Articles | Volume 17, issue 11
https://doi.org/10.5194/tc-17-4957-2023
https://doi.org/10.5194/tc-17-4957-2023
Research article
 | 
24 Nov 2023
Research article |  | 24 Nov 2023

Out-of-the-box calving-front detection method using deep learning

Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein

Data sets

Out-of-the-box calving front detection method using deep learning Oskar Herrmann https://doi.org/10.5281/zenodo.8379954

CaFFe (CAlving Fronts and where to Find thEm: a benchmark dataset and methodology for automatic glacier calving front extraction from sar imagery) Nora Gourmelon, Thorsten Seehaus, Matthias Holger Braun, Andreas Maier, and Vincent Christlein https://doi.org/10.1594/PANGAEA.940950

Model code and software

Pretrained_nnUNet_calvingfront_detection Oskar Herrmann https://doi.org/10.5281/zenodo.7837300

nnU-Ne Fabian Isensee https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1

nnUNet_calvingfront_detection Oskar Herrmann and Nora Gourmelon https://doi.org/10.5281/zenodo.10168770

nnUNet_calvingfront_detection Oskar Herrmann https://doi.org/10.5281/zenodo.10169965

Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Delineating calving fronts of marine-terminating glaciers in satellite images is a labour-intensive task. We propose a method based on deep learning that automates this task. We choose a deep learning framework that adapts to any given dataset without needing deep learning expertise. The method is evaluated on a benchmark dataset for calving-front detection and glacier zone segmentation. The framework can beat the benchmark baseline without major modifications.