Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-477-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-477-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mountain permafrost in the Central Pyrenees: insights from the Devaux ice cave
Miguel Bartolomé
CORRESPONDING AUTHOR
Departamento de Procesos Geoambientales y Cambio Global, Instituto
Pirenaico de Ecología-CSIC, Zaragoza, Spain
Institut für Geologie und Mineralogie, Universität zu Köln, Zülpicher Strasse 49b, 50674, Cologne, Germany
Gérard Cazenave
Société de Spéléologie et de Préhistoire des
Pyrénées Occidentales (SSPPO), 5 allée du Grand Tour, 64000 Pau,
France
Marc Luetscher
Swiss Institute for Speleology and Karst Studies (SISKA), La Chaux-de-Fonds, Switzerland
Christoph Spötl
Institute of Geology, University of Innsbruck, 6020 Innsbruck, Austria
Fernando Gázquez
Water Resources and Environmental Geology Research Group, Department of
Biology and Geology, University of Almería, Almería, Spain
Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Almería, Spain
Ánchel Belmonte
Sobrarbe-Pirineos UNESCO Global Geopark, Boltaña, Spain
Alexandra V. Turchyn
Godwin Laboratory for Palaeoclimate Research, Department of Earth
Sciences, University of Cambridge, Cambridge, UK
Juan Ignacio López-Moreno
Departamento de Procesos Geoambientales y Cambio Global, Instituto
Pirenaico de Ecología-CSIC, Zaragoza, Spain
Ana Moreno
Departamento de Procesos Geoambientales y Cambio Global, Instituto
Pirenaico de Ecología-CSIC, Zaragoza, Spain
Related authors
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Juan Luis Bernal-Wormull, Ana Moreno, Yuri Dublyansky, Christoph Spötl, Reyes Giménez, Carlos Pérez-Mejías, Miguel Bartolomé, Martin Arriolabengoa, Eneko Iriarte, Isabel Cacho, Richard Lawrence Edwards, and Hai Cheng
Clim. Past, 21, 1235–1261, https://doi.org/10.5194/cp-21-1235-2025, https://doi.org/10.5194/cp-21-1235-2025, 2025
Short summary
Short summary
In this paper we present a record of temperature changes during the last deglaciation and the Holocene using isotopes of fluid inclusions in stalagmites from the northeastern region of the Iberian Peninsula. This innovative climate proxy for this study region provides a quantitative understanding of the abrupt temperature changes in southern Europe in the last 16 500 years before present.
Josep Bonsoms, Marc Oliva, Juan Ignacio López-Moreno, and Guillaume Jouvet
The Cryosphere, 19, 1973–1993, https://doi.org/10.5194/tc-19-1973-2025, https://doi.org/10.5194/tc-19-1973-2025, 2025
Short summary
Short summary
The extent to which Greenland's peripheral glaciers and ice caps current and future ice loss rates are unprecedented within the Holocene is poorly understood. This study connects the maximum ice extent of the Late Holocene with present and future glacier evolution in the Nuussuaq Peninsula (central western Greenland). By > 2050 glacier mass loss may have doubled in rate compared to the Late Holocene to the present, highlighting significant impacts of anthropogenic climate change.
Claudia Voigt, Fernando Gázquez, Lucía Martegani, Ana Isabel Sánchez Villanueva, Antonio Medina, Rosario Jiménez-Espinosa, Juan Jiménez-Millán, and Miguel Rodríguez-Rodríguez
Hydrol. Earth Syst. Sci., 29, 1783–1806, https://doi.org/10.5194/hess-29-1783-2025, https://doi.org/10.5194/hess-29-1783-2025, 2025
Short summary
Short summary
This research explores the use of a new isotope tracer, 17O excess, to better understand how hydrological processes drive large seasonal water level changes in small lakes in semiarid regions. The study shows that triple oxygen isotopes offer a more detailed understanding of these changes compared to traditional methods. These findings are valuable for reconstructing past climates and predicting how climate change, influenced by human activity, will affect small lakes in these dry areas.
Carlos Sancho, Ánchel Belmonte, Maria Leunda, Marc Luetscher, Christoph Spötl, Juan Ignacio López-Moreno, Belén Oliva-Urcia, Jerónimo López-Martínez, Ana Moreno, and Miguel Bartolomé
EGUsphere, https://doi.org/10.5194/egusphere-2025-8, https://doi.org/10.5194/egusphere-2025-8, 2025
Short summary
Short summary
Ice caves, vital for paleoclimate studies, face rapid ice loss due to global warming. A294 cave, home to the oldest firn deposit (6100 years BP), shows rising air temperatures (~1.07–1.56 °C in 12 years), fewer freezing days, and melting rates (15–192 cm/year). Key factors include warmer winters, increased rainfall, and reduced snowfall. This study highlights the urgency of recovering data from these unique ice archives before they vanish forever.
Helen Flynn, J. Julio Camarero, Alba Sanmiguel-Vallelado, Francisco Rojas Heredia, Pablo Domínguez Aguilar, Jesús Revuelto, and Juan Ignacio López-Moreno
Biogeosciences, 22, 1135–1147, https://doi.org/10.5194/bg-22-1135-2025, https://doi.org/10.5194/bg-22-1135-2025, 2025
Short summary
Short summary
In the Spanish Pyrenees, changing snow seasons and warmer growing seasons could impact tree growth in the montane evergreen forests. We used automatic sensors that measure tree growth to monitor and analyze the interactions between the climate, snow, and tree growth at the study site. We found a transition in the daily growth cycle that is triggered by the presence of snow. Additionally, warmer February and May temperatures enhanced tree growth.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Joan J. Fornós, Hai Cheng, and R. Lawrence Edwards
Clim. Past, 21, 465–487, https://doi.org/10.5194/cp-21-465-2025, https://doi.org/10.5194/cp-21-465-2025, 2025
Short summary
Short summary
We offer a clearer view of the timing of three relevant past glacial terminations. By analyzing the climatic signal recorded in stalagmite and linking it with marine records, we revealed differences in the intensity and duration of the ice melting associated with these three key deglaciations. This study shows that some deglaciations began earlier than previously thought; this improves our understanding of natural climate processes, helping us to contextualize current climate change.
