Articles | Volume 17, issue 1
https://doi.org/10.5194/tc-17-427-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-427-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Megadunes in Antarctica: migration and characterization from remote and in situ observations
Giacomo Traversa
CORRESPONDING AUTHOR
Institute of Polar Sciences, National Research Council of Italy,
20125 Milan, Italy
Department of Physical Sciences, Earth and Environment (DSFTA),
Università degli Studi di Siena, 53100 Siena, Italy
Davide Fugazza
Department of Environmental Science and Policy (ESP),
Università degli Studi di Milano, 20133 Milan, Italy
Massimo Frezzotti
CORRESPONDING AUTHOR
Department of Science, Università degli Studi Roma Tre, 00146
Rome, Italy
Related authors
Kristiina Verro, Cecilia Äijälä, Roberta Pirazzini, Ruzica Dadic, Damien Maure, Willem Jan van de Berg, Giacomo Traversa, Christiaan T. van Dalum, Petteri Uotila, Xavier Fettweis, Biagio Di Mauro, and Milla Johansson
EGUsphere, https://doi.org/10.5194/egusphere-2025-386, https://doi.org/10.5194/egusphere-2025-386, 2025
Short summary
Short summary
A realistic representation of Antarctic sea ice is crucial for accurate climate and ocean model predictions. We assessed how different models capture the sunlight reflectivity, snow cover, and ice thickness. Most performed well under mild weather conditions, but overestimated snow/ice reflectivity during cold, with patchy/thin snow conditions. High-resolution satellite imagery revealed spatial albedo variability that models failed to replicate.
Agnese Petteni, Mathieu Casado, Christophe Leroy-Dos Santos, Amaelle Landais, Niels Dutrievoz, Cécile Agosta, Pete D. Akers, Joel Savarino, Andrea Spolaor, Massimo Frezzotti, and Barbara Stenni
EGUsphere, https://doi.org/10.5194/egusphere-2025-3188, https://doi.org/10.5194/egusphere-2025-3188, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We investigated the isotopic composition of surface snow in a previously unexplored region of East Antarctica to understand how differences in air mass origin influence its variability. By comparing observations with model data, we validated the model and quantified the impact of post-depositional processes at the snow–atmosphere interface. Our results offer valuable insights for reconstructing past temperatures from ice cores.
Lea Hartl, Federico Covi, Martin Stocker-Waldhuber, Anna Baldo, Davide Fugazza, Biagio Di Mauro, and Kathrin Naegeli
The Cryosphere, 19, 3329–3353, https://doi.org/10.5194/tc-19-3329-2025, https://doi.org/10.5194/tc-19-3329-2025, 2025
Short summary
Short summary
Glacier albedo determines how much solar radiation is absorbed by the glacier surface and is a key driver of glacier melt. Alpine glaciers are losing their snow and firn cover, and the underlying darker ice is becoming exposed. This means that more solar radiation is absorbed by the ice, which leads to increased melt. To quantify these processes, we explore data from a high-elevation, on-ice weather station that measures albedo and combine this information with satellite imagery.
Serena Lagorio, Barbara Delmonte, Dieter Tetzner, Elisa Malinverno, Giovanni Baccolo, Barbara Stenni, Massimo Frezzotti, Valter Maggi, and Nancy Bertler
Clim. Past, 21, 1323–1341, https://doi.org/10.5194/cp-21-1323-2025, https://doi.org/10.5194/cp-21-1323-2025, 2025
Short summary
Short summary
Aeolian diatoms and dust in the Antarctic Roosevelt Island Climate Evolution project (RICE) ice core allow the reconstruction of atmospheric circulation and climate variability in the Eastern Ross Sea over the past 2 millennia. Since about 1470 CE and during the Little Ice Age, the site experienced a rapid atmospheric circulation reorganization related to the development of the Roosevelt Island polynya, the eastward protrusion of the Ross Sea polynya that significantly impacted the regional climate dynamics of the Ross Sea area.
