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Abstract. Glaciers across the globe react to the changing
climate. Monitoring the transformation of glaciers is es-
sential for projecting their contribution to global mean sea
level rise. The delineation of glacier-calving fronts is an im-
portant part of the satellite-based monitoring process. This
work presents a calving-front extraction method based on
the deep learning framework nnU-Net, which stands for
no new U-Net. The framework automates the training of
a popular neural network, called U-Net, designed for seg-
mentation tasks. Our presented method marks the calving
front in synthetic aperture radar (SAR) images of glaciers.
The images are taken by six different sensor systems. A
benchmark dataset for calving-front extraction is used for
training and evaluation. The dataset contains two labels for
each image. One label denotes a classic image segmenta-
tion into different zones (glacier, ocean, rock, and no in-
formation available). The other label marks the edge be-
tween the glacier and the ocean, i.e., the calving front. In
this work, the nnU-Net is modified to predict both labels si-
multaneously. In the field of machine learning, the predic-
tion of multiple labels is referred to as multi-task learning
(MTL). The resulting predictions of both labels benefit from
simultaneous optimization. For further testing of the capabil-
ities of MTL, two different network architectures are com-
pared, and an additional task, the segmentation of the glacier
outline, is added to the training. In the end, we show that
fusing the label of the calving front and the zone label is
the most efficient way to optimize both tasks with no sig-
nificant accuracy reduction compared to the MTL neural-
network architectures. The automatic detection of the calv-
ing front with an nnU-Net trained on fused labels improves
from the baseline mean distance error (MDE) of 753± 76 to
541±84 m. The scripts for our experiments are published on

GitHub (https://github.com/ho11laqe/nnUNet_calvingfront_
detection, last access: 20 November 2023). An easy-access
version is published on Hugging Face (https://huggingface.
co/spaces/ho11laqe/nnUNet_calvingfront_detection, last ac-
cess: 20 November 2023).

1 Introduction

Unlike the large majority of land-terminating glaciers, ma-
rine and lake-terminating (MALT) glaciers reach a water
body at a low elevation. The contact surface is often referred
to as the calving front. Their ice is lost by sub-marine melt-
ing or calving, i.e., ice that breaks off, gets de-connected,
and starts to float freely in the form of icebergs or ice floes.
Both processes, sub-marine melting and calving, determine
the total frontal ablation, i.e., the mass loss at the calving
front. Frontal ablation is often a dominant factor in the to-
tal mass budget of MALT glaciers (McNabb et al., 2015;
Shepherd et al., 2018; Minowa et al., 2021). Besides its im-
portance in the total glacier mass balance, the representation
of processes controlling frontal ablation is currently a press-
ing task for numerical glacier models (Beer et al., 2021).
Neglecting frontal ablation can introduce an important bias.
Recinos et al. (2019) analyzed the impact on ice thickness
reconstruction (based on mass conservation) in Alaska and
reported an underestimation of 19 % on regional scales and
up to 30 % on glacier scales. Various successful approaches
exist to parameterize frontal ablation for individual glaciers.
Still, the implementation in large-scale or global models is
limited by the amount and quality of measurements for con-
straining the models (Recinos et al., 2019). Thus, large-scale
measurements (ideally time series) of frontal ablation are de-
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manded by the modeling community (Recinos et al., 2021).
Driving forces of frontal ablation are, on the one hand, ice
flux (higher flux, e.g., due to bed lubrication by meltwater,
can trigger calving events) and, on the other hand, marine
factors such as ocean temperature, fjord bathymetry, and sea
ice or ice mélange conditions (Carr et al., 2014; Straneo et al.,
2013). For example, the persistence of the ice mélange in
front of the glacier can stabilize the calving front and af-
fect the glacier dynamics. In contrast, the breakup of the
ice mélange can lead to increased calving and ice flow at
the glacier terminus (Amundson et al., 2010; Kneib-Walter
et al., 2021; Rott et al., 2020). Moreover, a significant frontal
retreat can also indicate a retreat of the grounding zone
(Friedl et al., 2018). The retreat of the grounding zone of
a glacier with retrograde bedrock formation will lead to fur-
ther grounding-zone retreat, resulting in increased ice loss
and destabilization of the glacier or ice stream (Robel et al.,
2016). Thus, information on the temporal variability of the
calving-front position provides fundamental information on
the state of the glacier or ice stream. Therefore, the glacier
area has been defined as an essential climate variable (ECV)
product by the World Meteorological Organization (WMO).
Calving-front positions were usually manually mapped using
different remote sensing imagery (Baumhoer et al., 2018).
Only a few studies applied automatic or semi-automatic ap-
proaches. In polar regions, the ocean downstream of the
glaciers is often covered by sea ice and calved-off icebergs,
forming the so-called ice mélange, making calving-front de-
lineation a challenging task, even when captured by hand.
Deep learning approaches have shown high potential for car-
rying out such complex segmentation tasks, e.g., on medical
imagery (Jang and Cho, 2019). In recent years, the applica-
tion of deep learning techniques for glacier front detection
started (Zhang et al., 2019; Cheng et al., 2021; Baumhoer
et al., 2019; Hartmann et al., 2021; Mohajerani et al., 2019;
Baumhoer et al., 2021; Zhang et al., 2021; Heidler et al.,
2021; Marochov et al., 2021; Loebel et al., 2022). Calving
fronts can be located in both optical and synthetic aperture
radar (SAR) imagery. In optical imagery, calving fronts are
more easily distinguishable, whereas synthetic aperture radar
imagery has a higher scene availability as this is independent
of daytime, season, and cloud coverage (Baumhoer et al.,
2018). A direct comparison between the results of existing
deep-learning-based calving-front extraction studies is not
possible as the models have been trained on different data,
tested on different test sets, and evaluated using slightly dif-
fering metrics.