Gabrielle E. Kleber, Leonard Magerl, Alexandra V. Turchyn, Stefan Schloemer, Mark Trimmer, Yizhu Zhu, and Andrew Hodson
Biogeosciences, 22, 659–674, https://doi.org/10.5194/bg-22-659-2025, https://doi.org/10.5194/bg-22-659-2025, 2025
Short summary
Short summary
Our research on Svalbard shows that glacier melt rivers can transport large amounts of methane, a potent greenhouse gas. By studying a glacier over one summer, we found that its river was highly concentrated in methane, suggesting that rivers could provide a significant source of methane emissions as the Arctic warms and glaciers melt. This is the first time such emissions have been measured on Svalbard, indicating a wider environmental concern as such processes are occurring across the Arctic.
Sarah Ann Rowan, Marc Luetscher, Thomas Laemmel, Anna Harrison, Sönke Szidat, and Franziska A. Lechleitner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3775, https://doi.org/10.5194/egusphere-2024-3775, 2024
Short summary
Short summary
We explored CO2 from soil to subsurface at Milandre cave, finding very high concentrations at all depths. While forest soils produced modern CO2 year-round, cave and meadow soil CO2 influences varies with temperature controlled cave ventilation, with older CO2 input in winter from old organic matter stored underground. These findings show that CO2 fluxes in karst systems are highly dynamic, and a better understanding of them is important for accurate carbon cycle modelling.
Alejandro Jiménez-Bonilla, Lucía Martegani, Miguel Rodríguez-Rodríguez, Fernando Gázquez, Manuel Díaz-Azpíroz, Sergio Martos, Klaus Reicherter, and Inmaculada Expósito
Hydrol. Earth Syst. Sci., 28, 5311–5329, https://doi.org/10.5194/hess-28-5311-2024, https://doi.org/10.5194/hess-28-5311-2024, 2024
Short summary
Short summary
We conducted an interdisciplinary study of the Fuente de Piedra playa lake's evolution in southern Spain. We made water balances for the Fuente de Piedra playa lake's lifespan. Our results indicate that the Fuente de Piedra playa lake's level moved and tilted south-west, which was caused by active faults.
Ixeia Vidaller, Toshiyuki Fujioka, Juan Ignacio López-Moreno, Ana Moreno, and the ASTER Team
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-75, https://doi.org/10.5194/cp-2024-75, 2024
Preprint under review for CP
Short summary
Short summary
Since the Pyrenean Last Glacial Maximum (75 ka), the deglaciation of the Ésera glacier (central Pyrenees) was characterized by complex dynamics, with advances and rapid retreats. Cosmogenic dates of moraines along the headwaters of the valley and lacustrine sediments analyses allowed to reconstruct evolutionary history of the Ésera glacier and the associated environmental implications during the last deglaciation and calculate the Equilibrium Line Altitude to determine changes in temperature.
Alexander H. Jarosch, Paul Hofer, and Christoph Spötl
The Cryosphere, 18, 4811–4816, https://doi.org/10.5194/tc-18-4811-2024, https://doi.org/10.5194/tc-18-4811-2024, 2024
Short summary
Short summary
Mechanical damage to stalagmites is commonly observed in mid-latitude caves. In this study we investigate ice flow along the cave bed as a possible mechanism for stalagmite damage. Utilizing models which simulate forces created by ice flow, we study the structural integrity of different stalagmite geometries. Our results suggest that structural failure of stalagmites caused by ice flow is possible, albeit unlikely.
Amir Sedaghatkish, Frédéric Doumenc, Pierre-Yves Jeannin, and Marc Luetscher
The Cryosphere, 18, 4531–4546, https://doi.org/10.5194/tc-18-4531-2024, https://doi.org/10.5194/tc-18-4531-2024, 2024
Short summary
Short summary
We developed a model to simulate the natural convection of water within frozen rock crevices subject to daily warming in mountain permafrost regions. Traditional models relying on conduction and latent heat flux typically overlook free convection. The results reveal that free convection can significantly accelerate the melting rate by an order of magnitude compared to conduction-based models. Our results are important for assessing the impact of climate change on mountain infrastructure.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023, https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Short summary
Here we explore how to improve hyper-resolution (5 m) distributed snowpack simulations using sparse observations, which do not provide information from all the areas of the simulation domain. We propose a new way of propagating information throughout the simulations adapted to the hyper-resolution, which could also be used to improve simulations of other nature. The method has been implemented in an open-source data assimilation tool that is readily accessible to everyone.
Angus Fotherby, Harold J. Bradbury, Jennifer L. Druhan, and Alexandra V. Turchyn
Geosci. Model Dev., 16, 7059–7074, https://doi.org/10.5194/gmd-16-7059-2023, https://doi.org/10.5194/gmd-16-7059-2023, 2023
Short summary
Short summary
We demonstrate how, given a simulation of fluid and rock interacting, we can emulate the system using machine learning. This means that, for a given initial condition, we can predict the final state, avoiding the simulation step once the model has been trained. We present a workflow for applying this approach to any fluid–rock simulation and showcase two applications to different fluid–rock simulations. This approach has applications for improving model development and sensitivity analyses.
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023, https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary
Short summary
The Aneto glacier, the largest glacier in the Pyrenees, has shown continuous surface and ice thickness losses in the last decades. In this study, we examine changes in its surface and ice thickness for 1981–2022 and the remaining ice thickness in 2020. During these 41 years, the glacier has shrunk by 64.7 %, and the ice thickness has decreased by 30.5 m on average. The mean ice thickness in 2022 was 11.9 m, compared to 32.9 m in 1981. The results highlight the critical situation of the glacier.
Anika Donner, Paul Töchterle, Christoph Spötl, Irka Hajdas, Xianglei Li, R. Lawrence Edwards, and Gina E. Moseley
Clim. Past, 19, 1607–1621, https://doi.org/10.5194/cp-19-1607-2023, https://doi.org/10.5194/cp-19-1607-2023, 2023
Short summary
Short summary
This study investigates the first finding of fine-grained cryogenic cave minerals in Greenland, a type of speleothem that has been notably difficult to date. We present a successful approach for determining the age of these minerals using 230Th / U disequilibrium and 14C dating. We relate the formation of the cryogenic cave minerals to a well-documented extreme weather event in 1889 CE. Additionally, we provide a detailed report on the mineralogical and isotopic composition of these minerals.