Claudio Stefanini, Barbara Stenni, Mauro Masiol, Giuliano Dreossi, Vincent Favier, Francesca Becherini, Claudio Scarchilli, Virginia Ciardini, Gabriele Carugati, and Massimo Frezzotti
EGUsphere, https://doi.org/10.5194/egusphere-2025-2477, https://doi.org/10.5194/egusphere-2025-2477, 2025
Short summary
Short summary
This study analyzes snow accumulation near Concordia Station in Antarctica (3233 m) to estimate yearly snow accumulation. Data from Italian and French stake farms show strong variation due to wind and surface features. On average, 7–8 cm of snow accumulate yearly near the Station. The study also compares results with climate models and explores whether the station buildings affect measurements.
Kristiina Verro, Cecilia Äijälä, Roberta Pirazzini, Ruzica Dadic, Damien Maure, Willem Jan van de Berg, Giacomo Traversa, Christiaan T. van Dalum, Petteri Uotila, Xavier Fettweis, Biagio Di Mauro, and Milla Johansson
EGUsphere, https://doi.org/10.5194/egusphere-2025-386, https://doi.org/10.5194/egusphere-2025-386, 2025
Short summary
Short summary
A realistic representation of Antarctic sea ice is crucial for accurate climate and ocean model predictions. We assessed how different models capture the sunlight reflectivity, snow cover, and ice thickness. Most performed well under mild weather conditions, but overestimated snow/ice reflectivity during cold, with patchy/thin snow conditions. High-resolution satellite imagery revealed spatial albedo variability that models failed to replicate.
Rasoul Eskandari, Nicola Genzano, Davide Fugazza, and Marco Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 147–154, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-147-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-147-2024, 2024
Ailsa Chung, Frédéric Parrenin, Robert Mulvaney, Luca Vittuari, Massimo Frezzotti, Antonio Zanutta, David A. Lilien, Marie G. P. Cavitte, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1650, https://doi.org/10.5194/egusphere-2024-1650, 2024
Short summary
Short summary
We applied an ice flow model to a flow line from the summit of Dome C to the Beyond EPICA ice core drill site on Little Dome C in Antarctica. Results show that the oldest ice at the drill site may be 1.12 Ma (at age density of 20 kyr/m) and originate from around 15 km upstream. We also discuss the nature of the 200–250 m thick basal layer which could be composed of accreted ice, stagnant ice, or even disturbed ice containing debris.
Nicola Genzano, Davide Fugazza, Rasoul Eskandari, and Marco Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 99–106, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-99-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-99-2024, 2024
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023, https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary
Short summary
We combined a numerical model with radar measurements in order to determine the age of ice in the Dome C region of Antarctica. Our results show that at the current ice core drilling sites on Little Dome C, the maximum age of the ice is almost 1.5 Ma. We also highlight a new potential drill site called North Patch with ice up to 2 Ma. Finally, we explore the nature of a stagnant ice layer at the base of the ice sheet which has been independently observed and modelled but is not well understood.
Simone Ventisette, Samuele Baldini, Claudio Artoni, Silvia Becagli, Laura Caiazzo, Barbara Delmonte, Massimo Frezzotti, Raffaello Nardin, Joel Savarino, Mirko Severi, Andrea Spolaor, Barbara Stenni, and Rita Traversi
EGUsphere, https://doi.org/10.5194/egusphere-2023-393, https://doi.org/10.5194/egusphere-2023-393, 2023
Preprint archived
Short summary
Short summary
The paper reports the spatial variability of concentration and fluxes of chemical impurities in superficial snow over unexplored area of the East Antarctic ice sheet. Pinatubo and Puyehue-Cordón Caulle volcanic eruptions in non-sea salt sulfate and dust snow pits record were used to achieve the accumulation rates. Deposition (wet, dry and uptake from snow surface) and post deposition processes are constrained. These knowledges are fundamental in Antarctic ice cores stratigraphies interpretation.