The benchmark dataset published by Gourmelon et al.
(2022a) provides 681 SAR images of calving fronts. SAR
imagery is independent of sunlight and cloud coverage, en-
abling continuous temporal coverage of the observation area,
but compared to optical data, it has only one channel and
has more speckle noise. For every SAR image, two labels
are provided. One label provides four classes: ocean, glacier,
rock, and no information available (e.g., radar shadow and

layover areas, areas outside the swath). The other label marks
the calving front with a one-pixel-wide line. Based on the
training set of the dataset, Gourmelon et al. (2022a) train a
modified U-Net for each label. One U-Net solves the task of
glacier segmentation, and one detects the calving front. On
the two test glaciers of the dataset, the segmentation model
achieves an IoU (Intersection over Union) of 67.7± 0.6. By
taking the boundary between ocean and glacier, they ex-
tract a prediction of the calving front from the zone predic-
tion with a mean distance error (MDE) of 753± 76 m. The
model trained directly on the front label achieved an MDE of
887± 189 m.

In this work, we present a method that utilizes both labels
of the dataset instead of training separate models for each
task (see Fig. 1). Multi-task learning (MTL) is a technique
for machine learning algorithms that uses one model to tackle
multiple tasks. In most cases, the potentially larger dataset
and higher information content lead to higher performance
for the individual tasks (Bischke et al., 2019; He et al., 2021;
Li et al., 2019; Amyar et al., 2020; Chen et al., 2019).

Our method is based on the nnU-Net (no new U-Net) pro-
posed by Isensee et al. (2021), which is an out-of-the-box
framework for training the U-Net. The framework contains
proven deep learning techniques and established hyperpa-
rameter values, as well as rule-based parameters that depend
on the properties of the dataset and available GPU memory.
Therefore, the nnU-Net is a powerful tool that simplifies the
application of deep learning algorithms. Its performance in
the segmentation of SAR data has not been tested, and the
availability of two labels suggests the modification of the
nnU-Net for MTL. As a baseline for our evaluation of the
nnU-Net, we use the results of Gourmelon et al. (2022a).

In particular, our contributions are as follows: (1) visual-
izations showing the temporal and spatial distribution of the
dataset by Gourmelon et al. (2022a); (2) application and eval-
uation of the nnU-Net for calving-front detection and zone
segmentation; (3) two different modifications of the original
nnU-Net to incorporate both labels for multi-task learning;
(4) testing if an artificial third label improves the calving-
front detection; (5) introduction of an efficient approach that
fuses the two labels of the dataset; and (6) analysis of the in-
fluence of season, glacier, and satellite on the performance of
the model.

The paper is organized as follows: after presenting the re-
lated work in Sect. 2, we give an overview of the dataset
(Gourmelon et al., 2022a) in Sect. 3. Section 4 explains the
method and our six experimental setups. Section 5 examines
the results and analyses the influence of different properties
of the satellite images. Section 6 summarises the work.

2 Related work

Automated monitoring of glacier-covered areas is a growing
research field. Recent glacier monitoring uses deep learning
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Figure 1. Illustration of the modified nnU-Net for simultaneous prediction of landscape zones and the glacier front. On the left is an exemplary
satellite image of the Crane Glacier taken by TDX on 24 June 2011. On the right, the upper image shows the four segmentation classes:
ocean (white), glacier (light gray), rock (dark gray), and no information available (black). The lower image shows the glacier’s calving front
as a white line versus the black background.

methods due to the increasing availability of satellite images
and computing power. Many methods are based on the U-
Net (Ronneberger et al., 2015). They modify the vanilla U-
Net for better performance in calving-front detection (Loebel
et al., 2022; Mohajerani et al., 2019; Zhang et al., 2019). One
approach is to segment the images into different areas and
extract the calving front as the border between segmentation
areas (Hartmann et al., 2021; Zhang et al., 2019; Baumhoer
et al., 2019; Periyasamy et al., 2022; Loebel et al., 2022).
Another approach directly trains a model on the position
of the calving front (Davari et al., 2022). This task suffers
from severe class imbalance due to the thin calving front. Re-
searchers approach this problem by creating a distance map
from every pixel to the front line. The network is trained on
the distance map instead of the thin front line. The actual
front-line prediction is then extracted during post-processing.

Other works use the segmentation network
DeepLabv3 (Chen et al., 2018) to detect calving fronts.
The main advantage of DeepLabv3 over U-Net is the atrous
spatial pyramid pooling, which makes the network adaptable
to different image resolutions (Zhang et al., 2021; Cheng
et al., 2021).

The Calving Front Machine (CALFIN) proposed by
Cheng et al. (2021) segments optical and SAR images into
the ocean–land zones and extracts the calving front dur-
ing post-processing with a topography map of the area.
Researchers apply MTL with a late-branching architecture.
They use two labels: a binary ocean mask and a binary
calving-front mask. They achieve state-of-the-art predictions
with an 86 m deviation from the measured calving front.
A detailed comparison to the aforementioned U-Net-based
methods by Mohajerani et al. (2019) and Baumhoer et al.
(2019) revealed the generalization ability of CALFIN to
other glacier datasets. The images had to be down-sampled
for CALFIN. Therefore, the distance in meters doubles, but
comparing the pixel distance errors reveals a similar perfor-

mance. With 29 million parameters, CALFIN is still a large
network that needs a large amount of training data. Chen
et al. (2019) propose a similar approach for medical image
segmentation and show that the individual tasks benefit from
MTL. Several other approaches have advanced the U-Net
architecture for MTL for medical applications (Abolvardi
et al., 2020; Kholiavchenko et al., 2020; Li et al., 2019; Am-
yar et al., 2020). The work of Heidler et al. (2021) uses MTL
for the segmentation of a binary ocean–land mask and for
edge detection of the Antarctic coastline, where the calving
front is just part of the coastline. They add task-specific heads
for the two tasks to the U-Net. They achieve results with a
deviation from the reference of 345 m compared to 483 m
with the vanilla U-Net. To avoid distortions of the metric
from areas far from the coast, the metric is calculated within
2 km of the true coastline. A further development of the
holistically nested edge detection (HED)-UNet for Antarc-
tic ice shelf front detection is proposed by Baumhoer et al.
(2023). Their post-processing includes an elevation thresh-
old of 110 m to remove erroneous classifications in the high-
altitude dry-snow zones.

