the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling GNSS-observed seasonal velocity changes of the Ross Ice Shelf, Antarctica, using the Ice-sheet and Sea-level System Model (ISSM)
Francesca Baldacchino
Nicholas R. Golledge
Mathieu Morlighem
Huw Horgan
Alanna V. Alevropoulos-Borrill
Alena Malyarenko
Alexandra Gossart
Daniel P. Lowry
Laurine van Haastrecht
Related authors
No articles found.
calving laws), under the assumption that Antarctic ice shelf front positions should be in steady state under the current climate forcing. We quantify how well each of these calving laws replicates the observed front positions. Our results suggest that the eigencalving and von Mises laws are most suitable for Antarctic ice shelves.
fastand
slowdrainage with different equations for each system. The SHAKTI model allows for the ice–water drainage arrangement to transition naturally between different types of flow. This model can be used to understand how drainage affects glacier speeds and the associated ice loss to further inform predictions of sea level rise.
Related subject area
In Antarctica, supraglacial lakes often form near grounding lines due to surface melting. We model viscoelastic tidal flexure in these regions to assess its contribution to lake drainage via hydrofracturing. Results show that tidal flexure and lake-water pressure jointly control drainage near unconfined grounding lines. Sensitivity analysis indicates the importance of the Maxwell time of ice in modulating the tidal response.
We investigated the influence of several regional climate models on the Antarctic Ice Sheet when applied as forcing for the Parallel Ice Sheet Model (PISM). Our study shows that the choice of regional climate model forcing results in uncertainties of around a tenth of those in future sea level rise projections and also affects the extent of grounding line retreat in West Antarctica.
calving laws), under the assumption that Antarctic ice shelf front positions should be in steady state under the current climate forcing. We quantify how well each of these calving laws replicates the observed front positions. Our results suggest that the eigencalving and von Mises laws are most suitable for Antarctic ice shelves.