M. Scaioni, A. Malekian, and D. Fugazza
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 293–300, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-293-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-293-2023, 2023
Marco Brogioni, Mark J. Andrews, Stefano Urbini, Kenneth C. Jezek, Joel T. Johnson, Marion Leduc-Leballeur, Giovanni Macelloni, Stephen F. Ackley, Alexandra Bringer, Ludovic Brucker, Oguz Demir, Giacomo Fontanelli, Caglar Yardim, Lars Kaleschke, Francesco Montomoli, Leung Tsang, Silvia Becagli, and Massimo Frezzotti
The Cryosphere, 17, 255–278, https://doi.org/10.5194/tc-17-255-2023, https://doi.org/10.5194/tc-17-255-2023, 2023
Short summary
Short summary
In 2018 the first Antarctic campaign of UWBRAD was carried out. UWBRAD is a new radiometer able to collect microwave spectral signatures over 0.5–2 GHz, thus outperforming existing similar sensors. It allows us to probe thicker sea ice and ice sheet down to the bedrock. In this work we tried to assess the UWBRAD potentials for sea ice, glaciers, ice shelves and buried lakes. We also highlighted the wider range of information the spectral signature can provide to glaciological studies.
A. Malekian, D. Fugazza, and M. Scaioni
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W1-2022, 459–466, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-459-2023, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-459-2023, 2023
V. Belloni, D. Fugazza, and M. Di Rita
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 367–373, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-367-2022, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-367-2022, 2022
Stefania Danesi, Simone Salimbeni, Alessandra Borghi, Stefano Urbini, and Massimo Frezzotti
EGUsphere, https://doi.org/10.5194/egusphere-2022-29, https://doi.org/10.5194/egusphere-2022-29, 2022
Preprint archived
Short summary
Short summary
Clusters of low-energy seismic events, concentrated in space and time, characterized by highly correlated waveforms (cross-correlation coefficient ≥ 0.95), occur at the floating area of a major ice stream in Antarctica (David Glacier, North Victoria Land). The transient injection of fluids from the David catchment into the regional subglacial hydrographic network, observed by GRACE measurements, is indicated as the main trigger for clustered and repeated seismic occurrences.
Marie G. P. Cavitte, Duncan A. Young, Robert Mulvaney, Catherine Ritz, Jamin S. Greenbaum, Gregory Ng, Scott D. Kempf, Enrica Quartini, Gail R. Muldoon, John Paden, Massimo Frezzotti, Jason L. Roberts, Carly R. Tozer, Dustin M. Schroeder, and Donald D. Blankenship
Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021, https://doi.org/10.5194/essd-13-4759-2021, 2021
Short summary
Short summary
We present a data set consisting of ice-penetrating-radar internal stratigraphy: 26 internal reflecting horizons that cover the greater Dome C area, East Antarctica, the most extensive IRH data set to date in the region. This data set uses radar surveys collected over the span of 10 years, starting with an airborne international collaboration in 2008 to explore the region, up to the detailed ground-based surveys in support of the European Beyond EPICA – Oldest Ice (BE-OI) project.
Raffaello Nardin, Mirko Severi, Alessandra Amore, Silvia Becagli, Francois Burgay, Laura Caiazzo, Virginia Ciardini, Giuliano Dreossi, Massimo Frezzotti, Sang-Bum Hong, Ishaq Khan, Bianca Maria Narcisi, Marco Proposito, Claudio Scarchilli, Enricomaria Selmo, Andrea Spolaor, Barbara Stenni, and Rita Traversi
Clim. Past, 17, 2073–2089, https://doi.org/10.5194/cp-17-2073-2021, https://doi.org/10.5194/cp-17-2073-2021, 2021
Short summary
Short summary
The first step to exploit all the potential information buried in ice cores is to produce a reliable age scale. Based on chemical and isotopic records from the 197 m Antarctic GV7(B) ice core, accurate dating was achieved and showed that the archive spans roughly the last 830 years. The relatively high accumulation rate allowed us to use the non-sea-salt sulfate seasonal pattern to count annual layers. The accumulation rate reconstruction exhibited a slight increase since the 18th century.
Giovanni Baccolo, Barbara Delmonte, Elena Di Stefano, Giannantonio Cibin, Ilaria Crotti, Massimo Frezzotti, Dariush Hampai, Yoshinori Iizuka, Augusto Marcelli, and Valter Maggi
The Cryosphere, 15, 4807–4822, https://doi.org/10.5194/tc-15-4807-2021, https://doi.org/10.5194/tc-15-4807-2021, 2021
Short summary
Short summary
As scientists are pushing efforts to recover deep ice cores to extend paleoclimatic reconstructions, it is now essential to explore deep ice. The latter was considered a relatively stable environment, but this view is changing. This study shows that the conditions of deep ice promote the interaction between soluble and insoluble impurities, favoring complex geochemical reactions that lead to the englacial dissolution and precipitation of specific minerals present in atmospheric mineral dust.