3 Dataset

The dataset used in this work is provided by Gourmelon et al.
(2022b). It contains 681 synthetic aperture radar (SAR) im-
ages of seven marine-terminating glaciers taken by six dif-
ferent satellites. Two glaciers are located in the Northern
Hemisphere, namely Columbia Glacier in Alaska and Ja-
cobshavn Isbrae (Sermeq Kujalleq) (JAK) in Greenland. The
five glaciers in the Southern Hemisphere are all located on
the Antarctic Peninsula (see Fig. 2). The Crane, Mapple,
and Jorum glaciers are closest to the south pole, followed
by Dinsmoore–Bombardier–Edgeworth (DBE). They are lo-
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Figure 2. Location of the seven benchmark glaciers: Columbia Glacier in Alaska, Crane, Mapple, Jorum, Dinsmoore–Bombardier–
Edgeworth (DBE), Sjogren Glacier in the Antarctic Peninsula, and Jakobshavn Isbrae Glacier in Greenland. The background images are
taken from the Google Maps Satellite imagery layer © Google 2019.

cated so close together that they are treated as one glacier
site. The last glacier is the Sjögren-Inlet Glacier.

Table 1 lists the seven glacier sites with the number of im-
ages and the area they show. The table also depicts the train–
test split. The samples of the training set are used for the
parameter optimization of the segmentation method, and the
test set is exclusively used for evaluating the method. The test
set contains the glaciers Mapple and Columbia. Columbia is
the only mountain glacier in the dataset. The other glaciers
are outlet glaciers of polar ice sheets. Therefore, Columbia
can be seen as a benchmark glacier for the generalization ca-
pability of the segmentation method. Columbia and Mapple
also differ in terms of the shape of the glacier. The images of
Columbia show multiple calving fronts in one image, and the
flow of the glacier arms goes in different directions. On the
other hand, Mapple is a less complex glacier, moving in only
one direction with one clearly defined calving front between
the lateral fjord side walls.

The dataset contains two labels and a bounding box of the
glacier for each SAR image. One shows a mask of the dif-
ferent zones of the glacier (ocean, glacier, no information
available, rock). The other label contains a one-pixel-wide
line representing the calving front. The bounding box is not
utilized for our method. A sample of each glacier in the train-
ing set with its corresponding labels is shown in Fig. 3. Pre-
dicting the zone mask can be seen as a classic segmentation
problem. The calving front can also be extracted from the
zone label by taking the border between ocean and ice areas
in the corresponding bounding box. The direct delineation of
the calving front is a more difficult task due to the high-class
imbalance. Fewer than 1 % of the pixels are labeled as front
pixels. Additionally, the structure of the class region is not a
convex hull but a thin line.

Corresponding to the change in glacier area, the position of
the calving front changes. In Fig. 4, the retreat of Columbia

is visualized by plotting the calving-front position of every
sample in a different color. The bright lines represent past
calving fronts, and the dark-red lines represent the more re-
cent positions. The constant retreat of Columbia is visible
through the tiered lines. The visualization of the glaciers in
the Southern Hemisphere is included in Appendix B. The
change in the class distribution of the zone labels over time
is shown in Appendix C.

Every glacier is captured by multiple satellites for a higher
temporal resolution and extended observation periods, mean-
ing that recordings of one glacier are captured by different
SAR systems with different image resolutions. The resolu-
tion refers to the ground range resolution. The Environmen-
tal Satellite (ENVISAT), European Remote Sensing Satellite
2 (ERS-2), and Sentinel-1 (S1) have a resolution of 20 m, the
phased-array-type L-band SAR (PALSAR) has a 17 m res-
olution, and TanDEM-X (TDX) has a 7 m per pixel resolu-
tion. Unfortunately, the dataset does not provide information
about the polarization. In Fig. 5, a timeline of the images of
each glacier visualizes the observation time and frequency of
the images. The first two rows show the glaciers of the test
set.

4 Method

In this section, we explain our method, which includes the
utilization of the nnU-Net as a framework that simplifies the
training of a U-Net. We document our six experimental se-
tups that aim to evaluate the impact of multi-task learning
(MTL) on the training of the U-Net.

4.1 Background

In the field of deep learning, a lot of time and effort is put into
the hyperparameter search. Isensee et al. (2021) proposes the
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Table 1. Properties of the dataset, including a list of captured glaciers, train–test split, number of images per glacier, and covered area.

Alaska Antarctic Peninsula Greenland

Columbia Mapple Crane Jorum DBE Sjögren-Inlet Jakobshavn

Split – test: 122 – – train: 559 –
No. of images 65 57 69 77 133 121 159
Area [km] 32× 15 8× 8 19× 25 20× 13 22× 20 23× 19 16× 19

Figure 3. Sample images of every glacier in the training set and their corresponding labels. The first row shows the front label with a black
background and a one-pixel-wide white line representing the calving front. The second row contains the zone labels with four classes: ocean
(white), glacier (light gray), rock (dark gray), and no information available (black). Black dots in the ocean zone of Crane are areas with no
data available due to a small artifact at the former calving front of Crane Glacier in the digital elevation model (Cook et al., 2012) used for
the orthorectification of the SAR data. SAR imagery was provided by DLR, ESA, and ASF.

nnU-Net that automates the manual tuning of hyperparame-
ters. The nnU-Net is a framework around the U-Net archi-
tecture. It provides good default values for hyperparameters,
rules to adapt hyperparameters to the dataset, and many es-
tablished deep learning techniques for training and inference.
Most of the rule-based hyperparameters are only relevant
for three-dimensional (3D) data in the medical domain, like
computer tomography (CT) and magnetic resonance imaging
(MRI), and are irrelevant to our experiments. For all image
modalities except CT, z-score normalization is applied. Each
image is normalized independently by subtracting its mean
and dividing by its standard deviation. Another dataset pa-

rameter is the median shape of the samples. The shape and
the available graphics processing unit (GPU) memory deter-
mine the patch and batch size and, therefore, the network
topology. The patch size is initialized with the median shape
and iteratively reduced while adapting the network topology
accordingly until the network can be trained with a batch size
of at least two given GPU memory constraints.

In addition to the rule-based parameters, there are fixed pa-
rameters. These parameters are based on the authors’ experi-
ence and generalize well across various tasks. The nnU-Net
uses a poly learning rate scheduler, a combination of dice co-
efficient and cross-entropy as the loss function, and stochas-
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Figure 4. Evolution of the calving-front position of Columbia Glacier (Alaska). The red lines are all calving-front labels available in the
dataset. Background: SAR intensity image acquired by TDX on 13 November 2011. Projection CRS EPSG:4326 – WGS 84/UTM zone 6N.
SAR imagery was provided by DLR, ESA, and ASF.

