Articles | Volume 18, issue 1
https://doi.org/10.5194/tc-18-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of rock glaciers and their water storage in Guokalariju, Tibetan Plateau
Mengzhen Li
College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
Yanmin Yang
College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
Zhaoyu Peng
College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
Gengnian Liu
CORRESPONDING AUTHOR
College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
Related authors
No articles found.
Weilin Yang, Yingkui Li, Gengnian Liu, and Wenchao Chu
The Cryosphere, 16, 3739–3752, https://doi.org/10.5194/tc-16-3739-2022, https://doi.org/10.5194/tc-16-3739-2022, 2022
Short summary
Short summary
We simulated the glacier evolutions in Bhutanese Himalaya during the LIA using OGGM. At the regional scale, four compelling glacial substages were reported, and a positive correlation between the number of glacial substages and the glacier slope was found. Based on the surface mass balance analysis, the study also indicated that the regional glacier advances are dominated by the reduction of summer ablation.
Zeze Ran and Gengnian Liu
The Cryosphere, 12, 2327–2340, https://doi.org/10.5194/tc-12-2327-2018, https://doi.org/10.5194/tc-12-2327-2018, 2018
Short summary
Short summary
This article provides the first rock glacier inventory of Daxue Shan, south- eastern Tibetan Plateau. This study provides important data for exploring the relation between maritime periglacial environments and the development of rock glaciers on the south-eastern Tibetan Plateau (TP). It may also highlight the characteristics typical of rock glaciers found in a maritime setting.
Related subject area
Discipline: Frozen ground | Subject: Geomorphology
A climate-driven, altitudinal transition in rock glacier dynamics detected through integration of geomorphological mapping and synthetic aperture radar interferometry (InSAR)-based kinematics
Discriminating viscous-creep features (rock glaciers) in mountain permafrost from debris-covered glaciers – a commented test at the Gruben and Yerba Loca sites, Swiss Alps and Chilean Andes
The cryostratigraphy of thermo-erosion gullies in the Canadian High Arctic demonstrates the resilience of permafrost
Review article: Retrogressive thaw slump theory and terminology
Identifying mountain permafrost degradation by repeating historical electrical resistivity tomography (ERT) measurements
Permafrost degradation at two monitored palsa mires in north-west Finland
Contrasted geomorphological and limnological properties of thermokarst lakes formed in buried glacier ice and ice-wedge polygon terrain
Recent degradation of interior Alaska permafrost mapped with ground surveys, geophysics, deep drilling, and repeat airborne lidar
Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks
Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina
Insights into a remote cryosphere: a multi-method approach to assess permafrost occurrence at the Qugaqie basin, western Nyainqêntanglha Range, Tibetan Plateau
Permafrost distribution and conditions at the headwalls of two receding glaciers (Schladming and Hallstatt glaciers) in the Dachstein Massif, Northern Calcareous Alps, Austria
Rock glacier characteristics serve as an indirect record of multiple alpine glacier advances in Taylor Valley, Antarctica
Evaluating the destabilization susceptibility of active rock glaciers in the French Alps
Aldo Bertone, Nina Jones, Volkmar Mair, Riccardo Scotti, Tazio Strozzi, and Francesco Brardinoni
The Cryosphere, 18, 2335–2356, https://doi.org/10.5194/tc-18-2335-2024, https://doi.org/10.5194/tc-18-2335-2024, 2024
Short summary
Short summary
Traditional inventories display high uncertainty in discriminating between intact (permafrost-bearing) and relict (devoid) rock glaciers (RGs). Integration of InSAR-based kinematics in South Tyrol affords uncertainty reduction and depicts a broad elevation belt of relict–intact coexistence. RG velocity and moving area (MA) cover increase linearly with elevation up to an inflection at 2600–2800 m a.s.l., which we regard as a signature of sporadic-to-discontinuous permafrost transition.
Wilfried Haeberli, Lukas U. Arenson, Julie Wee, Christian Hauck, and Nico Mölg
The Cryosphere, 18, 1669–1683, https://doi.org/10.5194/tc-18-1669-2024, https://doi.org/10.5194/tc-18-1669-2024, 2024
Short summary
Short summary
Rock glaciers in ice-rich permafrost can be discriminated from debris-covered glaciers. The key physical phenomenon relates to the tight mechanical coupling between the moving frozen body at depth and the surface layer of debris in the case of rock glaciers, as opposed to the virtually inexistent coupling in the case of surface ice with a debris cover. Contact zones of surface ice with subsurface ice in permafrost constitute diffuse landforms beyond either–or-type landform classification.