David A. Lilien, Daniel Steinhage, Drew Taylor, Frédéric Parrenin, Catherine Ritz, Robert Mulvaney, Carlos Martín, Jie-Bang Yan, Charles O'Neill, Massimo Frezzotti, Heinrich Miller, Prasad Gogineni, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 15, 1881–1888, https://doi.org/10.5194/tc-15-1881-2021, https://doi.org/10.5194/tc-15-1881-2021, 2021
Short summary
Short summary
We collected radar data between EDC, an ice core spanning ~800 000 years, and BELDC, the site chosen for a new
oldest icecore at nearby Little Dome C. These data allow us to identify 50 % older internal horizons than previously traced in the area. We fit a model to the ages of those horizons at BELDC to determine the age of deep ice there. We find that there is likely to be 1.5 Myr old ice ~265 m above the bed, with sufficient resolution to preserve desired climatic information.
Cited articles
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019.
Albert, M., Shuman, C., Courville, Z., Bauer, R., Fahnestock, M., and
Scambos, T.: Extreme firn metamorphism: impact of decades of vapor transport
on near-surface firn at a low-accumulation glazed site on the East Antarctic
plateau, Ann. Glaciol., 39, 73–78,
https://doi.org/10.3189/172756404781814041, 2004.
Arcone, S. A., Jacobel, R., and Hamilton, G.: Unconformable stratigraphy in
East Antarctica: Part I. Large firn cosets, recrystallized growth, and model
evidence for intensified accumulation, J. Glaciol., 58, 240–252,
https://doi.org/10.3189/2012JoJ11J044, 2012a.
Arcone, S. A., Jacobel, R., and Hamilton, G.: Unconformable stratigraphy in
East Antarctica: Part II. Englacial cosets and recrystallized layers, J.
Glaciol., 58, 253–264, https://doi.org/10.3189/2012JoG11J045, 2012b.
Azzoni, R. S., Senese, A., Zerboni, A., Maugeri, M., Smiraglia, C., and Diolaiuti, G. A.: Estimating ice albedo from fine debris cover quantified by a semi-automatic method: the case study of Forni Glacier, Italian Alps, The Cryosphere, 10, 665–679, https://doi.org/10.5194/tc-10-665-2016, 2016.
Canny, J.: A computational approach to edge detection, IEEE T. Pattern
Anal. Mach. Intell., PAMI-8, 679–698, 1986.
Courville, Z. R.: Gas diffusivity and air permeability of the firn from cold
polar sites, PhD thesis, Dartmouth College, 3341626, https://www.proquest.com/openview/67a457ce9973e10b601ba324a525b3f0/1?cbl=18750&pq-origsite=gscholar&parentSessionId=UpZ4V8N6xSPAcKTOy9xE7le%2FzOB69XIB%2FSnUxdEWmwk%3D (last access: 15 January 2023), 2007.
Courville, Z. R., Albert, M. R., Fahnestock, M. A., Cathles, L. M., and
Shuman, C. A.: Impacts of an accumulation hiatus on the physical properties
of firn at a low-accumulation polar site, J. Geophys. Res., 112, F02030,
https://doi.org/10.1029/2005JF000429, 2007.
Dadic, R., Mott, R., Horgan, H. J., and Lehning, M.: Observations, theory,
and modeling of the differential accumulation of Antarctic megadunes:
accumulation of Antarctic megadunes, J. Geophys. Res.-Earth, 118,
2343–2353, https://doi.org/10.1002/2013JF002844, 2013.
Das, I., Bell, R. E., Scambos, T. A., Wolovick, M., Creyts, T. T.,
Studinger, M., Frearson, N., Nicolas, J. P., Lenaerts, J. T. M., and van den
Broeke, M. R.: Influence of persistent wind scour on the surface mass
balance of Antarctica, Nat. Geosci., 6, 367–371,
https://doi.org/10.1038/ngeo1766, 2013.