Figure 5. Distribution of the dataset’s images over time. The samples are grouped by the seven glaciers and colored according to the
capturing satellite. We abbreviated the following glaciers: Columbia (COL), Dinsmoore–Bombardier–Edgeworth (DBE), Sjögren-Inlet (SI),
and Jakobshavn Isbrae (JAK).

tic gradient descent (SGD) with a Nesterov momentum as the
optimizer. The dice coefficient also helps with the problem of
class imbalance. The coefficient of each class is weighted by
the number of pixels in the label that relate to the class. Ad-
ditionally, deep supervision is used to avoid vanishing gradi-
ents in neural networks with many layers. Independent of the
dataset size, one epoch is defined as 250 mini-batches with
foreground oversampling. The foreground oversampling is
especially helpful for our application because the class im-
balance between the calving front and background is high.
It ensures that (at least) one-third of the patches for training
are guaranteed to contain a foreground class. In our case, ev-

ery batch contains two patches, from which one is forced to
contain calving-front pixels.

This framework achieves robust results for various medi-
cal image segmentation tasks. Overall, nnU-Net sets a new
state of the art in 33 out of 53 segmentation tasks of the Kid-
ney and Kidney Tumor Segmentation challenge (Heller et al.,
2021) and otherwise shows performances that are on par with
or close to the top leader board entries. But the performance
of the nnU-Net in segmenting glacier SAR images is yet to
be tested.
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Figure 6. Illustration of the six experiments: two single-task-learning (STL) experiments (blue), two multi-task-learning (MTL) experiments
with different architectures (green), one MTL experiment with an additional task of delineating the whole glacier boundary (yellow), and
one experiment where the two labels are fused into one segmentation task with an additional class in the zone label (orange).

4.2 Multi-task learning with nnU-Net

The first research goal is to apply the nnU-Net out of the
box to the glacier front detection and to the glacier zone seg-
mentation. Training the nnU-Net directly on the front labels
is the most straightforward approach for calving-front detec-
tion. The nnU-Net is intended to be used in the single-task-
learning (STL) manner. In Fig. 6, these two baseline exper-
iments are represented by the two blue columns on the left.
The label of the calving front is dilated to the width of five
pixels. Our preliminary experiments have shown that dilation
makes the predictions more robust. For the training with zone
labels, the post-processing includes extracting the boundary
between the ocean and the glacier.

In the following experiments, the segmentation problem
changes to a multi-task problem, where both labels are used
to train one model. The next two experiments concern net-
work architecture. They are represented by the two green
columns in Fig. 6. The early-branching architecture uses one
decoder for every label. Thus, the number of parameters in-
creases by about 50 %. In contrast, the late-branching archi-
tecture requires only a small change to the vanilla U-Net.
An additional channel of the last layer is used to predict the
second label. For this architecture, only the weights of one
kernel are trained in addition to the set of parameters needed
for one task. The change in the total number of parameters
that need to be trained is negligible.

Because architecture changes with multi-task learning
were not foreseen in nnU-Net framework, we had to make
changes to the framework. During the experiment’s planning,
i.e., the pre-processing phase, we fixed the network architec-
ture’s estimated size to be the size of the early-branching

network so that late- and early-branching networks return
the same value for the network size. Otherwise, early- and
late-branching networks would be trained on different patch
sizes. Thus, performance differences during the evaluation
might arise from the different patch sizes and not the dif-
fering architectures. During training, the error of all labels
is calculated and summed up with equal weighting. For the
inference, we adapted only the number of channels in the
case of MTL. After, the test samples are divided into patches
and fed through the network, and the patch predictions are
combined into the prediction of the whole image. The pre-
dictions of the zones are post-processed to get an additional
result for the position of the calving front. All glacier pixels
with a neighboring pixel classified as the ocean are classi-
fied as glacier front to extract the glacier front from the zone
predictions. We note that the prediction for the other task is
omitted in the inference.

The last two experiments concern label changes. In Fig. 6,
they are colored yellow and orange. The fifth experiment of
this work (see Fig. 6, yellow), extracts the boundaries be-
tween the glacier zone and all other zones as a third seg-
mentation task for the late-branching U-Net. The label of
the glacier boundaries was extracted from the zone label. All
glacier pixels with a neighboring rock or shadow pixel are
classified as glacier boundaries. The hypothesis is that pro-
viding more information about the same sample benefits the
performance of the U-Net in the individual tasks. The third
segmentation task is not considered in the final evaluation.
The last experiment fuses the zone and front labels by creat-
ing a fourth class in the zone label associated with the glacier
front: see Fig. 6 (orange). As the front line has a width of five
pixels (35–100 m depending on the image resolution), the
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Figure 7. Illustration of early- and late-branching U-Net architectures for multi-task learning (MTL). Both architectures perform joint feature
extraction. The early-branching architecture applies separate reconstruction with two decoders, one for each task. The late-branching network
applies joint reconstruction with a common decoder.

other zone classes are merely impaired. A post-processing
step is added to the predictions. The front pixels are isolated
to generate a front prediction for comparing the results with
the other experiments. To generate a prediction of the zones,
pixels classified as front are assigned to the ocean, and the
glacier zone is dilated once with a 7× 7 kernel.

4.3 Experimental setup

The nnU-Net was trained on the NVIDIA RTX 3080 with
12 GB memory; the adapted network architecture has nine
encoder blocks and eight decoder blocks. Each block con-
sists of two convolutional layers: an instance normalization
and a rectified linear unit (ReLU). The kernels of all convo-
lutional layers have a size of 3×3. During training, one batch
contains two images. The patch size of the experiments that
include only one label is 1280× 1024. The experiments that
have more than one label have a patch size of 1024×896 be-
cause of the GPU memory limit. There are also fixed param-
eters that are independent of the dataset. This includes the
SGD optimizer with an initial learning rate of 0.01, a Nes-
terov momentum of 0.99, and a weight decay of 3× 10−5.
Training of one epoch took between 100 and 160 s. The max-
imum number of epochs of 500 is reached in every training
instance (due to limited resources, we reduced the original
maximum number of epochs from 1000 to 500). The nnU-
Net defines one epoch using a fixed number of iterations
(250). In each iteration, the batch is sampled depending on
the class distribution of the sample to counteract the class
imbalance.