César Deschamps-Berger, Simon Gascoin, David Shean, Hannah Besso, Ambroise Guiot, and Juan Ignacio López-Moreno
The Cryosphere, 17, 2779–2792, https://doi.org/10.5194/tc-17-2779-2023, https://doi.org/10.5194/tc-17-2779-2023, 2023
Short summary
Short summary
The estimation of the snow depth in mountains is hard, despite the importance of the snowpack for human societies and ecosystems. We measured the snow depth in mountains by comparing the elevation of points measured with snow from the high-precision altimetric satellite ICESat-2 to the elevation without snow from various sources. Snow depths derived only from ICESat-2 were too sparse, but using external airborne/satellite products results in spatially richer and sufficiently precise snow depths.
Charlotte Honiat, Gabriella Koltai, Yuri Dublyansky, R. Lawrence Edwards, Haiwei Zhang, Hai Cheng, and Christoph Spötl
Clim. Past, 19, 1177–1199, https://doi.org/10.5194/cp-19-1177-2023, https://doi.org/10.5194/cp-19-1177-2023, 2023
Short summary
Short summary
A look at the climate evolution during the last warm period may allow us to test ground for future climate conditions. We quantified the temperature evolution during the Last Interglacial using a tiny amount of water trapped in the crystals of precisely dated stalagmites in caves from the southeastern European Alps. Our record indicates temperatures up to 2 °C warmer than today and an unstable climate during the first half of the Last Interglacial.
Josep Bonsoms, Juan Ignacio López-Moreno, and Esteban Alonso-González
The Cryosphere, 17, 1307–1326, https://doi.org/10.5194/tc-17-1307-2023, https://doi.org/10.5194/tc-17-1307-2023, 2023
Short summary
Short summary
This work analyzes the snow response to temperature and precipitation in the Pyrenees. During warm and wet seasons, seasonal snow depth is expected to be reduced by −37 %, −34 %, and −27 % per degree Celsius at low-, mid-, and high-elevation areas, respectively. The largest snow reductions are anticipated at low elevations of the eastern Pyrenees. Results anticipate important impacts on the nearby ecological and socioeconomic systems.
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary
Short summary
Snow cover plays an important role in many processes, but its monitoring is a challenging task. The alternative is usually to simulate the snowpack, and to improve these simulations one of the most promising options is to fuse simulations with available observations (data assimilation). In this paper we present MuSA, a data assimilation tool which facilitates the implementation of snow monitoring initiatives, allowing the assimilation of a wide variety of remotely sensed snow cover information.
Paul Töchterle, Simon D. Steidle, R. Lawrence Edwards, Yuri Dublyansky, Christoph Spötl, Xianglei Li, John Gunn, and Gina E. Moseley
Geochronology, 4, 617–627, https://doi.org/10.5194/gchron-4-617-2022, https://doi.org/10.5194/gchron-4-617-2022, 2022
Short summary
Short summary
Cryogenic cave carbonates (CCCs) provide a marker for past permafrost conditions. Their formation age is determined by Th / U dating. However, samples can be contaminated with small amounts of Th at formation, which can cause inaccurate ages and require correction. We analysed multiple CCCs and found that varying degrees of contamination can cause an apparent spread of ages, when samples actually formed within distinguishable freezing events. A correction method using isochrons is presented.
Maria Wind, Friedrich Obleitner, Tanguy Racine, and Christoph Spötl
The Cryosphere, 16, 3163–3179, https://doi.org/10.5194/tc-16-3163-2022, https://doi.org/10.5194/tc-16-3163-2022, 2022
Short summary
Short summary
We present a thorough analysis of the thermal conditions of a sag-type ice cave in the Austrian Alps using temperature measurements for the period 2008–2021. Apart from a long-term increasing temperature trend in all parts of the cave, we find strong interannual and spatial variations as well as a characteristic seasonal pattern. Increasing temperatures further led to a drastic decrease in cave ice. A first attempt to model ablation based on temperature shows promising results.
Jan Pfeiffer, Thomas Zieher, Jan Schmieder, Thom Bogaard, Martin Rutzinger, and Christoph Spötl
Nat. Hazards Earth Syst. Sci., 22, 2219–2237, https://doi.org/10.5194/nhess-22-2219-2022, https://doi.org/10.5194/nhess-22-2219-2022, 2022
Short summary
Short summary
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure variations within the shear zone. Groundwater recharge as a consequence of precipitation therefore is a process regulating the activity of landslides. In this context, we present a highly automated geo-statistical approach to spatially assess groundwater recharge controlling the velocity of a deep-seated landslide in Tyrol, Austria.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Kathleen A. Wendt, Xianglei Li, R. Lawrence Edwards, Hai Cheng, and Christoph Spötl
Clim. Past, 17, 1443–1454, https://doi.org/10.5194/cp-17-1443-2021, https://doi.org/10.5194/cp-17-1443-2021, 2021
Short summary
Short summary
In this study, we tested the upper limits of U–Th dating precision by analyzing three stalagmites from the Austrian Alps that have high U concentrations. The composite record spans the penultimate interglacial (MIS 7) with an average 2σ age uncertainty of 400 years. This unprecedented age control allows us to constrain the timing of temperature shifts in the Alps during MIS 7 while offering new insight into millennial-scale changes in the North Atlantic leading up to Terminations III and IIIa.
Ana Moreno, Miguel Iglesias, Cesar Azorin-Molina, Carlos Pérez-Mejías, Miguel Bartolomé, Carlos Sancho, Heather Stoll, Isabel Cacho, Jaime Frigola, Cinta Osácar, Arsenio Muñoz, Antonio Delgado-Huertas, Ileana Bladé, and Françoise Vimeux
Atmos. Chem. Phys., 21, 10159–10177, https://doi.org/10.5194/acp-21-10159-2021, https://doi.org/10.5194/acp-21-10159-2021, 2021
Short summary
Short summary
We present a large and unique dataset of the rainfall isotopic composition at seven sites from northern Iberia to characterize their variability at daily and monthly timescales and to assess the role of climate and geographic factors in the modulation of δ18O values. We found that the origin, moisture uptake along the trajectory and type of precipitation play a key role. These results will help to improve the interpretation of δ18O paleorecords from lacustrine carbonates or speleothems.