Earth Resources Observation And Science (EROS) Center: Collection-2 Landsat 8-9 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) Level-2 Science Products, Earth Resources Observation And Science (EROS) Center [data set], https://doi.org/10.5066/P9OGBGM6, 2013.
Ekaykin, A. A., Lipenkov, V. Ya., and Shibaev, Yu. A.: Spatial Distribution
of the Snow Accumulation Rate Along the Ice Flow Lines Between Ridge B and
Lake Vostok, Ice Snow, Journal of ice and snow, 52, 122,
https://doi.org/10.15356/2076-6734-2012-4-122-128, 2015.
European Space Agency: Sentinel-2 MSI Level-2A BOA Reflectance, European Space Agency [data set], https://doi.org/10.5270/S2_-znk9xsj, 2022.
Fahnestock, M. A., Scambos, T. A., Shuman, C. A., Arthern, R. J.,
Winebrenner, D. P., and Kwok, R.: Snow megadune fields on the East Antarctic
Plateau: Extreme atmosphere-ice interaction, Geophys. Res. Lett., 27,
3719–3722, https://doi.org/10.1029/1999GL011248, 2000.
Frezzotti, M., Gandolfi, S., Marca, F. L., and Urbini, S.: Snow dunes and
glazed surfaces in Antarctica: new field and remote-sensing data, Ann.
Glaciol., 34, 81–88, https://doi.org/10.3189/172756402781817851, 2002a.
Frezzotti, M., Gandolfi, S., and Urbini, S.: Snow megadunes in Antarctica:
Sedimentary structure and genesis, J. Geophys. Res.-Atmos., 107, ACL
1-1–ACL 1-12, https://doi.org/10.1029/2001JD000673, 2002b.
Frezzotti, M., Pourchet, M., Flora, O., Gandolfi, S., Gay, M., Urbini, S.,
Vincent, C., Becagli, S., Gragnani, R., and Proposito, M.: New estimations
of precipitation and surface sublimation in East Antarctica from snow
accumulation measurements, Clim. Dynam., 23, 803–813,
https://doi.org/10.1007/s00382-004-0462-5, 2004.
Frezzotti, M., Pourchet, M., Flora, O., Gandolfi, S., Gay, M., Urbini, S.,
Vincent, C., Becagli, S., Gragnani, R., and Proposito, M.: Spatial and
temporal variability of snow accumulation in East Antarctica from traverse
data, J. Glaciol., 51, 113–124, https://doi.org/10.3189/172756505781829502,
2005.
Fujii, Y., Yamanouchi, T., Suzuki, K., and Tanaka, S.: Comparison of the
Surface Conditions of the Inland Ice Sheet, Dronning Maud Land. Antarctica.
Derived from Noaa AVHRR Data with Ground Observation, Ann. Glaciol., 9,
72–75, https://doi.org/10.3189/S0260305500000410, 1987.
Gallet, J.-C., Domine, F., Savarino, J., Dumont, M., and Brun, E.: The growth of sublimation crystals and surface hoar on the Antarctic plateau, The Cryosphere, 8, 1205–1215, https://doi.org/10.5194/tc-8-1205-2014, 2014.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 Global
Reanalysis, Q. J. Roy. Meteor. Soc., 146, qj.3803,
https://doi.org/10.1002/qj.3803, 2020.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
Howat, I., Porter, C., Noh, M.-J., Husby, E., Khuvis, S., Danish, E., Tomko, K., Gardiner, J., Negrete, A., Yadav, B., Klassen, J., Kelleher, C., Cloutier, M., Bakker, J., Enos, J., Arnold, G., Bauer, G., and Morin, P.: The Reference Elevation Model of Antarctica – Strips, Version 4.1, Harvard Dataverse, V1 [data set], https://doi.org/10.7910/DVN/X7NDNY, 2022.
Jezek, K. C.: Glaciological properties of the Antarctic ice sheet from
RADARSAT-1 synthetic aperture radar imagery, Ann. Glaciol., 29, 286–290,
https://doi.org/10.3189/172756499781820969, 1999.