5 Evaluation

In this section, we will examine our evaluation metrics, com-
pare the results of the six proposed experiments, and evaluate
the results of the fused-label experiment. We used a 5-fold

cross-validation for the evaluation to eliminate the weight
initialization bias and the bias caused by a single split into
training and validation sets. The metric scores of the individ-
ual models are averaged to get a robust measure independent
of weight initialization and split.

5.1 Evaluation metrics

We use the mean distance error (MDE) proposed by
Gourmelon et al. (2022a) as our main measure. It measures
the distance of the predicted front P to the ground-truth
calving-front Q for all images in the test set I. For every
pixel in the label front Q, the distance to the closest pixel in
the predicted front P is determined. Additionally, to make
the metric symmetric, the distance to the closest pixel in the
label front Q is determined for every pixel in the predicted
front P . These distances are averaged and taken as the mean
distance between the two lines (see Fig. 8 and Eq. 1). We
note that the front MDE is also calculated for the zone seg-
mentation. We extract the front from the zone segmentation
by classifying all glacier pixels with neighboring ocean pix-
els as the glacier front.

MDE(I)=
1∑

(P,Q)∈I(|P| + |Q|)
∑

(P,Q)∈I

·

∑
p∈P

min
q∈Q
||p− q||2+

∑
q∈Q

min
p∈P
||p− q||2

 (1)

Additionally, we give classical segmentation metrics to eval-
uate the zone prediction. They include the Intersection over
Union (IoU), which is defined as IoU= TP

TP+FP+FN
, i.e., the

true-positive (TP) pixels over the sum of TP, false-positive
(FP), and false-negative (FN) pixels. Additionally, the F1
score is computed (F1= 2 · pr·re

pr+re ), which is a combination
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Figure 8. Visualization of the mean distance error (MDE) calcula-
tion between front label Q and front prediction P . The dist(q,P )
represents the distance between q and the pixel in P that is closest
to q.

of recall (re= TP
TP+FN

) and precision (pr= TP
TP+FP

). Because
this segmentation task is not binary – rather, every sample
has four classes – the metrics are calculated for each class
individually and then averaged with equal weighting.

5.2 Results and discussion

In this section, we evaluate our experiments. In Fig. 5.2.1, we
compare the performance of the six experiments described
in Fig. 4.2. In Fig. 5.2.2, we analyze the prediction of the
fused-label experiment and investigate the influence of sea-
son, glacier site, and satellite on the calving-front prediction
performance.

5.2.1 Comparison of the five experiments

In Fig. 9, the MDE of every experiment is compared. The
STL approach that is trained on the front labels has an MDE
of 1103± 72 m, and the STL approach that is trained on the
zone labels has an MDE of 1184± 225 m. A difference be-
tween the STL experiments arises in the performance vari-
ance, where the model trained on the zone labels is larger.
The number of samples that are incorrectly predicted to have
no front pixel is similar, with an average of 27.2± 6.0 for
training on the front and 24.8± 12.4 out of 122 for training
with zone labels.

The lowest number of samples with false non-front detec-
tions achieves the model that is trained on the fused labels
(3.2±2.0 for the front label out of 122 samples). The baseline
of Gourmelon et al. is 1± 1 based on the zone segmentation
and 7±3 from the front prediction. All values can be seen in
Table A3. All MTL models have a significantly lower MDE
than STL models, with a significance level of α = 0.01 using
Student’s t test. The table with the T values of all experi-
ment pairs is given in Tables A1 and A2. The model that is
additionally trained on the glacier boundary has the smallest
MDE for both tasks. The MDE baseline of Gourmelon et al.
(2022a) is 887±189 m for the front prediction and 753±76 m

for the zone. Overall, the MDE is similar for all MTL ap-
proaches. Student’s t test shows that the differences between
the fused label and all other MTL approaches are insignifi-
cant (α = 0.33).

The metrics for the zone segmentation, shown in Table A4,
show a similar trend: an improvement in all MTL approaches
compared to the STL approach and minor changes between
the MTL approaches. The STL of the nnU-Net on the zone
label achieves 62.4± 3.5 IoU and an F1 score of 71.7± 3.2.
The highest F1 score achieves the model that is trained with
the additional boundary task with 81.7± 0.5. The model’s
IoU is 72.6± 0.4. The baseline of Gourmelon et al. (2022a)
is an F1 score of 80.1± 0.5 and 69.7± 0.6 IoU.

The fused-label approach is the most feasible method, dis-
cussed as follows. This approach’s performance is on par
with the other experiments. Even though the MDE of the
boundary experiment is slightly lower than for the fused-
label approach, Student’s t test showed that the difference is
not significant. Moreover, the fused-label approach requires
fewer parameters and no changes to the nnU-Net framework,
making its use truly out of the box. Additionally, this ap-
proach has a relatively small number (5 ∈ 122) of predictions
with falsely non-detected fronts.

5.2.2 Analysis of the fused-label experiment

For the final evaluation, the zone segmentations of the five
models that are trained during the 5-fold cross-validation on
the fused labels are combined into a more robust ensemble
prediction. The models differ by their weight initialization
and train–validation split. However, they are all trained on
the fused labels. The ensemble prediction is created by tak-
ing the mean of the probabilities for every class each model
gives. We do not use the calving-front pixels directly from
the prediction but apply the post-processing of the zone label
to gain a slightly better MDE. The post-processing labels the
edge of the glacier zone as a calving front that has neighbor-
ing ocean pixels. The performance of the ensemble predic-
tion results in an MDE of 515±39 m and 5 ∈ 122 predictions
with no fronts, which is similar to the average performance
of the single models. We did not use the ensemble predic-
tion for the comparison between the experiments in Fig. 5.2.1
to show the variance that is introduced by a different train–
validation split and different weight initialization.