Samuel Gagnon, Daniel Fortier, Etienne Godin, and Audrey Veillette
EGUsphere, https://doi.org/10.5194/egusphere-2024-208, https://doi.org/10.5194/egusphere-2024-208, 2024
Short summary
Short summary
Thermo-erosion gullies (TEGs) are one of the most common forms of abrupt permafrost degradation. While their inception has been examined in several studies, the processes of their stabilization remain poorly documented. For this study, we investigated the impacts of two TEGs in the Canadian High Arctic. We found that while the formation of a TEG leaves permanent scars in landscapes, on the long term, permafrost can recover to conditions similar to those pre-dating the initial disturbance.
Nina Nesterova, Marina Leibman, Alexander Kizyakov, Hugues Lantuit, Ilya Tarasevich, Ingmar Nitze, Alexandra Veremeeva, and Guido Grosse
EGUsphere, https://doi.org/10.5194/egusphere-2023-2914, https://doi.org/10.5194/egusphere-2023-2914, 2024
Short summary
Short summary
Retrogressive thaw slumps (RTSs) are widespread in the Arctic permafrost landforms. RTSs present a big interest for researchers because of their expansion due to climate change. There are currently different scientific schools and terminology used in the literature on this topic. We have critically reviewed existing concepts and terminology and provided clarifications to present a useful base for experts in the field and ease the introduction to the topic for scientists who are new to it.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Mariana Verdonen, Alexander Störmer, Eliisa Lotsari, Pasi Korpelainen, Benjamin Burkhard, Alfred Colpaert, and Timo Kumpula
The Cryosphere, 17, 1803–1819, https://doi.org/10.5194/tc-17-1803-2023, https://doi.org/10.5194/tc-17-1803-2023, 2023
Short summary
Short summary
The study revealed a stable and even decreasing thickness of thaw depth in peat mounds with perennially frozen cores, despite overall rapid permafrost degradation within 14 years. This means that measuring the thickness of the thawed layer – a commonly used method – is alone insufficient to assess the permafrost conditions in subarctic peatlands. The study showed that climate change is the main driver of these permafrost features’ decay, but its effect depends on the peatland’s local conditions.
Stéphanie Coulombe, Daniel Fortier, Frédéric Bouchard, Michel Paquette, Simon Charbonneau, Denis Lacelle, Isabelle Laurion, and Reinhard Pienitz
The Cryosphere, 16, 2837–2857, https://doi.org/10.5194/tc-16-2837-2022, https://doi.org/10.5194/tc-16-2837-2022, 2022
Short summary
Short summary
Buried glacier ice is widespread in Arctic regions that were once covered by glaciers and ice sheets. In this study, we investigated the influence of buried glacier ice on the formation of Arctic tundra lakes on Bylot Island, Nunavut. Our results suggest that initiation of deeper lakes was triggered by the melting of buried glacier ice. Given future climate projections, the melting of glacier ice permafrost could create new aquatic ecosystems and strongly modify existing ones.
Thomas A. Douglas, Christopher A. Hiemstra, John E. Anderson, Robyn A. Barbato, Kevin L. Bjella, Elias J. Deeb, Arthur B. Gelvin, Patricia E. Nelsen, Stephen D. Newman, Stephanie P. Saari, and Anna M. Wagner
The Cryosphere, 15, 3555–3575, https://doi.org/10.5194/tc-15-3555-2021, https://doi.org/10.5194/tc-15-3555-2021, 2021
Short summary
Short summary
Permafrost is actively degrading across high latitudes due to climate warming. We combined thousands of end-of-summer active layer measurements, permafrost temperatures, geophysical surveys, deep borehole drilling, and repeat airborne lidar to quantify permafrost warming and thawing at sites across central Alaska. We calculate the mass of permafrost soil carbon potentially exposed to thaw over the past 7 years (0.44 Pg) is similar to the yearly carbon dioxide emissions of Australia.
Steven V. Kokelj, Justin Kokoszka, Jurjen van der Sluijs, Ashley C. A. Rudy, Jon Tunnicliffe, Sarah Shakil, Suzanne E. Tank, and Scott Zolkos
The Cryosphere, 15, 3059–3081, https://doi.org/10.5194/tc-15-3059-2021, https://doi.org/10.5194/tc-15-3059-2021, 2021
Short summary
Short summary
Climate-driven landslides are transforming glacially conditioned permafrost terrain, coupling slopes with aquatic systems, and triggering a cascade of downstream effects. Nonlinear intensification of thawing slopes is primarily affecting headwater systems where slope sediment yields overwhelm stream transport capacity. The propagation of effects across watershed scales indicates that western Arctic Canada will be an interconnected hotspot of thaw-driven change through the coming millennia.