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Short summary
This paper utilises a novel palaeoclimate archive from caves, cryogenic cave carbonates, which allow for precisely constraining permafrost thawing events in the past. Our study provides new insights into the climate of the Younger Dryas (12 800 to 11 700 years BP) in mid-Europe from the perspective of a high-elevation cave sensitive to permafrost development. We quantify seasonal temperature and precipitation changes by using a heat conduction model.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Xianglei Li, Kathleen A. Wendt, Yuri Dublyansky, Gina E. Moseley, Christoph Spötl, and R. Lawrence Edwards
Geochronology, 3, 49–58, https://doi.org/10.5194/gchron-3-49-2021, https://doi.org/10.5194/gchron-3-49-2021, 2021
Short summary
Short summary
In this study, we built a statistical model to determine the initial δ234U in submerged calcite crusts that coat the walls of Devils Hole 2 (DH2) cave (Nevada, USA) and, using a 234U–238U dating method, extended the chronology of the calcite deposition beyond previous well-established 230Th ages and determined the oldest calcite deposited in this cave, a time marker for cave genesis. The novel method presented here may be used in future speleothem studies in similar hydrogeological settings.
Andrew J. Hodson, Aga Nowak, Mikkel T. Hornum, Kim Senger, Kelly Redeker, Hanne H. Christiansen, Søren Jessen, Peter Betlem, Steve F. Thornton, Alexandra V. Turchyn, Snorre Olaussen, and Alina Marca
The Cryosphere, 14, 3829–3842, https://doi.org/10.5194/tc-14-3829-2020, https://doi.org/10.5194/tc-14-3829-2020, 2020
Short summary
Short summary
Methane stored below permafrost is an unknown quantity in the Arctic greenhouse gas budget. In coastal areas with rising sea levels, much of the methane seeps into the sea and is removed before it reaches the atmosphere. However, where land uplift outpaces rising sea levels, the former seabed freezes, pressurising methane-rich groundwater beneath, which then escapes via permafrost seepages called pingos. We describe this mechanism and the origins of the methane discharging from Svalbard pingos.
Cited articles
Badino, G.: Underground Meteorology – “What's the weather underground?”,
Acta Carsol., 39, 427–448,
https://doi.org/10.3986/ac.v39i3.74, 2010.
Bartolomé, M., Sancho, C., Osácar, M. C., Moreno, A., Leunda, M.,
Spötl, C., Luetscher, M., López-Martínez, J., and Belmonte, A.:
Characteristics of cryogenic carbonates in a Pyrenean ice cave (northern
Spain), Geogaceta, 58, 107–110, 2015.
Bartolomé, M., Sancho, C., Benito, G., Medialdea, A., Calle, M., Moreno,
A., Leunda, M., Luetscher, M., Muñoz, A., Bastida, J., Cheng, H., and
Edwards, R. L.: Effects of glaciation on karst hydrology and sedimentology
during the Last Glacial Cycle: The case of Granito cave, Central Pyrenees
(Spain), Catena, 206, 105252, https://doi.org/10.1016/j.catena.2021.105252,
2021.
Belmonte-Ribas, Á., Sancho, C., Moreno, A., Lopez-Martinez, J., and
Bartolome, M.: Present-day environmental dynamics in ice cave a294, Central Pyrenees, Spain, Geogr. Fis. E Din. Quat., 37, 131–140, https://doi.org/10.4461/GFDQ.2014.37.12, 2014.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges, The Cryosphere, 6, 125–140, https://doi.org/10.5194/tc-6-125-2012, 2012.
Bottrell, S. H.: Sulphur isotope evidence for the origin of cave evaporites
in Ogof y Daren Cilau, south Wales, Mineral. Mag., 55, 209–210, https://doi.org/10.1180/minmag.1991.055.379.09, 1991.
Bücher, A. and Dessens, J.: Secular Trend of Surface Temperature at an
Elevated Observatory in the Pyrenees, J. Climate, 4, 859–868, https://doi.org/10.1175/1520-0442(1991)004<0859:STOSTA>2.0.CO;2, 1991.
Casteret, N.: Dans les glaces souterraines les plus élevées du Monde, Libraire académique Perrin, Paris, p. 93, 1953.
Colucci, R., Luetscher, M., Forteet, E., Guglielmin, M., Lenaz, D.,
Princivalle, F., and Vita, F.: First alpine evidence of in situ coarse cryogenic
cave carbonates (CCCcoarse), Geogr. Fis. E Din. Quat., 40, 53–59, https://doi.org/10.4461/GFDQ.2017.40.5, 2017.
Colucci, R. R. and Guglielmin, M.: Climate change and rapid ice melt:
Suggestions from abrupt permafrost degradation and ice melting in an alpine
ice cave, Prog. Phys. Geogr. Earth Environ., 43, 0309133319846056, https://doi.org/10.1177/0309133319846056, 2019.
Dessens, J. and Bücher, A.: Changes in minimum and maximum temperatures at
the Pic du Midi in relation with humidity and cloudiness, 1882–1984,
Atmos. Res., 37, 147–162, https://doi.org/10.1016/0169-8095(94)00075-O, 1995.
Devaux, J.: Nouvelle grotte Marboréenne, La Natura, 8214, 102–107, 1929.
Devaux, J.: La grotte des sœurs de la cascade, Études glaciologiques,
1920–1930, Tome VII, Paris, Imprimerie
Nationale, Ministère de l'Agriculture, Direction des eaux et du
génie rural, 233–238, 1993.
Dublyansky, Y., Moseley, G. E., Lyakhnitsky, Y., Cheng, H., Edwards, L. R.,
Scholz, D., Koltai, G., and Spötl, C.: Late Palaeolithic cave art and
permafrost in the Southern Ural, Sci. Rep., 8, 12080, https://doi.org/10.1038/s41598-018-30049-w, 2018.
du Cailar, J. and Dubois, P.: Sur quelques modalités de formation et
d'évolution des dépôts cristallins dans les
cavités de haute altitude, in: Premier congrès international de
spéléologie, Paris, Tome II, 325–333, 1953.
du Cailar, J., Couderc, J., and Dubois, P.: A la recherche des sources du Gave de Pau, Annales de Spéléologie, Spelunca, Paris, 3e série, Tome VIII, Fasc. 3, 181–203 de Spéléologie, 181–203, 1953.
Feuillet, T.: Statistical Analyses of Active Patterned Ground Occurrence in
the Taillon Massif (Pyrénées, France/Spain), Permafrost Periglac., 22, 228–238, https://doi.org/10.1002/ppp.726, 2011.