The distribution of the MDEs in the test set predictions is
plotted in Fig. 10. In the first row, all errors of the prediction
of the 117 test samples are drawn as dots. The test set con-
tains two glaciers: Mapple and Columbia. The rows below
show the distribution of the MDEs in the two test glaciers
separated into summer and winter seasons. The main differ-
ence in MDE is between glaciers, similarly to the baseline re-
sults of Gourmelon et al. (2022a), with MDEs of 287±48 m
for Mapple and 840± 48 m for Columbia. The MDE of our
methods is, on average, 109± 90 m for Mapple, while the
MDE of Columbia is 930± 1420 m. The difference in the
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Figure 9. Boxplot of the mean distance error (MDE) of the six experiments. Two columns are colored equally for the multi-task-learning
(MTL) experiments. The single-task-learning (STL) experiments are colored in dark and bright blue. Panel (a) represents the front delineation
based on the front segmentation (task 1), and panel (b) represents the front delineation based on the zone segmentation (task 2). The baseline
of Gourmelon et al. (2022a) is displayed as a gray line in each half.

Figure 10. Mean distance error (MDE) of the test set grouped by glaciers and subdivided into seasons. The orange boxplot in the first row
shows all MDEs of the test set. The olive-green plot below shows the errors from the Columbia images, subdivided into seasons in the third
and fourth rows. The last three rows show errors from the Mapple images. The dark-gray line shows the baseline of the zone prediction, and
the light-gray line shows the baseline of the front prediction from Gourmelon et al. (2022b). The ensemble model was trained with the fused
zone and front labels. The y axis has a logarithmic scale. The median is the middle line in the rectangle, and the dashed line represents the
mean. The x axis has a logarithmic scale. Otherwise, the outliers would dominate the plot. The rectangle reaches from the first quartile to the
third quartile.

MDEs is caused by a group of predictions with an error
> 1000 m. The median value is 222 m for Columbia and
80 m for Mapple. The reasons for the large glacier differ-
ences might be related to the different shapes. Mapple has
a simple calving front, a single line constraint by a straight
valley. Columbia has multiple calving fronts, a stream com-
ing from the left side of the image, one from the top, and
another from the left (see Fig. 13).

There is also a seasonal difference in the MDE. The
MDEs of the front prediction during the summer of Map-
ple and Columbia combined have lower values (307±730 m)

than the samples captured during the winter months (818±
1389 m). However, the medians are closer together, with
150 m in the summer months and 181 m in the winter months.
The MDE baseline (Gourmelon et al., 2022a) in summer is
732± 93 and 776± 65 m in winter, although most outliers
are from winter seasons in Columbia. In winter, snow cov-
erage of the glacier is more likely. The SAR signal can pen-
etrate through several meters of snow cover, depending on
the SAR frequency and the water content of the snow cover.
However, most of the studied glaciers, in particular Columbia
Glacier and the glaciers of the Antarctic Peninsula, are lo-
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Figure 11. Mean distance error (MDE) of the test set grouped by the resolution of the synthetic aperture radar (SAR) image. The orange
boxplot in the first row shows all MDEs of the test set. ENVISAT, ERS-2, and Sentinel-1 have a resolution of 20 m per pixel. MDEs of
this resolution are represented by the dark-red boxplot. PALSAR has a 17 m per pixel resolution. MDEs of images of this resolution are
represented in the magenta boxplot. TDX has a 7 m per pixel resolution. MDEs of images of this resolution are represented in the green
boxplot. The ensemble model was trained with the fused zone and front labels. The dark-gray line shows the baseline of the zone prediction,
and the light-gray line shows the baseline of the front prediction from (Gourmelon et al., 2022b). The y axis has a logarithmic scale. The
median is the middle line in the rectangle, and the dashed line represents the mean. The x axis has a logarithmic scale. Otherwise, the outliers
would dominate the plot. The rectangle reaches from the first quartile to the third quartile.

Figure 12. Mean distance error (MDE) of the test set grouped by satellites. The dark-gray line shows the baseline of the zone prediction, and
the light-gray line shows the baseline of the front prediction from (Gourmelon et al., 2022b). The images from ERS-2 (light blue), ENVISAT
(yellow), and PALSAR (green) only capture the Mapple Glacier. The MDEs from TDX (pink) and Sentinel-1 (turquoise) are subdivided into
the two glaciers of the test set. The ensemble model was trained with the fusion of zone and front labels. The y axis has a logarithmic scale.
The median is the middle line in the rectangle, and the dashed line represents the mean. The x axis has a logarithmic scale. Otherwise, the
outliers would dominate the plot. The rectangle reaches from the first quartile to the third quartile.

cated in temperate marine environments, making wet-snow
conditions also likely during winters. Thus, snow can cover
useful artifacts like crevasses and rock structures that can be
useful for the pattern recognition of the nnU-Net. However,
more important is that the ocean next to the glaciers is cov-
ered more often by ice mélange during winters, reducing the

contrast between ocean and glacier areas. Even for experi-
enced human mappers, it can be a challenging task to distin-
guish between the glacier tongue and the ice mélange. Thus,
we hypothesize that the network has similar issues, leading to
reduced performance during winter. The difference between
seasonal MDE also depends on the sensor. The MDE of the
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Figure 13. Calving front predictions of Columbia on (a) 11 February 2016 and (b) 22 June 2014 taken by TDX with 7 m pixel resolution
(after multi-looking with a factor of 3× 3); (c) was taken by Sentinel-1 on 10 September 2019 with 20 m pixel resolution. Note the ground
truth (blue), the prediction (yellow), and the overlap of ground truth and prediction (magenta). SAR imagery was provided by DLR, ESA,
and ASF.

low-resolution sensors (Sentinel-1 , ENVISAT) is lower in
the summer months. The MDE of the high-resolution sensor
(TDX) is lower in winter months, but the difference is much
smaller. A table of the MDE grouped by satellite and season
is in Appendix A5.

An overview of the impact of the sensor resolution is given
in Fig. 11. The images with a resolution of 7 m per pixel
have a mean MDE of 180 m. The images with 17 m resolu-
tion have a mean MDE of 135 m, but this class contains only
images of Mapple Glacier taken by PALSAR. The images

with 20 m per pixel have a mean MDE of 1214 m. The dis-
tribution has a cluster of MDEs that are larger than 1000 m.
These large errors only stem from images of Columbia (see
Fig. 12, row Columbia_S1).

