeformed ice at the bottom ice--ocean boundary, while at the surface they melt at a similar rate.
Long Lin, Ruibo Lei, Mario Hoppmann, Donald K. Perovich, and Hailun He
The Cryosphere, 16, 4779–4796, https://doi.org/10.5194/tc-16-4779-2022, https://doi.org/10.5194/tc-16-4779-2022, 2022
Short summary
Short summary
Ice mass balance observations indicated that average basal melt onset was comparable in the central Arctic Ocean and approximately 17 d earlier than surface melt in the Beaufort Gyre. The average onset of basal growth lagged behind the surface of the pan-Arctic Ocean for almost 3 months. In the Beaufort Gyre, both drifting-buoy observations and fixed-point observations exhibit a trend towards earlier basal melt onset, which can be ascribed to the earlier warming of the surface ocean.
Cited articles
Anhaus, P., Katlein, C., Arndt, S., Krampe, D., Lange, B. A., Matero, I., Salganik, E., and Nicolaus, M.: Under-ice environment observations from a remotely operated vehicle during the MOSAiC expedition, Scientific Data, in review, 2025. a
Cole, D. M., Eicken, H., Frey, K., and Shapiro, L. H.: Observations of banding in first‐year Arctic sea ice, J. Geophys. Res.-Oceans, 109, C08012, https://doi.org/10.1029/2003jc001993, 2004. a, b
Coppolaro, V.: Sea ice underside three-dimensional topography and draft measurements with an upward-looking multibeam sonar mounted on a remotely operated vehicle, MS thesis, University of Florence, https://doi.org/10.13140/RG.2.2.34572.95362, 2018. a
Cottier, F., Eicken, H., and Wadhams, P.: Linkages between salinity and brine channel distribution in young sea ice, J. Geophys. Res.-Oceans, 104, 15859–15871, https://doi.org/10.1029/1999jc900128, 1999. a
Cox, G. F. N. and Weeks, W. F.: Equations for Determining the Gas and Brine Volumes in Sea-Ice Samples, J. Glaciol., 29, 306–316, https://doi.org/10.3189/S0022143000008364, 1983. a, b, c, d
Crabeck, O., Galley, R., Delille, B., Else, B., Geilfus, N.-X., Lemes, M., Des Roches, M., Francus, P., Tison, J.-L., and Rysgaard, S.: Imaging air volume fraction in sea ice using non-destructive X-ray tomography, The Cryosphere, 10, 1125–1145, https://doi.org/10.5194/tc-10-1125-2016, 2016. a, b, c
Crabeck, O., Galley, R. J., Mercury, L., Delille, B., Tison, J.-L., and Rysgaard, S.: Evidence of Freezing Pressure in Sea Ice Discrete Brine Inclusions and Its Impact on Aqueous-Gaseous Equilibrium, J. Geophys. Res.-Oceans, 124, 1660–1678, https://doi.org/10.1029/2018JC014597, 2019. a, b, c, d, e, f
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science communication, Nat. Commun., 11, 5444, https://doi.org/10.1038/s41467-020-19160-7, 2020. a
Dawson, G., Landy, J., Tsamados, M., Komarov, A. S., Howell, S., Heorton, H., and Krumpen, T.: A 10-year record of Arctic summer sea ice freeboard from CryoSat-2, Remote Sens. Environ., 268, 112744, https://doi.org/10.1016/j.rse.2021.112744, 2022. a, b, c
Eicken, H., Krouse, H. R., Kadko, D., and Perovich, D. K.: Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice, J. Geophys. Res.-Oceans, 107, 8046, https://doi.org/10.1029/2000jc000583, 2002. a, b
Fons, S., Kurtz, N., and Bagnardi, M.: A decade-plus of Antarctic sea ice thickness and volume estimates from CryoSat-2 using a physical model and waveform fitting, The Cryosphere, 17, 2487–2508, https://doi.org/10.5194/tc-17-2487-2023, 2023. a, b, c