Fankhauser, A., McDermott, F., and Fleitmann, D.: Episodic speleothem deposition
tracks the terrestrial impact of millennial-scale last glacial climate
variability in SW Ireland, Quaternary Sci. Rev., 152, 104–117, https://doi.org/10.1016/j.quascirev.2016.09.019, 2016.
García-Ruiz, J. M., Palacios, D., Andrés, N. de, Valero-Garcés,
B. L., López-Moreno, J. I., and Sanjuán, Y.: Holocene and `Little Ice Age'
glacial activity in the Marboré Cirque, Monte Perdido Massif, Central
Spanish Pyrenees, Holocene 24, 1439–1452, https://doi.org/10.1177/0959683614544053, 2014.
García-Ruiz, J. M., Palacios, D., Andrés, N., and López-Moreno,
J. I.: Neoglaciation in the Spanish Pyrenees: a multiproxy challenge,
Mediterr. Geosci. Rev., 2, 21–36, https://doi.org/10.1007/s42990-020-00022-9, 2020.
Gázquez, F., Calaforra, J. M., Evans, N. P., and Hodell, D. A.: Using stable
isotopes (δ17O, δ18O and δD) of gypsum hydration
water to ascertain the role of water condensation in the formation of
subaerial gypsum speleothems, Chem. Geol., 452, 34–46, https://doi.org/10.1016/j.chemgeo.2017.01.021, 2017.
Gázquez, F., Bauska, T. K., Comas-Bru, L., Ghaleb, B., Calaforra, J.-M.,
and Hodell, D. A.: The potential of gypsum speleothems for
paleoclimatology: application to the Iberian Roman Humid Period, Sci. Rep.,
10, 14705, https://doi.org/10.1038/s41598-020-71679-3, 2020.
Gellatly, A. F., Grove, J. M., and Switsur, V. R.: Mid-Holocene glacial activity in
the Pyrenees, Holocene, 2, 266–270, https://doi.org/10.1177/095968369200200309, 1992.
Giesemann, A., Jaeger, H.-J., Norman, A. L., Krouse, H. R., and Brand, W. A.:
Online Sulfur-Isotope Determination Using an Elemental Analyzer Coupled to a
Mass Spectrometer, Anal. Chem., 66, 2816–2819, https://doi.org/10.1021/ac00090a005, 1994.
Gomez Lende, M., Berenguer, F., and Serrano, E.: Morphology, ice types and
thermal regime in a high mountain ice cave. First studies applying
terrestrial laser scanner in the Peña Castil ice cave (Picos de Europa,
Northern Spain), Geogr. Fis. E Din. Quat., 37, 141–150, https://doi.org/10.4461/GFDQ.2014.37.13, 2014.
Gómez Lende, M., Serrano, E., Bordehore, L. J., and Sandoval, S.: The role of
GPR techniques in determining ice cave properties: Peña Castil ice cave,
Picos de Europa, Earth Surf. Proc. Land. 41, 2177–2190, https://doi.org/10.1002/esp.3976, 2016.
Gómez-Ortiz, A., Oliva, M., Salvador-Franch, F., Palacios, D., Tanarro,
L. M., de Sanjosé-Blasco, J. J., and Salvà-Catarineu, M.: Monitoring
permafrost and periglacial processes in Sierra Nevada (Spain) from 2001 to
2016, Permafrost Periglac., 30, 278–291, https://doi.org/10.1002/ppp.2002, 2019.
González Trueba, J. J., Moreno, R. M., Martínez de Pisón, E., and
Serrano, E.: “Little Ice Age” glaciation and current glaciers in the Iberian
Peninsula, Holocene, 18, 551–568, https://doi.org/10.1177/0959683608089209, 2008.
Gruber, S. and Haeberli, W.: Mountain Permafrost, in:
Permafrost Soils, Soil Biology, edited by: Margesin, R., Springer, Berlin, Heidelberg, 33–44, https://doi.org/10.1007/978-3-540-69371-0_3, 2009.
Gubler, S., Fiddes, J., Keller, M., and Gruber, S.: Scale-dependent measurement and analysis of ground surface temperature variability in alpine terrain, The Cryosphere, 5, 431–443, https://doi.org/10.5194/tc-5-431-2011, 2011.
Haeberli, W., Rellstab, W., and Harrison, W. D.: Geothermal Effects of 18 ka BP
Ice Conditions in the Swiss Plateau, Ann. Glaciol., 5, 56–60, https://doi.org/10.3189/1984AoG5-1-56-60, 1984.
Harris, C., Vonder Mühll, D., Isaksen, K., Haeberli, W., Sollid, J. L.,
King, L., Holmlund, P., Dramis, F., Guglielmin, M., and Palacios, D.: Warming
permafrost in European mountains, Global Planet. Change, 39, 215–225, https://doi.org/10.1016/j.gloplacha.2003.04.001, 2003.
Heeb, B.: The Next Generation of the DistoX Cave Surveying Instrument, CREG
J., 88, 5–8, 2014.
Hercman, H., Gąsiorowski, M., Gradziński, M., and Kicińska, D.: The
First Dating of Cave Ice from the Tatra Mountains, Poland and its
Implication to Palaeoclimate Reconstructions, Geochronometria, 36, 31–38, https://doi.org/10.2478/v10003-010-0016-2, 2010.
Hill, C. A.: Geology of Carlsbad Cavern and other caves in the
Guadalupe Mountains, New Mexico and Texas, Bull 117 N. M. Bur. Mines Miner.
Resour., 150 pp., 1987.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., Steltzer, H., Allen, S., Arenson, L., Baneerjee, S., Barr, I., and Zhang, Y.: in: The Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H. O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N., Cambridge University Press,
Cambridge, UK and New York, NY, USA, 131–202, https://doi.org/10.1017/9781009157964.004, 2019.
Kern, Z. and Perşoiu, A.: Cave ice – the imminent loss of untapped
mid-latitude cryospheric palaeoenvironmental archives, Quaternary Sci. Rev., 67,
1–7, https://doi.org/10.1016/j.quascirev.2013.01.008, 2013.
Kern, Z., Bočić, N., and Sipos, G.: Radiocarbon-Dated Vegetal Remains
from the Cave Ice Deposits of Velebit Mountain, Croatia, Radiocarbon, 60,
1391–1402, https://doi.org/10.1017/RDC.2018.108, 2018.