In Fig. 12, the MDE is grouped by satellites. The predic-
tions for the samples captured by ERS, ENVISAT, and PAL-
SAR have a similar average error between 150 and 300 m.
However, the ERS, ENVISAT, and PALSAR samples only
represent the Mapple Glacier. TDX captures both test sites
and has an MDE of 180± 179 m. The samples captured by
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Figure 14. Calving-front predictions of Mapple Glacier. Note the ground truth (blue), the prediction (yellow), the overlap of ground truth
and prediction (magenta), and the bounding box (cyan). Panel (a) was taken by TDX on 13 October 2008. Panel (b) was taken by PALSAR
on 29 November 2008. Panel (c) was taken by Sentinel-1 on 3 July 2016. Panel (d) was taken by Sentinel-1 on 2 March 2019. Panel (e) was
taken by ERS on 5 February 2007. Panel (f) was taken by ENVISAT on 22 September 2007. SAR imagery was provided by DLR, ESA, and
ASF.

Sentinel-1 have a higher MDE with 1664±1807 m. The out-
liers are all from samples of Columbia captured by Sentinel-
1. The neural network can not generalize from the train-
ing set to this set of samples. The 14 outliers have a front-
line delineation error of > 1000 m. These are predictions
from images of Columbia taken by Sentinel-1. The low-
resolution artifacts, e.g., cracks in the ice, are not visible.
Figure 13c shows that the model falsely predicts ocean pix-
els as the front and does not predict the left calving front
at all. The MDE for this sample is 4221± 5026 m. We sus-
pect that the complex calving front of Columbia requires
a high resolution for accurate detection or more training
data from Sentinel-1. The group of outliers heavily increases
the overall MDE but can be separated clearly by specify-
ing the satellite and glacier. It shows the generalization lim-

its of our method. For a visual inspection, we provide the
predictions of the test set as single images and as an ani-
mation on Zenodo (https://doi.org/10.5281/zenodo.8379954,
Herrmann, 2023a).

The MDE is negatively influenced by calving-front predic-
tions extending over the labeled calving front on the coast-
line, which can be seen in Fig. 13a and b. The MDE might
give a wrong implication with regard to the usability of these
predictions. The prediction of Fig. 13b has a relatively high
MDE (393 m) because it predicts the coastline as a calving
front. Despite this, the prediction can still be used to monitor
the change in the position of the calving front and to calculate
the total frontal ablation rate or surface area. The prediction
can be corrected easily if the coastline is known. The mis-
classification of the coastline as a calving front holds true for
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nearly all images of Columbia taken by TDX. In the north-
ern part of Columbia, it is particularly difficult to distinguish
between the coastline and calving front because the glacier
retreated so far that it transitioned from a marine-terminating
glacier to a land-terminating glacier. Without prior knowl-
edge, it is even difficult for humans to distinguish between
the coastline and the calving front.

The model predictions of the calving front in images of
Mapple have a high overlap with the label, even with a
low resolution of ≥ 20 m (ERS) (see Fig. 14). There are
also some outliers for Mapple, but they are not as severe as
the outliers for Columbia. The prediction of Mapple with a
high resolution of 7 m per pixel is close to the ground truth
(Fig. 14).

6 Conclusions

This work explores the use of the nnU-Net by Isensee et al.
(2021) in segmenting glacier-calving fronts. The nnU-Net
promises an out-of-the-box application of deep learning for
segmentation tasks. We evaluate this claim using a dataset
of glacier images provided by Gourmelon et al. (2022b). The
dataset contains two tasks: the calving-front detection and the
glacier zone segmentation. We try different modifications of
multi-task learning (MTL) with two different neural-network
architectures to tackle both tasks simultaneously. The results
show that combining both tasks increases each task’s per-
formance. No significant difference between the two MTL
architectures exists. Adding more domain-specific tasks like
glacier boundary delineation does not further improve the
previous tasks. Due to the small area of the front line, the two
labels can be fused into one label. The fusion of labels de-
creases the number of parameters used, shortens the training
time, and reduces the deep learning expertise needed as the
nnU-Net can be used without modifications. This approach
achieves an average MDE of 541±84 m. We provide the code
and the pre-trained model for application on further SAR im-
ages of glacier fronts (see “Code and data availability” sec-
tion). The predictions need to be filtered manually since there
can be outliers, as our results show. However, this will pro-
vide an initial prediction, which eases the task of glacier front
delineation.

To improve the average MDE, future work should focus on
reducing the model performance with low-resolution images,
such as with Sentinel-1 with 20 m per pixel resolution. This
can be done by including more images taken by Sentinel-1 in
the training set or by implementing an oversampling strategy
of the low-resolution images.

The framework nnU-Net is well suited to segmenting SAR
images of glaciers and calving-front delineation. The modifi-
cation of the nnU-Net for MTL improves the results com-
pared to STL experiments, where only one label is used.
However, it is not necessary for glacier segmentation and
calving-front delineation because both labels can be fused

without losing a significant amount of information. Our find-
ings highlight the suitability of the nnU-net for glacier front
segmentation with multi-mission SAR remote sensing data,
which will facilitate an efficient, extended spatiotemporal
mapping of tidewater glacier terminus changes. Our findings
also promote the out-of-the-box application of the nnU-Net
for other segmentation tasks based on satellite imagery be-
cause we did not need to modify it for the calving-front de-
tection.

Appendix A: Evaluation results of all experiments

This section provides more detailed values of the evalua-
tion. Tables A1 and A2 contain the T values for significant
and insignificant differences between models. Table A3 con-
tains the zone MDE and the front MDE of the six exper-
iments. The MDE is averaged over the five model results.
The baseline from Gourmelon et al. (2022a) is also provided
in the first two rows. The values correspond to Fig. 9. We
provide Fig. A6 to compare the two methods (nnU-Net and
Gourmelon et al., 2022a). Table A5 contains the MDE of the
fused-label training grouped by satellite and season.

Table A1. T value for the significance of different front positions
extracted from front predictions. T values that surpass the threshold
of 3.36 mean that the probability for the difference to be random is
below 1 %. T values below 1 mean that the difference is by chance,
with a probability of 35 %, meaning that the difference is insignifi-
cant.

Early Late Boundary Fused
MTL MTL MTL labels

STL 15.78 13.46 16.14 14.29
Early MTL 0 0.31 1.02 0.43
Late MTL 0 0.95 0.58
Bound. MTL 0 0.46

Table A2. T value for the significance of different front positions
extracted from zone predictions. T values that surpass the threshold
of 3.36 mean that the probability for the difference to be random is
below 1 %. T values below 1 mean that the difference is by chance,
with a probability of 35 %, meaning that the difference is insignifi-
cant.

