Articles | Volume 19, issue 1
https://doi.org/10.5194/tc-19-107-2025
https://doi.org/10.5194/tc-19-107-2025
Research article
 | 
10 Jan 2025
Research article |  | 10 Jan 2025

Modelling GNSS-observed seasonal velocity changes of the Ross Ice Shelf, Antarctica, using the Ice-sheet and Sea-level System Model (ISSM)

Francesca Baldacchino, Nicholas R. Golledge, Mathieu Morlighem, Huw Horgan, Alanna V. Alevropoulos-Borrill, Alena Malyarenko, Alexandra Gossart, Daniel P. Lowry, and Laurine van Haastrecht

Related authors

Evaluation of regional climate features over Antarctica in the PMIP past1000 experiment and implications for 21st-century sea level rise
Vincent Charnay, Daniel P. Lowry, Elizabeth D. Keller, and Abha Sood
Clim. Past, 21, 1611–1631, https://doi.org/10.5194/cp-21-1611-2025,https://doi.org/10.5194/cp-21-1611-2025, 2025
Short summary
Simulating the Holocene evolution of Ryder Glacier, North Greenland
Jamie Barnett, Felicity A. Holmes, Joshua Cuzzone, Henning Åkesson, Mathieu Morlighem, Matt O'Regan, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
The Cryosphere, 19, 3631–3653, https://doi.org/10.5194/tc-19-3631-2025,https://doi.org/10.5194/tc-19-3631-2025, 2025
Short summary
A Python library for solving ice sheet modeling problems using physics-informed neural networks, PINNICLE v1.0
Gong Cheng, Mansa Krishna, and Mathieu Morlighem
Geosci. Model Dev., 18, 5311–5327, https://doi.org/10.5194/gmd-18-5311-2025,https://doi.org/10.5194/gmd-18-5311-2025, 2025
Short summary
Sea level rise contribution from Ryder Glacier in northern Greenland varies by an order of magnitude by 2300 depending on future emissions
Felicity A. Holmes, Jamie Barnett, Henning Åkesson, Mathieu Morlighem, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
The Cryosphere, 19, 2695–2714, https://doi.org/10.5194/tc-19-2695-2025,https://doi.org/10.5194/tc-19-2695-2025, 2025
Short summary
Coupling of the Ice-sheet and Sea-level System Model (version 4.24) with hydrology model CUAS-MPI (version 0.1) using the preCICE coupling library
Daniel Abele, Thomas Kleiner, Yannic Fischler, Benjamin Uekermann, Gerasimos Chourdakis, Mathieu Morlighem, Achim Basermann, Christian Bischof, Hans-Joachim Bungartz, and Angelika Humbert
EGUsphere, https://doi.org/10.5194/egusphere-2025-3345,https://doi.org/10.5194/egusphere-2025-3345, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary

Cited articles

Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves, Nat. Geosci., 13, 616–620, https://doi.org/10.1038/s41561-020-0616-z, 2020. a, b, c, d, e, f
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a
Alley, K. E., Scambos, T. A., Anderson, R. S., Rajaram, H., Pope, A., and Haran, T. M.: Continent-wide estimates of Antarctic strain rates from Landsat 8-derived velocity grids, J. Glaciol., 64, 321–332, https://doi.org/10.1017/jog.2018.23, 2018. a
Anandakrishnan, S., Voigt, D., Alley, R., and King, M.: Ice stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf, Geophys. Res. Lett., 30, 1361, https://doi.org/10.1029/2002GL016329, 2003. a
Arndt, J. E., Larter, R. D., Friedl, P., Gohl, K., Höppner, K., and the Science Team of Expedition PS104: Bathymetric controls on calving processes at Pine Island Glacier, The Cryosphere, 12, 2039–2050, https://doi.org/10.5194/tc-12-2039-2018, 2018. a
Download
Short summary
Understanding how the Ross Ice Shelf flow is changing in a warming world is important for predicting ice sheet change. Field measurements show clear intra-annual variations in ice flow; however, it is unclear what mechanisms drive this variability. We show that local perturbations in basal melt can have a significant impact on ice flow speed, but a combination of forcings is likely driving the observed variability in ice flow.
Share