Articles | Volume 17, issue 11
https://doi.org/10.5194/tc-17-4957-2023
https://doi.org/10.5194/tc-17-4957-2023
Research article
 | 
24 Nov 2023
Research article |  | 24 Nov 2023

Out-of-the-box calving-front detection method using deep learning

Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein

Related authors

Assessing supraglacial lake depth using ICESat-2, Sentinel-2, TanDEM-X, and in situ sonar measurements over Northeast and Southwest Greenland
Katrina Lutz, Lily Bever, Christian Sommer, Thorsten Seehaus, Angelika Humbert, Mirko Scheinert, and Matthias Braun
The Cryosphere, 18, 5431–5449, https://doi.org/10.5194/tc-18-5431-2024,https://doi.org/10.5194/tc-18-5431-2024, 2024
Short summary
Multi-annual patterns of rapidly draining supraglacial lakes in Northeast Greenland
Katrina Lutz, Ilaria Tabone, Angelika Humbert, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-3056,https://doi.org/10.5194/egusphere-2024-3056, 2024
Short summary
Massive permafrost rock slide under warming polythermal glacier (Bliggspitze, Austria)
Felix Pfluger, Samuel Weber, Joseph Steinhauser, Christian Zangerl, Christine Fey, Johannes Fürst, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2024-2509,https://doi.org/10.5194/egusphere-2024-2509, 2024
Short summary
A reconstruction of the ice thickness of the Antarctic Peninsula Ice Sheet north of 70º S
Kaian Shahateet, Johannes J. Fürst, Francisco Navarro, Thorsten Seehaus, Daniel Farinotti, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-1571,https://doi.org/10.5194/egusphere-2024-1571, 2024
Short summary
Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024,https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary

Related subject area

Discipline: Glaciers | Subject: Remote Sensing
The Pléiades Glacier Observatory: high-resolution digital elevation models and ortho-imagery to monitor glacier change
Etienne Berthier, Jérôme Lebreton, Delphine Fontannaz, Steven Hosford, Joaquín Muñoz-Cobo Belart, Fanny Brun, Liss M. Andreassen, Brian Menounos, and Charlotte Blondel
The Cryosphere, 18, 5551–5571, https://doi.org/10.5194/tc-18-5551-2024,https://doi.org/10.5194/tc-18-5551-2024, 2024
Short summary
Monthly velocity and seasonal variations of the Mont Blanc glaciers derived from Sentinel-2 between 2016 and 2024
Fabrizio Troilo, Niccolò Dematteis, Francesco Zucca, Martin Funk, and Daniele Giordan
The Cryosphere, 18, 3891–3909, https://doi.org/10.5194/tc-18-3891-2024,https://doi.org/10.5194/tc-18-3891-2024, 2024
Short summary
Improved records of glacier flow instabilities using customized NASA autoRIFT (CautoRIFT) applied to PlanetScope imagery
Jukes Liu, Madeline Gendreau, Ellyn Mary Enderlin, and Rainey Aberle
The Cryosphere, 18, 3571–3590, https://doi.org/10.5194/tc-18-3571-2024,https://doi.org/10.5194/tc-18-3571-2024, 2024
Short summary
Five decades of Abramov glacier dynamics reconstructed with multi-sensor optical remote sensing
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2169,https://doi.org/10.5194/egusphere-2024-2169, 2024
Short summary
Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024,https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary

Cited articles

Abolvardi, A. A., Hamey, L., and Ho-Shon, K.: UNET-Based Multi-Task Architecture for Brain Lesion Segmentation, in: Digital Image Computing: Techniques and Applications (DICTA), 1–7, https://doi.org/10.1109/DICTA51227.2020.9363397, 2020. a
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbrse, Greenland, J. Geophys. Res.-Earth Surf., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010. a
Amyar, A., Modzelewski, R., Li, H., and Ruan, S.: Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation, Comput. Biol. Med., 126, 104037, https://doi.org/10.1016/j.compbiomed.2020.104037, 2020. a, b
Baumhoer, C. A., Dietz, A. J., Dech, S., and Kuenzer, C.: Remote sensing of antarctic glacier and ice-shelf front dynamics-a review, Remote Sens., 10, 1445, https://doi.org/10.3390/rs10091445, 2018. a, b
Baumhoer, C. A., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning, Remote Sens., 11, 2529, https://doi.org/10.3390/rs11212529, 2019. a, b, c
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Delineating calving fronts of marine-terminating glaciers in satellite images is a labour-intensive task. We propose a method based on deep learning that automates this task. We choose a deep learning framework that adapts to any given dataset without needing deep learning expertise. The method is evaluated on a benchmark dataset for calving-front detection and glacier zone segmentation. The framework can beat the benchmark baseline without major modifications.