Christian Halla, Jan Henrik Blöthe, Carla Tapia Baldis, Dario Trombotto Liaudat, Christin Hilbich, Christian Hauck, and Lothar Schrott
The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, https://doi.org/10.5194/tc-15-1187-2021, 2021
Short summary
Short summary
In the semi-arid to arid Andes of Argentina, rock glaciers contain invisible and unknown amounts of ground ice that could become more important in future for the water availability during the dry season. The study shows that the investigated rock glacier represents an important long-term ice reservoir in the dry mountain catchment and that interannual changes of ground ice can store and release significant amounts of annual precipitation.
Johannes Buckel, Eike Reinosch, Andreas Hördt, Fan Zhang, Björn Riedel, Markus Gerke, Antje Schwalb, and Roland Mäusbacher
The Cryosphere, 15, 149–168, https://doi.org/10.5194/tc-15-149-2021, https://doi.org/10.5194/tc-15-149-2021, 2021
Short summary
Short summary
This study presents insights into the remote cryosphere of a mountain range at the Tibetan Plateau. Small-scaled studies and field data about permafrost occurrence are very scarce. A multi-method approach (geomorphological mapping, geophysics, InSAR time series analysis) assesses the lower occurrence of permafrost the range of 5350 and 5500 m above sea level (a.s.l.) in the Qugaqie basin. The highest, multiannual creeping rates up to 150 mm/yr are observed on rock glaciers.
Matthias Rode, Oliver Sass, Andreas Kellerer-Pirklbauer, Harald Schnepfleitner, and Christoph Gitschthaler
The Cryosphere, 14, 1173–1186, https://doi.org/10.5194/tc-14-1173-2020, https://doi.org/10.5194/tc-14-1173-2020, 2020
Kelsey Winsor, Kate M. Swanger, Esther Babcock, Rachel D. Valletta, and James L. Dickson
The Cryosphere, 14, 1–16, https://doi.org/10.5194/tc-14-1-2020, https://doi.org/10.5194/tc-14-1-2020, 2020
Short summary
Short summary
We studied an ice-cored rock glacier in Taylor Valley, Antarctica, coupling ground-penetrating radar analyses with stable isotope and major ion geochemistry of (a) surface ponds and (b) buried clean ice. These analyses indicate that the rock glacier ice is fed by a nearby alpine glacier, recording multiple Holocene to late Pleistocene glacial advances. We demonstrate the potential to use rock glaciers and buried ice, common throughout Antarctica, to map previous glacial extents.
Marco Marcer, Charlie Serrano, Alexander Brenning, Xavier Bodin, Jason Goetz, and Philippe Schoeneich
The Cryosphere, 13, 141–155, https://doi.org/10.5194/tc-13-141-2019, https://doi.org/10.5194/tc-13-141-2019, 2019
Short summary
Short summary
This study aims to assess the occurrence of rock glacier destabilization in the French Alps, a process that causes a landslide-like behaviour of permafrost debris slopes. A significant number of the landforms in the region were found to be experiencing destabilization. Multivariate analysis suggested a link between destabilization occurrence and permafrost thaw induced by climate warming. These results call for a regional characterization of permafrost hazards in the context of climate change.
Cited articles
Alcalá-Reygosa, J.: Rock glaciers of the mountains of Mexico; a review of current knowledge and paleoclimatic implications, J. S. Am. Earth Sci., 96, 102321, https://doi.org/10.1016/j.jsames.2019.102321, 2019.
Arenson, L. U. and Jakob, M.: The Significance of Rock Glaciers in the Dry Andes – A Discussion of Azocar and Brenning (2010) and Brenning and Azocar (2010), Permafrost Periglac. Process., 21, 282–285, https://doi.org/10.1002/ppp.693, 2010.
Azócar, G. F. and Brenning, A.: Hydrological and Geomorphological Significance of Rock Glaciers in the Dry Andes, Chile (27 degrees–33 degrees S), Permafrost Periglac. Process., 21, 42–53, https://doi.org/10.1002/ppp.669, 2010.
Baral, P., Haq, M. A., and Yaragal, S.: Assessment of rock glaciers and permafrost distribution in Uttarakhand, India, Permafrost Periglac. Process., 31, 31–56, https://doi.org/10.1002/ppp.2008, 2019.
Barsch, D.: Eine Abschätzung von Schuttproduktion und Schutttransport im Bereich aktiver Blockgletscher der Schweizer Alpen, GéoProdig, portail d'information géographique, 28, 148–160, 1977.
Barsch, D.: Permafrost creep and rock glaciers, Permafrost Periglac. Process., 3, 175–188, https://doi.org/10.1002/ppp.3430030303, 1992.
