Articles | Volume 17, issue 11
https://doi.org/10.5194/tc-17-4957-2023
https://doi.org/10.5194/tc-17-4957-2023
Research article
 | 
24 Nov 2023
Research article |  | 24 Nov 2023

Out-of-the-box calving-front detection method using deep learning

Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein

Related authors

Digital Elevation Models and Orthomosaics of 1989 Aerial Imagery of the Western Antarctic Peninsula and Surrounding Islands between 66–68° S
Vijaya Kumar Thota, Thorsten Seehaus, Friedrich Knuth, Amaury Dehecq, Christian Salewski, and Matthias Braun
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-490,https://doi.org/10.5194/essd-2025-490, 2025
Preprint under review for ESSD
Short summary
Insights into supraglacial lake drainage dynamics: triangular fracture formation, reactivation and long-lasting englacial features
Angelika Humbert, Veit Helm, Ole Zeising, Niklas Neckel, Matthias H. Braun, Shfaqat Abbas Khan, Martin Rückamp, Holger Steeb, Julia Sohn, Matthias Bohnen, and Ralf Müller
The Cryosphere, 19, 3009–3032, https://doi.org/10.5194/tc-19-3009-2025,https://doi.org/10.5194/tc-19-3009-2025, 2025
Short summary
Multi-annual patterns of rapidly draining supraglacial lakes in Northeast Greenland
Katrina Lutz, Ilaria Tabone, Angelika Humbert, and Matthias Braun
The Cryosphere, 19, 2601–2614, https://doi.org/10.5194/tc-19-2601-2025,https://doi.org/10.5194/tc-19-2601-2025, 2025
Short summary
Detecting and understanding slow glacier flow under climate change: A case study on Vernagtferner, Austria
Theresa Dobler, Wilfried Hagg, Martin Rückamp, Thorsten Seehaus, and Christoph Mayer
EGUsphere, https://doi.org/10.5194/egusphere-2025-2513,https://doi.org/10.5194/egusphere-2025-2513, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
The system of atmosphere, land, ice and ocean in the region near the 79N Glacier in northeast Greenland: synthesis and key findings from the Greenland Ice Sheet–Ocean Interaction (GROCE) experiment
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Maria Kappelsberger, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
The Cryosphere, 19, 1789–1824, https://doi.org/10.5194/tc-19-1789-2025,https://doi.org/10.5194/tc-19-1789-2025, 2025
Short summary

Cited articles

Abolvardi, A. A., Hamey, L., and Ho-Shon, K.: UNET-Based Multi-Task Architecture for Brain Lesion Segmentation, in: Digital Image Computing: Techniques and Applications (DICTA), 1–7, https://doi.org/10.1109/DICTA51227.2020.9363397, 2020. a
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbrse, Greenland, J. Geophys. Res.-Earth Surf., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010. a
Amyar, A., Modzelewski, R., Li, H., and Ruan, S.: Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation, Comput. Biol. Med., 126, 104037, https://doi.org/10.1016/j.compbiomed.2020.104037, 2020. a, b
Baumhoer, C. A., Dietz, A. J., Dech, S., and Kuenzer, C.: Remote sensing of antarctic glacier and ice-shelf front dynamics-a review, Remote Sens., 10, 1445, https://doi.org/10.3390/rs10091445, 2018. a, b
Baumhoer, C. A., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning, Remote Sens., 11, 2529, https://doi.org/10.3390/rs11212529, 2019. a, b, c
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Delineating calving fronts of marine-terminating glaciers in satellite images is a labour-intensive task. We propose a method based on deep learning that automates this task. We choose a deep learning framework that adapts to any given dataset without needing deep learning expertise. The method is evaluated on a benchmark dataset for calving-front detection and glacier zone segmentation. The framework can beat the benchmark baseline without major modifications.
Share