Koltai, G., Spötl, C., Jarosch, A. H., and Cheng, H.: Cryogenic cave carbonates in the Dolomites (northern Italy): insights into Younger Dryas cooling and seasonal precipitation, Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, 2021.
Korshunov, V. V. and Shavrina, E. V.: Gypsum speleothems of freezing origin, J.
Cave Karst Stud., 60, 146–150, 1998.
Lechleitner, F. A., Mason, A. J., Breitenbach, S. F. M., Vaks, A., Haghipour,
N., and Henderson, G. M.: Permafrost-related hiatuses in stalagmites: Evaluating
the potential for reconstruction of carbon cycle dynamics, Quat. Geochronol.,
56, 101037, https://doi.org/10.1016/j.quageo.2019.101037, 2020.
Leunda, M., González-Sampériz, P., Gil-Romera, G., Bartolomé,
M., Belmonte-Ribas, Á., Gómez-García, D., Kaltenrieder, P.,
Rubiales, J. M., Schwörer, C., Tinner, W., Morales-Molino, C., and Sancho,
C.: Ice cave reveals environmental forcing of long-term Pyrenean tree line
dynamics, J. Ecol., 107, 814–828, https://doi.org/10.1111/1365-2745.13077,
2019.
Lewkowicz, A. G. and Ednie, M.: Probability mapping of mountain permafrost using
the BTS method, Wolf Creek, Yukon Territory, Canada, Permafrost Periglac.,
15, 67–80, https://doi.org/10.1002/ppp.480, 2004.
Li, T.-Y., Baker, J. L., Wang, T., Zhang, J., Wu, Y., Li, H.-C.,
Blyakharchuk, T., Yu, T.-L., Shen, C.-C., Cheng, H., Kong, X.-G., Xie,
W.-L., and Edwards, R. L.: Early Holocene permafrost retreat in West Siberia
amplified by reorganization of westerly wind systems, Commun. Earth Environ.,
2, 1–11, https://doi.org/10.1038/s43247-021-00238-z, 2021.
López-Moreno, J. I., Revuelto, J., Rico, I., Chueca-Cía, J., Julián, A., Serreta, A., Serrano, E., Vicente-Serrano, S. M., Azorin-Molina, C., Alonso-González, E., and García-Ruiz, J. M.: Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981, The Cryosphere, 10, 681–694, https://doi.org/10.5194/tc-10-681-2016, 2016.
López-Moreno, J. I., Alonso-González, E., Monserrat, O., Del
Río, L. M., Otero, J., Lapazaran, J., Luzi, G., Dematteis, N., Serreta,
A., Rico, I., Serrano-Cañadas, E., Bartolomé, M., Moreno, A.,
Buisan, S., and Revuelto, J.: Ground-based remote-sensing techniques for
diagnosis of the current state and recent evolution of the Monte Perdido
Glacier, Spanish Pyrenees, J. Glaciol., 65, 85–100, https://doi.org/10.1017/jog.2018.96, 2019.
Losiak, A., Derkowski, A., Skała, A., and Trzciński, J.: Evaporites on
ice: how to form gypsum on Antartica and on Martian North polar residual
cap?, in: 47th Lunar and Planetary Science Conference, Program of technical sessions,
21–25 March 2016, The Woodlands, Texas (USA), 2016.
Luetscher, M. and Jeannin, P.-Y.: Chapter 12 – Ice Caves in Switzerland, in: Ice Caves, edited by:
Perşoiu, A. and Lauritzen, S.-E., Elsevier, 221–235, https://doi.org/10.1016/B978-0-12-811739-2.00010-3, 2018.
Luetscher, M., Bolius, D., Schwikowski, M., Schotterer, U., and Smart, P. L.:
Comparison of techniques for dating of subsurface ice from Monlesi ice cave,
Switzerland, J. Glaciol., 53, 374–384, 2007.
Luetscher, M., Lismonde, B., and Jeannin, P.-Y.: Heat exchanges in the
heterothermic zone of a karst system: Monlesi cave, Swiss Jura Mountains, J.
Geophys. Res.-Earth, 113, F02025, https://doi.org/10.1029/2007JF000892, 2008.
Luetscher, M., Borreguero, M., Moseley, G. E., Spötl, C., and Edwards, R. L.: Alpine permafrost thawing during the Medieval Warm Period identified from cryogenic cave carbonates, The Cryosphere, 7, 1073–1081, https://doi.org/10.5194/tc-7-1073-2013, 2013.
Lundberg, J. and McFarlane, D. A.: Pleistocene depositional history in a
periglacial terrane: A 500 k.y. record from Kents Cavern, Devon, United
Kingdom, Geosphere, 3, 199–219, https://doi.org/10.1130/GES00085.1, 2007.
Marshall, P. and Brown, M. C.: Ice in Coulthard Cave, Alberta, Can. J. Earth
Sci., 11, 510–518, https://doi.org/10.1139/e74-045, 1974.
Moseley, G. E., Edwards, R. L., Lord, N. S., Spötl, C., and Cheng, H.:
Speleothem record of mild and wet mid-Pleistocene climate in northeast
Greenland, Sci. Adv., 7, eabe1260, https://doi.org/10.1126/sciadv.abe1260,
2021.
Munroe, J., Kimble, K., Spötl, C., Marks, G. S., McGee, D., and Herron, D.:
Cryogenic cave carbonate and implications for thawing permafrost at Winter
Wonderland Cave, Utah, USA, Sci. Rep., 11, 6430, https://doi.org/10.1038/s41598-021-85658-9, 2021.
Munroe, J. S.: First investigation of perennial ice in Winter Wonderland Cave, Uinta Mountains, Utah, USA, The Cryosphere, 15, 863–881, https://doi.org/10.5194/tc-15-863-2021, 2021.
Navarro-Serrano, F., López-Moreno, J. I., Azorin-Molina, C.,
Alonso-González, E., Tomás-Burguera, M., Sanmiguel-Vallelado, A.,
Revuelto, J., and Vicente-Serrano, S. M.: Estimation of near-surface air
temperature lapse rates over continental Spain and its mountain areas, Int.
J. Climatol., 38, 3233–3249, https://doi.org/10.1002/joc.5497, 2018.
Noetzli, J. and Gruber, S.: Transient thermal effects in Alpine permafrost, The Cryosphere, 3, 85–99, https://doi.org/10.5194/tc-3-85-2009, 2009.