Barsch, D.: Rockglaciers: Indicators for the Present and Former Geoecology in High Mountain Environments, Springer-Verlag, Berlin, pp. 331, https://doi.org/10.2307/3060377, 1996.
Berthling, I.: Beyond confusion: Rock glaciers as cryo-conditioned landforms, Geomorphology, 131, 98–106, https://doi.org/10.1016/j.geomorph.2011.05.002, 2011.
Blöthe, J. H., Rosenwinkel, S., Höser, T., and Korup, O.: Rock-glacier dams in High Asia, Earth Surf. Process. Landf., 44, 808–824, https://doi.org/10.1002/esp.4532, 2019.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges, The Cryosphere, 6, 125–140, https://doi.org/10.5194/tc-6-125-2012, 2012.
Bolch, T. and Marchenko, S. S.: Significance of glaciers, rockglaciers and ice-rich permafrost in the Northern Tien Shan as water towers under climate change conditions, in: Selected papers from the Workshop “Assessment of Snow, Glacier and Water Resources in Asia”, Almaty, Kazakhstan, 28–30 November 2006, edited by: Braun, L., Hagg, W., Severskiy, I. V., and Young, G. J., IHP/HWRP-Berichte vol. 8, 132–144, 2009.
Bolch, T., Rohrbach, N., Kutuzov, S., Robson, B. A., and Osmonov, A.: Occurrence, evolution and ice content of ice-debris complexes in the Ak-Shiirak, Central Tien Shan revealed by geophysical and remotely-sensed investigations, Earth Surf. Process. Landf., 44, 129–143, https://doi.org/10.1002/esp.4487, 2019.
Bonnaventure, P. P. and Lamoureux, S. F.: The active layer: A conceptual review of monitoring, modelling techniques and changes in a warming climate, Prog. Phys. Geogr.-Earth Environ., 37, 352–376, https://doi.org/10.1177/0309133313478314, 2013.
Brenning, A.: Climatic and geomorphological controls of rock glaciers in the Andes of Central Chile: Combining Statistical Modelling and Field Mapping. Humboldt-Universität zu Berlin, Berlin, Germany, 2005a.
Brenning, A.: Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33–35 degrees S), Permafrost Periglac. Process., 16, 231–240, https://doi.org/10.1002/ppp.528, 2005b.
Buckel, J., Reinosch, E., Hördt, A., Zhang, F., Riedel, B., Gerke, M., Schwalb, A., and Mäusbacher, R.: Insights into a remote cryosphere: a multi-method approach to assess permafrost occurrence at the Qugaqie basin, western Nyainqêntanglha Range, Tibetan Plateau, The Cryosphere, 15, 149–168, https://doi.org/10.5194/tc-15-149-2021, 2021.
Cao, B., Li, X., Feng, M., and Zheng, D.: Quantifying Overestimated Permafrost Extent Driven by Rock Glacier Inventory, Geophys. Res. Lett., 48, e2021GL092476, https://doi.org/10.1029/2021gl092476, 2021.
Chen, W., Yao, T., Zhang, G., Li, F., Zheng, G., Zhou, Y., and Xu, F.: Towards ice-thickness inversion: an evaluation of global digital elevation models (DEMs) in the glacierized Tibetan Plateau, The Cryosphere, 16, 197–218, https://doi.org/10.5194/tc-16-197-2022, 2022.
Cheng, G., Zhao, L., Li, R., Wu, X., Sheng, Y., Hu, G., Zou, D., Jin, H., Li, X., and Wu, B.: Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau (in Chinese), Chinese Sci. B., 64, 2783–2795, https://doi.org/10.1360/TB-2019-0191, 2019.
Cicoira, A., Marcer, M., Gärtner-Roer, I., Bodin, X., Arenson, L. U., and Vieli, A.: A general theory of rock glacier creep based on in-situ and remote sensing observations, Permafrost Periglac. Process., 32, 139–153, https://doi.org/10.1002/ppp.2090, 2021.
Colucci, R. R., Boccali, C., Zebre, M., and Guglielmin, M.: Rock glaciers, protalus ramparts and pronival ramparts in the south-eastern Alps, Geomorphology, 269, 112–121, https://doi.org/10.1016/j.geomorph.2016.06.039, 2016.
Cui, P., Guo, X., Jiang, T., Zhang, G., and Jin, W.: Disaster Effect Induced by Asian Water Tower Change and Mitigation Strategies, B. Chinese Acad. Sci., 34, 1313–1321, https://doi.org/10.16418/j.issn.1000-3045.2019.11.014, 2019.