Forsström, S., Gerland, S., and Pedersen, C. A.: Thickness and density of snow-covered sea ice and hydrostatic equilibrium assumption from in situ measurements in Fram Strait, the Barents Sea and the Svalbard coast, Ann. Glaciol., 52, 261–270, https://doi.org/10.3189/172756411795931598, 2011. a
Frantz, C. M., Light, B., Farley, S. M., Carpenter, S., Lieblappen, R., Courville, Z., Orellana, M. V., and Junge, K.: Physical and optical characteristics of heavily melted “rotten” Arctic sea ice, The Cryosphere, 13, 775–793, https://doi.org/10.5194/tc-13-775-2019, 2019. a
Fuchs, N. and Birnbaum, G.: Melt pond bathymetry of the MOSAiC floe derived by photogrammetry – spatially fully resolved pond depth maps of an Arctic sea ice floe, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.964520, 2024. a
Fuchs, N., von Albedyll, L., Birnbaum, G., Linhardt, F., Oppelt, N., and Haas, C.: Sea ice melt pond bathymetry reconstructed from aerial photographs using photogrammetry: a new method applied to MOSAiC data, The Cryosphere, 18, 2991–3015, https://doi.org/10.5194/tc-18-2991-2024, 2024. a, b, c
Golden, K. M., Ackley, S. F., and Lytle, V. I.: The Percolation Phase Transition in Sea Ice, Science, 282, 2238–2241, https://doi.org/10.1126/science.282.5397.2238, 1998. a, b
Griewank, P. J. and Notz, D.: Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage, J. Geophys. Res.-Oceans, 118, 3370–3386, https://doi.org/10.1002/jgrc.20247, 2013. a
Haas, C., Gerland, S., Eicken, H., and Miller, H.: Comparison of sea‐ice thickness measurements under summer and winter conditions in the Arctic using a small electromagnetic induction device, Geophysics, 62, 749–757, https://doi.org/10.1190/1.1444184, 1997. a
Hornnes, V., Salganik, E., and Høyland, K. V.: Relationship of physical and mechanical properties of sea ice during the freeze-up season in Nansen Basin, Cold Reg. Sci. Technol., 229, 104353, https://doi.org/10.1016/j.coldregions.2024.104353, 2025. a
Hutchings, J. K., Heil, P., Lecomte, O., Stevens, R., Steer, A., and Lieser, J. L.: Comparing methods of measuring sea-ice density in the East Antarctic, Ann. Glaciol., 56, 77–82, https://doi.org/10.3189/2015aog69a814, 2015. a, b, c
Hutter, N., Hendricks, S., Jutila, A., Birnbaum, G., von Albedyll, L., Ricker, R., and Haas, C.: Merged grids of sea-ice or snow freeboard from helicopter-borne laser scanner during the MOSAiC expedition, version 1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.950896, 2023a. a, b
Hutter, N., Hendricks, S., Jutila, A., Ricker, R., von Albedyll, L., Birnbaum, G., and Haas, C.: Digital elevation models of the sea-ice surface from airborne laser scanning during MOSAiC, Scientific Data, 10, 729, https://doi.org/10.1038/s41597-023-02565-6, 2023b. a, b
Itkin, P., Webster, M., Hendricks, S., Oggier, M., Jaggi, M., Ricker, R., Arndt, S., Divine, D. V., von Albedyll, L., Raphael, I., Rohde, J., and Liston, G. E.: Magnaprobe snow and melt pond depth measurements from the 2019–2020 MOSAiC expedition, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.937781, 2021. a
Itkin, P., Hendricks, S., Webster, M., von Albedyll, L., Arndt, S., Divine, D., Jaggi, M., Oggier, M., Raphael, I., Ricker, R., Rohde, J., Schneebeli, M., and Liston, G. E.: Sea ice and snow characteristics from year-long transects at the MOSAiC Central Observatory, Elementa: Science of the Anthropocene, 11, 00048, https://doi.org/10.1525/elementa.2022.00048, 2023. a, b, c
Jackson, K., Wilkinson, J., Maksym, T., Meldrum, D., Beckers, J., Haas, C., and Mackenzie, D.: A Novel and Low-Cost Sea Ice Mass Balance Buoy, J. Atmos. Ocean. Tech., 30, 2676–2688, https://doi.org/10.1175/jtech-d-13-00058.1, 2013. a