Klok, E. L., Greuell, W., and Oerlemans, J.: Temporal and spatial variation
of the surface albedo of Morteratschgletscher, Switzerland, as derived from
12 Landsat images, J. Glaciol., 49, 491–502,
https://doi.org/10.3189/172756503781830395, 2003.
Kodama, Y., Wendler, G., and Gosink, J.: The effect of blowing snow on
katabatic winds in Antarctica, Ann. Glaciol., 6, 59–62,
https://doi.org/10.3189/1985AoG6-1-59-62, 1985.
Lenaerts, J. T., Medley, B., van den Broeke, M. R., and Wouters, B.:
Observing and modeling ice sheet surface mass balance, Rev. Geophys., 57,
376–420, 2019.
Liang, S.: Narrowband to broadband conversions of land surface albedo I:
Algorithms, Remote Sens. Environ., 76, 213–238,
https://doi.org/10.1016/S0034-4257(00)00205-4, 2001.
Mather, K. B.: Further observations on sastrugi, snow dunes and the pattern
of surface winds in Antarctica, Polar Rec., 11, 158–171,
https://doi.org/10.1017/S0032247400052888, 1962.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A.,
Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., and
Muelbert, M. M. C.: Polar Regions, chap. 3, IPCC Special Report on the
Ocean and Cryosphere in a Changing Climate, https://doi.org/10.1017/9781009157964.005, 2019.
Mouginot, J., Rignot, E., Scheuchl, B., and Millan, R.: Comprehensive annual
ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 data,
Remote Sens., 9, 364, https://doi.org/10.3390/rs9040364, 2017.
Núñez-González, F. and Martín-Vide, J. P.: Analysis of
antidune migration direction, J. Geophys. Res.-Earth, 116, F02004,
https://doi.org/10.1029/2010JF001761, 2011.
Palm, S. P., Yang, Y., and Kayetha, V.: New Perspectives on Blowing Snow in Antarctica and Implications for Ice Sheet Mass Balance, in: Antarctica – A Key To Global Change, edited by: Kanao, M., Toyokuni, G., and Yamamoto, M., IntechOpen, https://doi.org/10.5772/intechopen.81319, 2019.
Parish, T. R. and Bromwich, D. H.: Continental-scale simulation of the
Antarctic katabatic wind regime, J. Climate, 4, 135–146,
https://doi.org/10.1175/1520-0442(1991)004<0135:CSSOTA>2.0.CO;2, 1991.
Picard, G., Libois, Q., Arnaud, L., Verin, G., and Dumont, M.: Development and calibration of an automatic spectral albedometer to estimate near-surface snow SSA time series, The Cryosphere, 10, 1297–1316, https://doi.org/10.5194/tc-10-1297-2016, 2016.
Pietroni, I., Argentini, S., and Petenko, I.: One year of surface-based
temperature inversions at Dome C, Antarctica, Bound.-Lay. Meteorol.,
150, 131–151, 2014.
Pirazzini, R.: Surface albedo measurements over Antarctic sites in summer,
J. Geophys. Res., 109, D20118, https://doi.org/10.1029/2004JD004617, 2004.
Proposito, M., Becagli, S., Castellano, E., Flora, O., Genoni, L., Gragnani,
R., Stenni, B., Traversi, R., Udisti, R., and Frezzotti, M.: Chemical and
isotopic snow variability along the 1998 ITASE traverse from Terra Nova Bay
to Dome C, East Antarctica, Ann. Glaciol., 35, 187–194,
https://doi.org/10.3189/172756402781817167, 2002.
Prothero, D. R. and Schwab, F.: Sedimentary geology, Macmillan, ISBN 978-1-4292-3155-8, 2004.
Rignot, E., Echelmeyer, K., and Krabill, W.: Penetration depth of
interferometric synthetic-aperture radar signals in snow and ice, Geophys.
Res. Lett., 28, 3501–3504, https://doi.org/10.1029/2000GL012484, 2001.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-based Antarctica
ice velocity map, version 2, Boulder CO NASA DAAC Natl. Snow Ice Data Cent. [data set], https://doi.org/10.5067/D7GK8F5J8M8R.
2017.
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M.
J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103,
https://doi.org/10.1073/pnas.1812883116, 2019.