Du, Y. Y. and Yi, J. W.: Data of climatic factors of annual mean temperature in the Xizang (1990–2015), National Tibetan Plateau Data Center [data set], https://data.tpdc.ac.cn/zh-hans/data/a46b446e-12ac-4ba3-b0b9-1ec6195d2aa8 (last access: 1 November 2023), 2019a.
Du, Y. Y. and Yi, J. W.: Data set of annual rainfall and climate factors in Tibet (1990–2015), National Tibetan Plateau Data Center [data set], https://data.tpdc.ac.cn/zh-hans/data/b030352c-f1fa-47cf-8faf-a4daf8be7963 (last access: 1 November 2023), 2019b.
Emmert, A. and Kneisel, C.: Internal structure of two alpine rock glaciers investigated by quasi-3-D electrical resistivity imaging, The Cryosphere, 11, 841–855, https://doi.org/10.5194/tc-11-841-2017, 2017.
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173, https://doi.org/10.1038/s41561-019-0300-3, 2019.
French, H. M.: The Periglacial Environments, 3rd edn., John Wiley & Sons Ltd, Chichester, UK, xviii + 458 pp., 2007.
Frey, H., Machguth, H., Huss, M., Huggel, C., Bajracharya, S., Bolch, T., Kulkarni, A., Linsbauer, A., Salzmann, N., and Stoffel, M.: Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods, The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, 2014.
Giardino, J. R. and Vitek, J. D.: The significance of rock glaciers in the glacial-periglacial landscape continuum, J. Quaternary Sci., 3, 97–103, https://doi.org/10.1002/jqs.3390030111, 1988.
Gruber, S.: Derivation and analysis of a high-resolution estimate of global permafrost zonation, The Cryosphere, 6, 221–233, https://doi.org/10.5194/tc-6-221-2012, 2012.
Guo, Z: Inventorying and spatial distribution of rock glaciers in the Yarlung Zangbo River Basin, PhD thesis, Institute of International Rivers and Eco-Security, Yunnan University, China, 77 pp., 2019.
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., and Mühll, D. V.: Permafrost creep and rock glacier dynamics, Permafrost Periglac. Process., 17, 189–214, https://doi.org/10.1002/ppp.561, 2006.
Halla, C., Blöthe, J. H., Tapia Baldis, C., Trombotto Liaudat, D., Hilbich, C., Hauck, C., and Schrott, L.: Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina, The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, 2021.
Hallet, B., Walder, J. S., and Stubbs, C. W.: Weathering by segregation ice growth in microcracks at sustained subzero temperatures: Verification from an experimental study using acoustic emissions, Permafrost Periglac. Process., 2, 283–300, 1991.
Hassan, J., Chen, X., Muhammad, S., and Bazai, N. A.: Rock glacier inventory, permafrost probability distribution modeling and associated hazards in the Hunza River Basin, Western Karakoram, Pakistan, Sci. Total Environ., 782, 146833, https://doi.org/10.1016/j.scitotenv.2021.146833, 2021.
Hausmann, H., Krainer, K., Brueckl, E., and Ullrich, C.: Internal structure, ice content and dynamics of Ölgrube and Kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys, Aust. J. Earth Sci., 105, 12–31, 2012.
Humlum, O.: Rock Glacier Appearance Level and Rock Glacier Initiation Line Altitude: A Methodological Approach to the Study of Rock Glaciers, Arct. Alp. Res., 20, 160–178, https://doi.org/10.2307/1551495, 1988.
Humlum, O.: The climatic significance of rock glaciers, Permafrost Periglac. Process., 9, 375–395, https://doi.org/10.1002/(sici)1099-1530(199810/12)9:4<375::Aid-ppp301>3.0.Co;2-0, 1998.
IBM Corp.: IBM SPSS Statistics for Windows, Version 27.0, Armonk, New York, 2020.
Ikeda, A., Matsuoka, N., and Kääb, A.: Fast deformation of perennially frozen debris in a warm rock glacier in the Swiss Alps: An effect of liquid water, J. Geophys. Res.-Earth Surf., 113, F01020, https://doi.org/10.1029/2007JF000859, 2008.
Janke, J. R. and Bolch, T.: 4.06 – Rock Glaciers, in: Treatise on Geomorphology (Second Edition), edited by: Shroder, J. F., Academic Press, Oxford, 75–118, https://doi.org/10.1016/B978-0-12-818234-5.00187-5, 2022.
Janke, J., Bellisario, A., and Ferrando, F.: Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile, Geomorphology, 241, 98–121, https://doi.org/10.1016/j.geomorph.2015.03.034, 2015.
Ji, J.Q., Zhong, D. L., Ding, L., Zhang, J. J., and Yang, Y. C.: Genesis and scientific significance of the Yarlung Zangbo Canvon, Earth Sci. Front., 6, 231–235, https://doi.org/10.3321/j.issn:1005-2321.1999.04.005, 1999.