Jutila, A., Hendricks, S., Ricker, R., von Albedyll, L., Krumpen, T., and Haas, C.: Retrieval and parameterisation of sea-ice bulk density from airborne multi-sensor measurements, The Cryosphere, 16, 259–275, https://doi.org/10.5194/tc-16-259-2022, 2022. a, b, c, d
Jutila, A., Hendricks, S., Ricker, R., von Albedyll, L., and Haas, C.: Airborne sea ice parameters during the IceBird Winter 2019 campaign in the Arctic Ocean, Version 2, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.966057, 2024. a
Katlein, C., Schiller, M., Belter, H. J., Coppolaro, V., Wenslandt, D., and Nicolaus, M.: A New Remotely Operated Sensor Platform for Interdisciplinary Observations under Sea Ice, Frontiers in Marine Science, 4, 281, https://doi.org/10.3389/fmars.2017.00281, 2017. a
Katlein, C., Anhaus, P., Arndt, S., Krampe, D., Lange, B. A., Matero, I., Regnery, J., Rohde, J., Schiller, M., and Nicolaus, M.: Sea-ice draft during the MOSAiC expedition 2019/20, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.945846, 2022. a, b
Kern, S., Khvorostovsky, K., Skourup, H., Rinne, E., Parsakhoo, Z. S., Djepa, V., Wadhams, P., and Sandven, S.: The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise, The Cryosphere, 9, 37–52, https://doi.org/10.5194/tc-9-37-2015, 2015. a
Kortum, K., Singha, S., Spreen, G., Hutter, N., Jutila, A., and Haas, C.: SAR deep learning sea ice retrieval trained with airborne laser scanner measurements from the MOSAiC expedition, The Cryosphere, 18, 2207–2222, https://doi.org/10.5194/tc-18-2207-2024, 2024. a
Krumpen, T., Birrien, F., Kauker, F., Rackow, T., von Albedyll, L., Angelopoulos, M., Belter, H. J., Bessonov, V., Damm, E., Dethloff, K., Haapala, J., Haas, C., Harris, C., Hendricks, S., Hoelemann, J., Hoppmann, M., Kaleschke, L., Karcher, M., Kolabutin, N., Lei, R., Lenz, J., Morgenstern, A., Nicolaus, M., Nixdorf, U., Petrovsky, T., Rabe, B., Rabenstein, L., Rex, M., Ricker, R., Rohde, J., Shimanchuk, E., Singha, S., Smolyanitsky, V., Sokolov, V., Stanton, T., Timofeeva, A., Tsamados, M., and Watkins, D.: The MOSAiC ice floe: sediment-laden survivor from the Siberian shelf, The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020, 2020. a
Landy, J. and Dawson, G.: Year-round Arctic sea ice thickness from CryoSat-2 Baseline-D Level 1b observations 2010–2020, NERC EDS UK Polar Data Centre [data set], https://doi.org/10.5285/D8C66670-57AD-44FC-8FEF-942A46734ECB, 2022. a, b, c
Landy, J., Ehn, J., Shields, M., and Barber, D.: Surface and melt pond evolution on landfast first-year sea ice in the Canadian Arctic Archipelago, J. Geophys. Res.-Oceans, 119, 3054–3075, https://doi.org/10.1002/2013jc009617, 2014. a
Landy, J. C., Petty, A. A., Tsamados, M., and Stroeve, J. C.: Sea Ice Roughness Overlooked as a Key Source of Uncertainty in CryoSat‐2 Ice Freeboard Retrievals, J. Geophys. Res.-Oceans, 125, e2019JC015820, https://doi.org/10.1029/2019jc015820, 2020. a
Landy, J. C., Dawson, G. J., Tsamados, M., Bushuk, M., Stroeve, J. C., Howell, S. E. L., Krumpen, T., Babb, D. G., Komarov, A. S., Heorton, H. D. B. S., Belter, H. J., and Aksenov, Y.: A year-round satellite sea-ice thickness record from CryoSat-2, Nature, 609, 517–522, https://doi.org/10.1038/s41586-022-05058-5, 2022. a, b, c, d, e, f