Orvošová, M., Deininger, M., and Milovský, R.: Permafrost occurrence
during the Last Permafrost Maximum in the Western Carpathian Mountains of
Slovakia as inferred from cryogenic cave carbonate, Boreas, 43, 750–758, https://doi.org/10.1111/bor.12042, 2014.
Perşoiu, A. and Lauritzen, S.-E. (Eds.): Ice caves, Elsevier, Amsterdam, Netherlands, ISBN: 978-0-12-811739-2, 2018.
Perşoiu, A., Onac, B. P., Wynn, J. G., Blaauw, M., Ionita, M., and Hansson, M.: Holocene winter climate variability in Central and Eastern Europe,
Sci. Rep., 7, 1196, https://doi.org/10.1038/s41598-017-01397-w, 2017.
Perşoiu, A., Buzjak, N., Onaca, A., Pennos, C., Sotiriadis, Y., Ionita, M., Zachariadis, S., Styllas, M., Kosutnik, J., Hegyi, A., and Butorac, V.: Record summer rains in 2019 led to massive loss of surface and cave ice in SE Europe, The Cryosphere, 15, 2383–2399, https://doi.org/10.5194/tc-15-2383-2021, 2021.
Pons, X. and Ninyerola, M.: Mapping a topographic global solar radiation model
implemented in a GIS and refined with ground data, Int. J. Climatol., 28,
1821–1834, https://doi.org/10.1002/joc.1676, 2008.
Racine, T. M. F., Spötl, C., Reimer, P. J., and Čarga, J.: Radiocarbon
constraints on periods of positive cave ice mass balance during the last
millennium, Julian Alps (NW Slovenia), Radiocarbon, 64, 333–356, https://doi.org/10.1017/RDC.2022.26, 2022.
Reille, M. and Andrieu, V.: The late Pleistocene and Holocene in the Lourdes
Basin, Western Pyrénées, France: new pollen analytical and
chronological data, Veg. Hist. Archaeobotany, 4, 1–21, https://doi.org/10.1007/BF00198611, 1995.
Requirand, C.: Hypothèse sur la formation des cristaux de gypse Grotte
Glacée Devaux (Gavarnie – Hautes Pyrénées), Bulletin de la
Société Ramon, 11 pp., 2014.
Richter, D. K., Meissner, P., Immenhauser, A., Schulte, U., and Dorsten, I.: Cryogenic and non-cryogenic pool calcites indicating permafrost and non-permafrost periods: a case study from the Herbstlabyrinth-Advent Cave system (Germany), The Cryosphere, 4, 501–509, https://doi.org/10.5194/tc-4-501-2010, 2010.
Rico, I., Magnin, F., López Moreno, J. I., Serrano, E.,
Alonso-González, E., Revuelto, J., Hughes-Allen, L., and Gómez-Lende,
M.: First evidence of rock wall permafrost in the Pyrenees (Vignemale peak,
3,298 m a.s.l., 42∘ 46 N/0∘ 08 W),
Permafrost Periglac., 32, 673–680, https://doi.org/10.1002/ppp.2130,
2021.
Rodríguez-Salgado, P., Oms, O., Ibáñez-Insa, J., Anadón,
P., Gómez de Soler, B., Campeny, G., and Agustí, J.: Mineralogical
proxies of a Pliocene maar lake recording changes in precipitation at the
Camp dels Ninots (Pliocene, NE Iberia), Sediment. Geol., 418, 105910, https://doi.org/10.1016/j.sedgeo.2021.105910, 2021.
Rösch, G. and Rösch, J.: Visites à la grotte Devaux, La Montagne,
Revue du Club Alpin Français, 269, 171–178, 1935.
Rösch, J.: Une exploration de la Grotte Devaux à Gavarnie, Bulletin
de la section du Sud-Ouest de la Club Alpin Français, 69,
103–107, 1949.
Sancho, C., Peña, J. L., Mikkan, R., Osácar, C., and Quinif, Y.:
Morphological and speleothemic development in Brujas Cave (Southern Andean
Range, Argentine): palaeoenvironmental significance, Geomorphology, 57,
367–384, https://doi.org/10.1016/S0169-555X(03)00166-1, 2004.
Sancho, C., Arenas, C., Pardo, G., Peña-Monné, J. L., Rhodes, E. J.,
Bartolomé, M., García-Ruiz, J. M., and Martí-Bono, C.:
Glaciolacustrine deposits formed in an ice-dammed tributary valley in the
south-central Pyrenees: New evidence for late Pleistocene climate, Sediment.
Geol., 366, 47–66, https://doi.org/10.1016/j.sedgeo.2018.01.008, 2018a.
Sancho, C., Belmonte, Á., Bartolomé, M., Moreno, A., Leunda, M., and
López-Martínez, J.: Middle-to-late Holocene palaeoenvironmental
reconstruction from the A294 ice-cave record (Central Pyrenees, northern
Spain), Earth Planet. Sc. Lett., 484, 135–144, https://doi.org/10.1016/j.epsl.2017.12.027, 2018b.
Scandroglio, R., Draebing, D., Offer, M., and Krautblatter, M.: 4D
quantification of alpine permafrost degradation in steep rock walls using a
laboratory-calibrated electrical resistivity tomography approach, Surf.
Geophys., 19, 241–260, https://doi.org/10.1002/nsg.12149, 2021.
Seal II, R. R.: Sulfur Isotope Geochemistry of Sulfide Minerals, Rev.
Mineral. Geochem., 61, 633–677, https://doi.org/10.2138/rmg.2006.61.12,
2006.
Serrano, E., Gómez-Lende, M., Belmonte, Á., Sancho, C.,
Sánchez-Benítez, J., Bartolomé, M., Leunda, M., Moreno, A., and
Hivert, B.: Chapter 28 – Ice Caves in Spain, in: Ice Caves, edited by: Perşoiu, A. and Lauritzen,
S.-E., Elsevier, 625–655, https://doi.org/10.1016/B978-0-12-811739-2.00028-0, 2018.
Serrano, E., Sanjosé-Blasco, J. J. de, Gómez-Lende, M.,
López-Moreno, J. I., Pisabarro, A., and Martínez-Fernández, A.:
Periglacial environments and frozen ground in the central Pyrenean high
mountain area: Ground thermal regime and distribution of landforms and
processes, Permafrost Periglac., 30, 292–309, https://doi.org/10.1002/ppp.2032, 2019.