Jones, D. B., Harrison, S., Anderson, K., and Betts, R. A.: Mountain rock glaciers contain globally significant water stores, Sci. Rep.-UK, 8, 2834, https://doi.org/10.1038/s41598-018-21244-w, 2018a.
Jones, D. B., Harrison, S., Anderson, K., Selley, H. L., Wood, J. L., and Betts, R. A.: The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya, Global Planet. Change, 160, 123–142, https://doi.org/10.1016/j.gloplacha.2017.11.005, 2018b.
Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers and mountain hydrology: A review, Earth-Sci. Rev., 193, 66–90, https://doi.org/10.1016/j.earscirev.2019.04.001, 2019.
Jones, D. B., Harrison, S., Anderson, K., and Betts, R. A.: Author Correction: Mountain rock glaciers contain globally significant water stores, Sci. Rep.-UK, 11, 23536, https://doi.org/10.1038/s41598-021-02401-0, 2021a.
Jones, D. B., Harrison, S., Anderson, K., Shannon, S., and Betts, R. A.: Rock glaciers represent hidden water stores in the Himalaya, Sci. Total Environ., 793, 145368, https://doi.org/10.1016/j.scitotenv.2021.145368, 2021b.
Kääb, A., Haeberli, W., and Gudmundsson, G. H.: Analysing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben Rock Glacier, Swiss Alps, Permafrost Periglac. Process., 8, 409–426, https://doi.org/10.1002/(sici)1099-1530(199710/12)8:4<409::Aid-ppp267>3.0.Co;2-c, 1997.
Korup, O. and Montgomery, D. R.: Tibetan plateau river incision inhibited by glacial stabilization of the Tsangpo Gorge, Nature, 455, 786–784, https://doi.org/10.1038/nature07322, 2008.
Krainer, K. and Mostler, W.: Reichenkar rock glacier: a glacier derived debris-ice system in the western Stubai Alps, Austria, Permafrost Periglac. Process., 11, 267–275, 2000.
Krainer, K. and Ribis, M.: A rock glacier inventory of the Tyrolean alps (Austria), Aust. J. Earth Sci., 105, 32–47, 2012.
Krainer, K., Bressan, D., Dietre, B., Haas, J. N., Hajdas, I., Lang, K., Mair, V., Nickus, U., Reidl, D., Thies, H., and Tonidandel, D.: A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy), Quaternary Res., 83, 324–335, https://doi.org/10.1016/j.yqres.2014.12.005, 2015.
Liu, G. N., Xiong, H. G., Cui, Z. J., and Song, C. Q.: The morphological features and environmental condition of rock glaciers in Tianshan mountains, Scientia Geographica Sinica, 15, 226–233, 1995.
Long, D., Li, X. Y., Li, X. D., Han, P. F., Zhao, F. Y., Hong, Z. K., Wang, Y. M., and Tian, F. Q.: Remote sensing retrieval of water storage changes and underlying climatic mechanisms over the Tibetan Plateau during the past two decades, Adv. Water Sci., 33, 375–389, https://doi.org/10.14042/j.cnki.32.1309.2022.03.003, 2022.
Magori, B., Urdea, P., Onaca, A., and Ardelean, F.: Distribution and characteristics of rock glaciers in the Balkan Peninsula, Geografiska Annaler: Series A, Physical Geography, 102, 354–375, https://doi.org/10.1080/04353676.2020.1809905, 2020.
Mathys, T., Hilbich, C., Arenson, L. U., Wainstein, P. A., and Hauck, C.: Towards accurate quantification of ice content in permafrost of the Central Andes – Part 2: An upscaling strategy of geophysical measurements to the catchment scale at two study sites, The Cryosphere, 16, 2595–2615, https://doi.org/10.5194/tc-16-2595-2022, 2022.
Maussion, F., Butenko, A., Champollion, N., Dusch, M., Eis, J., Fourteau, K., Gregor, P., Jarosch, A. H., Landmann, J., Oesterle, F., Recinos, B., Rothenpieler, T., Vlug, A., Wild, C. T., and Marzeion, B.: The Open Global Glacier Model (OGGM) v1.1, Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-12-909-2019, 2019.
Millar, C. I. and Westfall, R. D.: Rock glaciers and related periglacial landforms in the Sierra Nevada, CA, USA; inventory, distribution and climatic relationships, Quaternary Int., 188, 90–104, https://doi.org/10.1016/j.quaint.2007.06.004, 2008.