Scambos, T. A., Dutkiewicz, M. J., Wilson, J. C., and Bindschadler, R. A.:
Application of image cross-correlation to the measurement of glacier
velocity using satellite image data, Remote Sens. Environ., 42, 177–186,
1992.
Scambos, T. A., Frezzotti, M., Haran, T., Bohlander, J., Lenaerts, J. T. M.,
Van Den Broeke, M. R., Jezek, K., Long, D., Urbini, S., Farness, K.,
Neumann, T., Albert, M., and Winther, J.-G.: Extent of low-accumulation
“wind glaze” areas on the East Antarctic plateau: implications for
continental ice mass balance, J. Glaciol., 58, 633–647,
https://doi.org/10.3189/2012JoG11J232, 2012.
Swithinbank, C., Ferrigno, J. G., Williams, R. S., and Chinn, T. J.: Antarctica, Geological Survey professional paper , 1386-B. U.S. G.P.O., Washington, DC, https://hdl.handle.net/2027/uc1.31210020769210 (last access: 13 January 2023), 1988.
Traversa, G. and Fugazza, D.: Evaluation of Anisotropic Correction Factors
for the Calculation of Landsat 8 OLI Albedo on the Ice Sheets, Geogr. Fis. Din.
Quar., 44, 91–95, https://doi.org/10.4461/GFDQ.2021.44.8, 2021.
Traversa, G., Fugazza, D., Senese, A., and Diolaiuti, G. A.: Preliminary
results on Antarctic albedo from remote sensing observations, Geogr. Fis. Din.
Quat., 42, 245–254, https://doi.org/10.4461/GFDQ.2019.42.14, 2019.
Traversa, G., Fugazza, D., Senese, A., and Frezzotti, M.: Landsat 8 OLI
Broadband Albedo Validation in Antarctica and Greenland, Remote Sens., 13,
799, https://doi.org/10.3390/rs13040799, 2021a.
Traversa, G., Fugazza, D., and Frezzotti, M.: Analysis of Megadune Fields in
Antarctica, in: 2021 IEEE International Geoscience and Remote Sensing
Symposium IGARSS, 5513–5516,
https://doi.org/10.1109/IGARSS47720.2021.9554827, 2021b.
Van Wessem, J. M., Reijmer, C. H., Morlighem, M., Mouginot, J., Rignot, E.,
Medley, B., Joughin, I., Wouters, B., Depoorter, M. A., Bamber, J. L.,
Lenaerts, J. T. M., Van De Berg, W. J., Van Den Broeke, M. R., and Van
Meijgaard, E.: Improved representation of East Antarctic surface mass
balance in a regional atmospheric climate model, J. Glaciol., 60, 761–770,
https://doi.org/10.3189/2014JoG14J051, 2014.
Vittuari, L., Vincent, C., Frezzotti, M., Mancini, F., Gandolfi, S.,
Bitelli, G., and Capra, A.: Space geodesy as a tool for measuring ice
surface velocity in the Dome C region and along the ITASE traverse, Ann.
Glaciol., 39, 402–408, https://doi.org/10.3189/172756404781814627, 2004.
Warren, S. G.: Optical properties of snow, Rev. Geophys., 20, 67–89,
https://doi.org/10.1029/RG020i001p00067, 1982.
Wendler, G., André, J. C., Pettré, P., Gosink, J., and Parish, T.:
Katabatic winds in Adélie coast, in: Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations, edited by: Bromwich, D. H. and Stearns, C. R., 61, 23–46, https://doi.org/10.1029/AR061p0023,
1993.
Zanter, K.: Landsat 8 (L8) data users handbook, Landsat Sci. Off. Website, https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1574_L8_Data_Users_Handbook-v5.0.pdf (last access:13 January 2023),
2019.
Short summary
Megadunes are fields of huge snow dunes present in Antarctica and on other planets, important as they present mass loss on the leeward side (glazed snow), on a continent characterized by mass gain. Here, we studied megadunes using remote data and measurements acquired during past field expeditions. We quantified their physical properties and migration and demonstrated that they migrate against slope and wind. We further proposed automatic detections of the glazed snow on their leeward side.
Megadunes are fields of huge snow dunes present in Antarctica and on other planets, important as...