Lei, R., Cheng, B., Hoppmann, M., and Zuo, G.: Snow depth and sea ice thickness derived from the measurements of SIMBA buoys deployed in the Arctic Ocean during the Legs 1a, 1, and 3 of the MOSAiC campaign in 2019–2020, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.938244, 2021. a
Lei, R., Cheng, B., Hoppmann, M., Zhang, F., Zuo, G., Hutchings, J. K., Lin, L., Lan, M., Wang, H., Regnery, J., Krumpen, T., Haapala, J., Rabe, B., Perovich, D. K., and Nicolaus, M.: Seasonality and timing of sea ice mass balance and heat fluxes in the Arctic transpolar drift during 2019–2020, Elementa: Science of the Anthropocene, 10, 000089, https://doi.org/10.1525/elementa.2021.000089, 2022. a, b
Light, B., Maykut, G. A., and Grenfell, T. C.: Effects of temperature on the microstructure of first-year Arctic sea ice, J. Geophys. Res.-Oceans, 108, 3051, https://doi.org/10.1029/2001jc000887, 2003. a, b, c, d
Lyon, W.: Division of oceanography and meteorology: ocean and sea-ice research in the arctic ocean via submarine, T. New York Acad. Sci., 23, 662–674, https://doi.org/10.1111/j.2164-0947.1961.tb01400.x, 1961. a
Macfarlane, A. R., Schneebeli, M., Dadic, R., Wagner, D. N., Arndt, S., Clemens-Sewall, D., Hämmerle, S., Hannula, H.-R., Jaggi, M., Kolabutin, N., Krampe, D., Lehning, M., Matero, I., Nicolaus, M., Oggier, M., Pirazzini, R., Polashenski, C., Raphael, I., Regnery, J., Shimanchuck, E., Smith, M. M., and Tavri, A.: Snowpit raw data collected during the MOSAiC expedition, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.935934, 2021. a
Macfarlane, A. R., Dadic, R., Smith, M. M., Light, B., Nicolaus, M., Henna-Reetta, H., Webster, M., Linhardt, F., Hämmerle, S., and Schneebeli, M.: Evolution of the microstructure and reflectance of the surface scattering layer on melting, level Arctic sea ice, Elementa: Science of the Anthropocene, 11, 00103, https://doi.org/10.1525/elementa.2022.00103, 2023a. a
Macfarlane, A. R., Schneebeli, M., Dadic, R., Tavri, A., Immerz, A., Polashenski, C., Krampe, D., Clemens-Sewall, D., Wagner, D. N., Perovich, D. K., Henna-Reetta, H., Raphael, I., Matero, I., Regnery, J., Smith, M. M., Nicolaus, M., Jaggi, M., Oggier, M., Webster, M. A., Lehning, M., Kolabutin, N., Itkin, P., Naderpour, R., Pirazzini, R., Hämmerle, S., Arndt, S., and Fons, S.: A Database of Snow on Sea Ice in the Central Arctic Collected during the MOSAiC expedition, Scientific Data, 10, 398, https://doi.org/10.1038/s41597-023-02273-1, 2023b. a
Melling, H. and Riedel, D. A.: Development of seasonal pack ice in the Beaufort Sea during the winter of 1991–1992: A view from below, J. Geophys. Res.-Oceans, 101, 11975–11991, https://doi.org/10.1029/96jc00284, 1996. a
Moreau, S., Vancoppenolle, M., Zhou, J., Tison, J.-L., Delille, B., and Goosse, H.: Modelling argon dynamics in first-year sea ice, Ocean Model., 73, 1–18, https://doi.org/10.1016/j.ocemod.2013.10.004, 2014. a
Nakawo, M.: Measurements on Air Porosity of Sea Ice, Ann. Glaciol., 4, 204–208, https://doi.org/10.3189/S0260305500005486, 1983. a, b
National Geophysical Data Center: ETOPO2v2 2-minute Global Relief Model, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5J1012Q, 2006. a
Neckel, N., Fuchs, N., Birnbaum, G., Hutter, N., Jutila, A., Buth, L., von Albedyll, L., Ricker, R., and Haas, C.: Helicopter-borne RGB orthomosaics and photogrammetric Digital Elevation Models from the MOSAiC Expedition, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.949433, 2023. a, b