Millar, C. I. and Westfall, R. D.: Geographic, hydrological, and climatic significance of rock glaciers in the Great Basin, USA, Arct. Antarct. Alp. Res., 51, 232–249, https://doi.org/10.1080/15230430.2019.1618666, 2019.
Millar, C. I., Westfall, R. D., and Delany, D. L.: Thermal and hydrologic attributes of rock glaciers and periglacial talus landforms: Sierra Nevada, California, USA, Quaternary Int., 310, 169–180, https://doi.org/10.1016/j.quaint.2012.07.019, 2013.
Müller, J., Vieli, A., and Gärtner-Roer, I.: Rock glaciers on the run – understanding rock glacier landform evolution and recent changes from numerical flow modeling, The Cryosphere, 10, 2865–2886, https://doi.org/10.5194/tc-10-2865-2016, 2016.
Ni, J., Wu, T., Zhu, X., Hu, G., Zou, D., Wu, X., Li, R., Xie, C., Qiao, Y., Pang, Q., Hao, J., and Yang, C.: Simulation of the Present and Future Projection of Permafrost on the Qinghai-Tibet Plateau with Statistical and Machine Learning Models, J. Geophys. Res.-Atmos., 126, e2020JD033402, https://doi.org/10.1029/2020JD033402, 2021.
Pan, G. T., Wang, L. Q., Zhang, W. P., and Wang, B. D.: Tectonic Map and Specification of Qinghai Tibet Plateau and Its Adjacent Areas (1:1 500 000), Geology Press, Beijing, 208 pp., 2013.
Pandey, P.: Inventory of rock glaciers in Himachal Himalaya, India using high-resolution Google Earth imagery, Geomorphology, 340, 103–115, https://doi.org/10.1016/j.geomorph.2019.05.001, 2019.
Paterson, W. S. B.: The Physics of Glaciers, Butterworth-Heinemann, Oxford, 480 pp., 1994.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J. O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Mölg, N., Paul, F., Radic, V., Rastner, P., Raup, B. H., Rich, J., and Sharp, M. J.: The Randolph Glacier inventory: a globally complete inventory of glaciers, J. Glaciol., 60, 537–552, https://doi.org/10.3189/2014JoG13J176, 2014.
Ran, Y., Li, X., Cheng, G., Nan, Z., Che, J., Sheng, Y., Wu, Q., Jin, H., Luo, D., Tang, Z., and Wu, X.: Mapping the permafrost stability on the Tibetan Plateau for 2005–2015, Sci. China Earth Sci., 64, 62–79, https://doi.org/10.1007/s11430-020-9685-3, 2020.
Ran, Z. and Liu, G.: Rock glaciers in Daxue Shan, south-eastern Tibetan Plateau: an inventory, their distribution, and their environmental controls, The Cryosphere, 12, 2327–2340, https://doi.org/10.5194/tc-12-2327-2018, 2018.
Rangecroft, S., Harrison, S., and Anderson, K.: Rock glaciers as water stores in the Bolivian Andes: an assessment of their hydrological importance, Arc. Antarct. Alp. Res., 47, 89–98, https://doi.org/10.1657/aaar0014-029, 2015.
Rangecroft, S., Suggitt, A. J., Anderson, K., and Harrison, S.: Future climate warming and changes to mountain permafrost in the Bolivian Andes, Clim. Change, 137, 231–243, https://doi.org/10.1007/s10584-016-1655-8, 2016.
Reinosch, E., Gerke, M., Riedel, B., Schwalb, A., Ye, Q., and Buckel, J.: Rock glacier inventory of the western Nyainqêntanglha Range, Tibetan Plateau, supported by InSAR time series and automated classification, Permafrost Periglac. Process., 32, 657–672, https://doi.org/10.1002/ppp.2117, 2021.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier Outlines, Version 6. [Indicate subset used]. Boulder, Colorado USA, NSIDC: National Snow and Ice Data Center, https://doi.org/10.7265/4m1f-gd79, 2017.
RGIK: Towards standard guidelines for inventorying rock glaciers: baseline concepts (version 4.2.2), IPA Action Group Rock glacier inventories and kinematics, 13 pp., 2022a.
RGIK: Towards standard guidelines for inventorying rock glaciers: practical concepts (version 2.0), IPA Action Group Rock glacier inventories and kinematics, 10 pp., 2022b.
Schaffer, N., MacDonell, S., Réveillet, M., Yáñez, E., and Valois, R.: Rock glaciers as a water resource in a changing climate in the semiarid Chilean Andes, Reg. Environ. Change, 19, 1263–1279, https://doi.org/10.1007/s10113-018-01459-3, 2019.