Serrano, E., López-Moreno, J. I., Gómez-Lende, M., Pisabarro, A.,
Martín-Moreno, R., Rico, I., and Alonso-González, E.: Frozen ground and
periglacial processes relationship in temperate high mountains: a case study
at Monte Perdido-Tucarroya area (The Pyrenees, Spain), J. Mt. Sci., 17,
1013–1031, https://doi.org/10.1007/s11629-019-5614-5, 2020.
Spötl, C. and Cheng, H.: Holocene climate change, permafrost and cryogenic carbonate formation: insights from a recently deglaciated, high-elevation cave in the Austrian Alps, Clim. Past, 10, 1349–1362, https://doi.org/10.5194/cp-10-1349-2014, 2014.
Spötl, C., Reimer, P. J., and Luetscher, M.: Long-term mass balance of
perennial firn and ice in an Alpine cave (Austria): Constraints from
radiocarbon-dated wood fragments, 42, Holocene, 0959683613515729, https://doi.org/10.1177/0959683613515729, 2014.
Spötl, C., Koltai, G., Jarosch, A. H., and Cheng, H.: Increased autumn and
winter precipitation during the Last Glacial Maximum in the European Alps,
Nat. Commun., 12, 1839, https://doi.org/10.1038/s41467-021-22090-7, 2021.
Stoffel, M., Luetscher, M., Bollschweiler, M., and Schlatter, F.: Evidence of
NAO control on subsurface ice accumulation in a 1200 yr old cave-ice
sequence, St. Livres ice cave, Switzerland, Quaternary Res., 72, 16–26, https://doi.org/10.1016/j.yqres.2009.03.002, 2009.
Supper, R., Ottowitz, D., Jochum, B., Römer, A., Pfeiler, S., Kauer, S.,
Keuschnig, M., and Ita, A.: Geoelectrical monitoring of frozen ground and
permafrost in alpine areas: field studies and considerations towards an
improved measuring technology, Surf. Geophys., 12, 93–115, https://doi.org/10.3997/1873-0604.2013057, 2014.
Temovski, M., Futó, I., Túri, M., and Palcsu, L.: Sulfur and oxygen
isotopes in the gypsum deposits of the Provalata sulfuric acid cave
(Macedonia), Geomorphology, 315, 80–90, https://doi.org/10.1016/j.geomorph.2018.05.010, 2018.
Vaks, A., Gutareva, O. S., Breitenbach, S. F. M., Avirmed, E., Mason, A. J.,
Thomas, A. L., Osinzev, A. V., Kononov, A. M., and Henderson, G. M.: Speleothems
Reveal 500,000-Year History of Siberian Permafrost, Science, 340, 183–186, https://doi.org/10.1126/science.1228729, 2013.
Vaks, A., Mason, A. J., Breitenbach, S. F. M., Kononov, A. M., Osinzev, A. V.,
Rosensaft, M., Borshevsky, A., Gutareva, O. S., and Henderson, G. M.:
Palaeoclimate evidence of vulnerable permafrost during times of low sea ice,
Nature, 577, 221–225, https://doi.org/10.1038/s41586-019-1880-1, 2020.
Wind, M., Obleitner, F., Racine, T., and Spötl, C.: Multi-annual temperature evolution and implications for cave ice development in a sag-type ice cave in the Austrian Alps, The Cryosphere, 16, 3163–3179, https://doi.org/10.5194/tc-16-3163-2022, 2022.
Wollenburg, J. E., Katlein, C., Nehrke, G., Nöthig, E.-M., Matthiessen,
J., Wolf- Gladrow, D. A., Nikolopoulos, A., Gázquez-Sanchez, F.,
Rossmann, L., Assmy, P., Babin, M., Bruyant, F., Beaulieu, M., Dybwad, C., and
Peeken, I.: Ballasting by cryogenic gypsum enhances carbon export in a
Phaeocystis under-ice bloom, Sci. Rep., 8, 7703, https://doi.org/10.1038/s41598-018-26016-0, 2018.
Yonge, C. J., Ford, D., Horne, G., Lauriol, B., and Schroeder, J.: Chapter 15 –
Ice Caves in Canada, in: Ice
Caves, edited by: Perşoiu, A. and Lauritzen, S.-E., Elsevier, 285–334, https://doi.org/10.1016/B978-0-12-811739-2.00015-2, 2018.
Žák, K., Urban, J., Cıìlek, V., and Hercman, H.: Cryogenic cave
calcite from several Central European caves: age, carbon and oxygen isotopes
and a genetic model, Chem. Geol., 206, 119–136, https://doi.org/10.1016/j.chemgeo.2004.01.012, 2004.
Žák, K., Richter, D. K., Filippi, M., Živor, R., Deininger, M., Mangini, A., and Scholz, D.: Coarsely crystalline cryogenic cave carbonate – a new archive to estimate the Last Glacial minimum permafrost depth in Central Europe, Clim. Past, 8, 1821–1837, https://doi.org/10.5194/cp-8-1821-2012, 2012.
Žák, K., Onac, B. P., Kadebskaya, O. I., Filippi, M., Dublyansky, Y., and
Luetscher, M.: Chapter 6 – Cryogenic Mineral Formation in Caves, in:
Ice Caves, edited by: Perşoiu, A. and Lauritzen, S.-E., Elsevier, 123–162, https://doi.org/10.1016/B978-0-12-811739-2.00035-8, 2018.
Zerkle, A. L., Jones, D. S., Farquhar, J., and Macalady, J. L.: Sulfur isotope
values in the sulfidic Frasassi cave system, central Italy: A case study of
a chemolithotrophic S-based ecosystem, Geochim. Cosmochim. Ac., 173,
373–386, https://doi.org/10.1016/j.gca.2015.10.028, 2016.
Short summary
In this work we study the microclimate and the geomorphological features of Devaux ice cave in the Central Pyrenees. The research is based on cave monitoring, geomorphology, and geochemical analyses. We infer two different thermal regimes. The cave is impacted by flooding in late winter/early spring when the main outlets freeze, damming the water inside. Rock temperatures below 0°C and the absence of drip water indicate frozen rock, while relict ice formations record past damming events.
In this work we study the microclimate and the geomorphological features of Devaux ice cave in...