Nicolaus, M., Perovich, D. K., Spreen, G., Granskog, M. A., von Albedyll, L., Angelopoulos, M., Anhaus, P., Arndt, S., Belter, H. J., Bessonov, V., Birnbaum, G., Brauchle, J., Calmer, R., Cardellach, E., Cheng, B., Clemens-Sewall, D., Dadic, R., Damm, E., de Boer, G., Demir, O., Dethloff, K., Divine, D. V., Fong, A. A., Fons, S., Frey, M. M., Fuchs, N., Gabarró, C., Gerland, S., Goessling, H. F., Gradinger, R., Haapala, J., Haas, C., Hamilton, J., Hannula, H.-R., Hendricks, S., Herber, A., Heuzé, C., Hoppmann, M., Høyland, K. V., Huntemann, M., Hutchings, J. K., Hwang, B., Itkin, P., Jacobi, H.-W., Jaggi, M., Jutila, A., Kaleschke, L., Katlein, C., Kolabutin, N., Krampe, D., Kristensen, S. S., Krumpen, T., Kurtz, N., Lampert, A., Lange, B. A., Lei, R., Light, B., Linhardt, F., Liston, G. E., Loose, B., Macfarlane, A. R., Mahmud, M., Matero, I. O., Maus, S., Morgenstern, A., Naderpour, R., Nandan, V., Niubom, A., Oggier, M., Oppelt, N., Pätzold, F., Perron, C., Petrovsky, T., Pirazzini, R., Polashenski, C., Rabe, B., Raphael, I. A., Regnery, J., Rex, M., Ricker, R., Riemann-Campe, K., Rinke, A., Rohde, J., Salganik, E., Scharien, R. K., Schiller, M., Schneebeli, M., Semmling, M., Shimanchuk, E., Shupe, M. D., Smith, M. M., Smolyanitsky, V., Sokolov, V., Stanton, T., Stroeve, J., Thielke, L., Timofeeva, A., Tonboe, R. T., Tavri, A., Tsamados, M., Wagner, D. N., Watkins, D., Webster, M., and Wendisch, M.: Overview of the MOSAiC expedition: snow and sea ice, Elementa: Science of the Anthropocene, 10, 000046, https://doi.org/10.1525/elementa.2021.000046, 000046, 2022. a, b
Nixdorf, U., Dethloff, K., Rex, M., Shupe, M., Sommerfeld, A., Perovich, D. K., Nicolaus, M., Heuzé, C., Rabe, B., Loose, B., Damm, E., Gradinger, R., Fong, A., Maslowski, W., Rinke, A., Kwok, R., Spreen, G., Wendisch, M., Herber, A., Hirsekorn, M., Mohaupt, V., Frickenhaus, S., Immerz, A., Weiss-Tuider, K., König, B., Mengedoht, D., Regnery, J., Gerchow, P., Ransby, D., Krumpen, T., Morgenstern, A., Haas, C., Kanzow, T., Rack, F. R., Saitzev, V., Sokolov, V., Makarov, A., Schwarze, S., Wunderlich, T., Wurr, K., and Boetius, A.: MOSAiC Extended Acknowledgement, Zenodo [data set], https://doi.org/10.5281/ZENODO.5179739, 2021. a
Notz, D.: Thermodynamic and fluid-dynamical processes in sea ice, PhD thesis, University of Cambridge, 2005. a
Oggier, M., Salganik, E., Whitmore, L., Fong, A. A., Hoppe, C. J. M., Rember, R., Høyland, K. V., Divine, D. V., Gradinger, R., Fons, S. W., Abrahamsson, K., Aguilar-Islas, A. M., Angelopoulos, M., Arndt, S., Balmonte, J. P., Bozzato, D., Bowman, J. S., Castellani, G., Chamberlain, E., Creamean, J., D'Angelo, A., Damm, E., Dumitrascu, A., Eggers, S. L., Gardner, J., Grosfeld, L., Haapala, J., Immerz, A., Kolabutin, N., Lange, B. A., Lei, R., Marsay, C. M., Maus, S., Müller, O., Olsen, L. M., Nuibom, A., Ren, J., Rinke, A., Sheikin, I., Shimanchuk, E., Snoeijs-Leijonmalm, P., Spahic, S., Stefels, J., Torres-Valdés, S., Torstensson, A., Ulfsbo, A., Verdugo, J., Vortkamp, M., Wang, L., Webster, M., Wischnewski, L., and Granskog, M. A.: First-year sea-ice salinity, temperature, density, oxygen and hydrogen isotope composition from the main coring site (MCS-FYI) during MOSAiC legs 1 to 4 in 2019/2020, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.956732, 2023a. a