Schmid, M.-O., Baral, P., Gruber, S., Shahi, S., Shrestha, T., Stumm, D., and Wester, P.: Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth, The Cryosphere, 9, 2089–2099, https://doi.org/10.5194/tc-9-2089-2015, 2015.
Schoeneich, P., Bodin, X., Echelard, T., Kaufmann, V., KellererPirklbauer, A., Krysiecki, J.-M., and Lieb, G. K.: Velocity changes of rock glaciers and induced hazards, in: Engineering Geology for Society and Territory, Springer, 1, 223–227, 2015.
Schrott, L.: Some geomorphological-hydrological aspects of rock glaciers in the Andes (San Juan, Argentina), Zeitschrift fur Geomorphologie, Supplementband, 104, 161–173, 1996.
Scotti, R., Brardinoni, F., Alberti, S., Frattini, P., and Crosta, G. B.: A regional inventory of rock glaciers and protalus ramparts in the central Italian Alps, Geomorphology, 186, 136–149, https://doi.org/10.1016/j.geomorph.2012.12.028, 2013.
Selley, H., Harrison, S., Glasser, N., Wündrich, O., Colson, D., and Hubbard, A.: Rock glaciers in central Patagonia, Geografiska Annaler: Series A, Physical Geography, 101, 1–15, https://doi.org/10.1080/04353676.2018.1525683, 2018.
Wagner, T., Kainz, S., Helfricht, K., Fischer, A., Avian, M., Krainer, K., and Winkler, G.: Assessment of liquid and solid water storage in rock glaciers versus glacier ice in the Austrian Alps, Sci. Total Environ., 800, 149593, https://doi.org/10.1016/j.scitotenv.2021.149593, 2021.
Wahrhaftig, C. and Cox, A.: Rock glaciers in the Alaska Range, GSA Bulletin, 70, 383–436, https://doi.org/10.1130/0016-7606(1959)70[383:Rgitar]2.0.Co;2, 1959.
Wu, Z., Zhang, Y., Hu, D., Zhao, X., and Ye, P.: Quaternary Normal Faulting and Its Dynamics of the Oiga Graben in South-Eastern Tibet, Acta Geol. Sinica, 81, 144–160, https://doi.org/10.3321/j.issn:0001-5717.2007.10.003, 2007.
Xiang, S. Y.: 1:3 million Quaternary geological and geomorphological map of the Tibetan Plateau and its surrounding areas, China University of Geosciences Press, Wuhan, 104 pp., 2013.
Yao, T., Wu, G., Xu, B., Wang, W., Gao, J., and An, B.: Asian Water Tower Change and Its Impacts, B. Chinese Acad. Sci., 34, 1203–1209, https://doi.org/10.16418/j.issn.1000-3045.2019.11.003, 2019.
Yao, T., Bolch, T., Chen, D., Gao, J., Immerzeel, W., Piao, S., Su, F., Thompson, L., Wada, Y., Wang, L., Wang, T., Wu, G., Xu, B., Yang, W., Zhang, G., and Zhao, P.: The imbalance of the Asian water tower, Nat. Rev. Earth Environ., 3, 618–632, https://doi.org/10.1038/s43017-022-00299-4, 2022.
Yu, X., Ji, J., Gong, J., Sun, D., Qing, J., Wang, L., Zhong, D., and Zhang, Z.: Evidence of rapid erosion driven by climate in the Yarlung Zangbo (Tsangpo) Great Canyon, the eastern Himalayan syntaxis, Chinese Sci. B., 56, 1123–1130, https://doi.org/10.1007/s11434-011-4419-x, 2011.
Zhang, Q., Jia, N., Xu, H., Yi, C., Wang, N., and Zhang, L.: Rock glaciers in the Gangdise Mountains, southern Tibetan Plateau: Morphology and controlling factors, CATENA, 218, 106561, https://doi.org/10.1016/j.catena.2022.106561, 2022.
Zheng, J., Yin, Y., and Li, B.: A New Scheme for Climate Regionalization in China, Acta Geographica Sinica, 65, 3–12, https://doi.org/10.11821/xb201001002, 2010.
Zhou, Y., Guo, D., Qiu, G., Cheng, G., and Li, S.: Geocryology In China, Science Press, Beijing, 450 pp., 2000.
Short summary
We map a detailed rock glaciers inventory to further explore the regional distribution controlling factors, water storage, and permafrost probability distribution in Guokalariju. Results show that (i) the distribution of rock glaciers is controlled by the complex composition of topo-climate factors, increases in precipitation are conducive to rock glaciers forming at lower altitudes, and (ii) 1.32–3.60 km3 of water is stored in the rock glaciers, or ~ 59 % of the water glaciers presently store.
We map a detailed rock glaciers inventory to further explore the regional distribution...