Early Late Boundary Fused
MTL MTL MTL labels

STL 6.57 6.51 6.66 5.96
Early MTL 0 0.29 0.03 0.75
Late MTL 0 0.35 0.58
Bound. MTL 0 0.81
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Table A3. MDE of all six experiments. Every experiment setup is trained five times with different weight initializations and train–validation
splits and is then averaged. The ∅ columns show the number of images for which no front was falsely detected out of the 122 test samples.

Model Experiment Modality MDE front ↓ [m] ∅ front MDE zone ↓ [m] ∅ zone

Gourmelon et al. (2022a)
Front STL 887± 189 7± 3 – –
Zone STL – – 753± 76 1± 1

nnU-Net

Front STL 1102± 72 27.2± 6.0 – –
Zone STL – – 1184± 255 24.8± 12.4
Early MTL 560± 25 8.6± 3.0 509± 43 2.2± 0.4
Late MTL 568± 51 8.4± 3.5 516± 40 4.0± 1.1
Boundary MTL 543± 27 5.6± 1.4 509± 19 4.4± 1.8
Fused MTL 552± 33 3.2± 2.0 541± 84 3.4± 1.3

Table A4. Segmentation metrics of all six experiments. Every experiment setup is trained five times with different weight initializations and
train–validation splits. The metric results of each run are then averaged.

Model Experiment Modality Precision↑ Recall↑ F1↑ IoU↑

Gourmelon et al. (2022a) Zone STL 84.2± 0.5 79.6± 0.9 80.1± 0.5 69.7± 0.6

nnU-Net

Front STL – – – –
Zone STL 81.2± 2.4 71.7± 3.2 71.9± 3.7 62.4± 3.5
Early MTL 87.4± 0.4 80.9± 0.7 81.6± 0.6 72.6± 0.9
Late MTL 86.4± 0.4 79.9± 0.6 80.7± 0.7 71.1± 0.7
Boundary MTL 87.5± 0.3 80.8± 0.4 81.7± 0.5 72.6± 0.4
Fused MTL 87.0± 0.2 79.1± 1.7 80.7± 0.1 70.8± 1.8

Table A5. MDE of the fused-label experiments grouped by sensor and season.

Satellite S1 ENVISAT ERS PALSAR TDX all

Winter 2529± 1719 m 241± 101 m – – 160± 125 m 818± 1389 m
Summer 798± 1442 m 122± 61 m 83± 39 m 135± 68 m 197± 213 m 307± 730 m

Table A6. Comparison of the U-Net training setup and hyperparameters of Gourmelon et al. (2022a) and the nnU-Net (Isensee et al., 2021).

Hyperparameter Gourmelon et al. (2022a) nnU-Net (Isensee et al., 2021)

Number of convolutional layers 10 34
Pooling Max pooling Strided convolution
Activation function ReLU Leaky ReLU
Patch size 256× 256 1280× 1024
Batch size 16 2
Optimizer Cyclic learning rate scheduler (Smith, 2017) SGD with a Nesterov momentum of 0.99

in combination with the Adam optimizer and a weight decay of 3× 10−5

(Kingma and Ba, 2014)
Initial learning rate 4× 10−5 1× 10−3

Gradient clipping True False
Deep supervision False True
Loss function Combination of dice and cross-entropy Combination of dice and cross-entropy
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Appendix B: Calving-front labels

The other six glacier sites in this section are displayed com-
plementarily to Fig. 4. The corresponding calving fronts of
the different time steps are colored with a gradient from
bright for the past to dark red for the most recent fronts.

Figure B1. Jakobshavn Isbrae Glacier from 1995 to 2014. SAR im-
agery was provided by DLR, ESA, and ASF.

Figure B2. Mapple Glacier from 2006 to 2020. SAR imagery was
provided by DLR, ESA, and ASF.

Figure B3. Crane Glacier from 2002 to 2014. SAR imagery was
provided by DLR, ESA, and ASF.

Figure B4. Dinsmoore–Bombardier–Edgeworth glaciers from 1995
to 2014. SAR imagery was provided by DLR, ESA, and ASF.
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Figure B5. Jorum Glacier from 2003 to 2020. SAR imagery was
provided by DLR, ESA, and ASF.

Figure B6. Sjögren-Inlet Glacier from 1995 to 2014. SAR imagery
was provided by DLR, ESA, and ASF.

Appendix C: Temporal distribution of zone label

Figure C1 shows the temporal distribution of the zone label.
Jacobshavn and Columbia, the two glaciers in the Northern
Hemisphere, show an increase in ocean area with a decreas-
ing glacier area. In particular, the set of images of the glaciers
on the Antarctic Peninsula has samples with large areas
with no available information. Low partial coverage by the
radar swath causes prominent peaks of the no-information-
available class. Jacobshavn’s area distribution shows a repet-
itive structure of increasing and decreasing glacier area. This
pattern represents seasonal changes.
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Figure C1. Changes of the class distributions in the zone labels of each glacier over time. The ocean is colored in blue, the glacier area is
colored in white, the rock is colored in gray, and the area with no available information (NA) is colored in black. There is no radar reflection
in the NA area due to terrain elevation causing shadows or due to limited coverage by the radar swath.
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Code and data availability. The code is fundamentally based
on the nnU-Net by Isensee et al. (2021), which is also publicly
available (https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1,
Isensee, 2019). We modified the neural-network architecture and
the corresponding pre- and post-processing. The modified version
of the nnU-Net and our evaluation and visualization scripts are
available on Zenodo (https://doi.org/10.5281/zenodo.10168770,
Herrmann and Gourmelon, 2023), and a demo version is provided
on Hugging Face (https://doi.org/10.5281/zenodo.10169965,
Herrmann, 2023c). The calving-front predictions of the test set
are available on Zenodo (https://doi.org/10.5281/zenodo.8379954,
Herrmann, 2023a), as well as the pre-trained model
(https://doi.org/10.5281/zenodo.7837300, Herrmann, 2023b).
The dataset is provided by Gourmelon et al. (2022b)
(https://doi.org/10.1594/PANGAEA.940950).
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