Oggier, M., Salganik, E., Whitmore, L., Fong, A. A., Hoppe, C. J. M., Rember, R., Høyland, K. V., Gradinger, R., Divine, D. V., Fons, S. W., Abrahamsson, K., Aguilar-Islas, A. M., Angelopoulos, M., Arndt, S., Balmonte, J. P., Bozzato, D., Bowman, J. S., Castellani, G., Chamberlain, E., Creamean, J., D'Angelo, A., Damm, E., Dumitrascu, A., Eggers, L., Gardner, J., Grosfeld, L., Haapala, J., Immerz, A., Kolabutin, N., Lange, B. A., Lei, R., Marsay, C. M., Maus, S., Olsen, L. M., Müller, O., Nuibom, A., Ren, J., Rinke, A., Sheikin, I., Shimanchuk, E., Snoeijs-Leijonmalm, P., Spahic, S., Stefels, J., Torres-Valdés, S., Torstensson, A., Ulfsbo, A., Verdugo, J., Vortkamp, M., Wang, L., Webster, M., Wischnewski, L., and Granskog, M. A.: Second-year sea-ice salinity, temperature, density, oxygen and hydrogen isotope composition from the main coring site (MCS-SYI) during MOSAiC legs 1 to 4 in 2019/2020, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.959830, 2023b. a
Paul, S., Hendricks, S., Ricker, R., Kern, S., and Rinne, E.: Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: progress in the ESA Climate Change Initiative, The Cryosphere, 12, 2437–2460, https://doi.org/10.5194/tc-12-2437-2018, 2018. a
Pawlowicz, R.: M_Map: A mapping package for MATLAB, https://www-old.eoas.ubc.ca/~rich/map.html (last access: 10 March 2025), 2023. a
Perovich, D. K. and Gow, A. J.: A quantitative description of sea ice inclusions, J. Geophys. Res.-Oceans, 101, 18327–18343, https://doi.org/10.1029/96jc01688, 1996. a, b, c
Pustogvar, A. and Kulyakhtin, A.: Sea ice density measurements. Methods and uncertainties, Cold Reg. Sci. Technol., 131, 46–52, https://doi.org/10.1016/j.coldregions.2016.09.001, 2016. a
Ricker, R., Fons, S., Jutila, A., Hutter, N., Duncan, K., Farrell, S. L., Kurtz, N. T., and Fredensborg Hansen, R. M.: Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC, The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023, 2023. a
Salganik, E.: Summer sea ice density for MOSAiC, Zenodo [code], https://doi.org/10.5281/ZENODO.14712483, 2025. a
Salganik, E., Hoppmann, M., Scholz, D., Arndt, S., Demir, O., Divine, D. V., Haapala, J., Hendricks, S., Itkin, P., Katlein, C., Kolabutin, N., Lei, R., Matero, I., Nicolaus, M., Raphael, I., Regnery, J., Oggier, M., Sheikin, I., Shimanchuk, E., and Spreen, G.: Temperature and heating induced temperature difference measurements from Digital Thermistor Chains (DTCs) during MOSAiC 2019/2020, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.964023, 2023a. a, b, c
Salganik, E., Katlein, C., Lange, B., Matero, Ilkka nd Lei, R., Fong, A., Fons, S., Divine, D., Oggier, M., Castellani, G., Bozzato, D., Chamberlain, E., Hoppe, C., Muller, O., Gardner, J., Rinke, A., Pereira, P., Ulfsbo, A., Marsay, C., Webster, M., Maus, S., Høyland, K., and Granskog, M.: Temporal evolution of under-ice meltwater layers and false bottoms and their impact on summer Arctic sea ice mass balance, Elementa: Science of the Anthropocene, 11, 00035, https://doi.org/10.1525/elementa.2022.00035, 000089, 2023b. a
Salganik, E., Lange, B. A., Høyland, K. V., Gardner, J., Müller, O., Tavri, A., Mahmud, M., and Granskog, M. A.: Ridge ice density data MOSAiC Leg 4 (PS122/4), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.953865, 2023c. a
Salganik, E., Lange, B. A., Itkin, P., Divine, D., Katlein, C., Nicolaus, M., Hoppmann, M., Neckel, N., Ricker, R., Høyland, K. V., and Granskog, M. A.: Different mechanisms of Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition, Elementa: Science of the Anthropocene, 11, 00008, https://doi.org/10.1525/elementa.2023.00008, 2023d. a
Salganik, E., Lange, B. A., Katlein, C., Matero, I., Anhaus, P., Muilwijk, M., Høyland, K. V., and Granskog, M. A.: Observations of preferential summer melt of Arctic sea-ice ridge keels from repeated multibeam sonar surveys, The Cryosphere, 17, 4873–4887, https://doi.org/10.5194/tc-17-4873-2023, 2023e. a
Salganik, E., Whitmore, L. M., Bauch, D., Chamberlain, E., Dietrich, U., Droste, E. S., Fong, A. A., Heitmann, L., Nicolaus, M., Kolabutin, N., Li, Y., Ludwichowski, K.-U., Marent, A., Mellat, M., Meyer, H., Nomura, D., Schmidt, K., Shimanchuk, E., Thielke, L., Torres-Valdés, S., Webb, A. L., Weiner, M., and Granskog, M. A.: Sea-ice salinity, temperature, density, nutrient, oxygen and hydrogen isotope composition from the coring sites during MOSAiC leg 5 in August–September 2020, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.971266, 2024. a
Schulz, K., Koenig, Z., and Muilwijk, M.: The Eurasian Arctic Ocean along the MOSAiC drift (2019-2020): Core hydrographic parameters, Arctic Data Center [data set], https://doi.org/10.18739/A21J9790B, 2023. a
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res.-Oceans, 113, C02S03, https://doi.org/10.1029/2005JC003384, 2008. a
Strub-Klein, L. and Sudom, D.: A comprehensive analysis of the morphology of first-year sea ice ridges, Cold Reg. Sci. Technol., 82, 94–109, https://doi.org/10.1016/j.coldregions.2012.05.014, 2012. a, b
Sumata, H., de Steur, L., Divine, D. V., Granskog, M. A., and Gerland, S.: Regime shift in Arctic Ocean sea ice thickness, Nature, 615, 443–449, https://doi.org/10.1038/s41586-022-05686-x, 2023. a
Timco, G. and Frederking, R.: A review of sea ice density, Cold Reg. Sci. Technol., 24, 1–6, https://doi.org/10.1016/0165-232X(95)00007-X, 1996. a
Tsurikov, V. L.: The Formation and Composition of the Gas Content of Sea Ice, J. Glaciol., 22, 67–81, https://doi.org/10.3189/s0022143000014064, 1979. a, b, c
Wang, Q., Lu, P., Leppäranta, M., Cheng, B., Zhang, G., and Li, Z.: Physical Properties of Summer Sea Ice in the Pacific Sector of the Arctic During 2008–2018, J. Geophys. Res.-Oceans, 125, e2020JC016371, https://doi.org/10.1029/2020jc016371, 2020. a, b
Webster, M. A., Holland, M., Wright, N. C., Hendricks, S., Hutter, N., Itkin, P., Light, B., Linhardt, F., Perovich, D. K., Raphael, I. A., Smith, M. M., von Albedyll, L., and Zhang, J.: Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results, Elementa: Science of the Anthropocene, 10, 000072, https://doi.org/10.1525/elementa.2021.000072, 2022. a, b, c, d, e
Worby, A. P., Geiger, C. A., Paget, M. J., Van Woert, M. L., Ackley, S. F., and DeLiberty, T. L.: Thickness distribution of Antarctic sea ice, J. Geophys. Res.-Oceans, 113, C05S92, https://doi.org/10.1029/2007JC004254, 2008. a
Zhou, J., Delille, B., Eicken, H., Vancoppenolle, M., Brabant, F., Carnat, G., Geilfus, N., Papakyriakou, T., Heinesch, B., and Tison, J.: Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): Insights on brine and gas dynamics across seasons, J. Geophys. Res.-Oceans, 118, 3172–3189, https://doi.org/10.1002/jgrc.20232, 2013. a, b
Short summary
To measure Arctic ice thickness, we often check how much ice sticks out of the water. This method depends on knowing the ice's density, which drops significantly in summer. Our study, validated with sonar and laser data, shows that these seasonal changes in density can complicate melt measurements. We stress the importance of considering these density changes for more accurate ice thickness readings.
To measure Arctic ice thickness, we often check how much ice sticks out of the water. This...