Articles | Volume 17, issue 8
https://doi.org/10.5194/tc-17-3485-2023
https://doi.org/10.5194/tc-17-3485-2023
Research article
 | 
24 Aug 2023
Research article |  | 24 Aug 2023

AutoTerm: an automated pipeline for glacier terminus extraction using machine learning and a “big data” repository of Greenland glacier termini

Enze Zhang, Ginny Catania, and Daniel T. Trugman

Related authors

TermPicks: a century of Greenland glacier terminus data for use in scientific and machine learning applications
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022,https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Automatically delineating the calving front of Jakobshavn Isbræ from multitemporal TerraSAR-X images: a deep learning approach
Enze Zhang, Lin Liu, and Lingcao Huang
The Cryosphere, 13, 1729–1741, https://doi.org/10.5194/tc-13-1729-2019,https://doi.org/10.5194/tc-13-1729-2019, 2019
Short summary

Related subject area

Discipline: Ice sheets | Subject: Remote Sensing
Inland migration of near-surface crevasses in the Amundsen Sea Sector, West Antarctica
Andrew O. Hoffman, Knut Christianson, Ching-Yao Lai, Ian Joughin, Nicholas Holschuh, Elizabeth Case, Jonathan Kingslake, and the GHOST science team
The Cryosphere, 19, 1353–1372, https://doi.org/10.5194/tc-19-1353-2025,https://doi.org/10.5194/tc-19-1353-2025, 2025
Short summary
Greenland Ice Sheet surface roughness from Ku- and Ka-band radar altimetry surface echo strengths
Kirk M. Scanlan, Anja Rutishauser, and Sebastian B. Simonsen
The Cryosphere, 19, 1221–1239, https://doi.org/10.5194/tc-19-1221-2025,https://doi.org/10.5194/tc-19-1221-2025, 2025
Short summary
Machine learning of Antarctic firn density by combining radiometer and scatterometer remote-sensing data
Weiran Li, Sanne B. M. Veldhuijsen, and Stef Lhermitte
The Cryosphere, 19, 37–61, https://doi.org/10.5194/tc-19-37-2025,https://doi.org/10.5194/tc-19-37-2025, 2025
Short summary
A framework for automated supraglacial lake detection and depth retrieval in ICESat-2 photon data across the Greenland and Antarctic ice sheets
Philipp Sebastian Arndt and Helen Amanda Fricker
The Cryosphere, 18, 5173–5206, https://doi.org/10.5194/tc-18-5173-2024,https://doi.org/10.5194/tc-18-5173-2024, 2024
Short summary
Change in grounding line location on the Antarctic Peninsula measured using a tidal motion offset correlation method
Benjamin J. Wallis, Anna E. Hogg, Yikai Zhu, and Andrew Hooper
The Cryosphere, 18, 4723–4742, https://doi.org/10.5194/tc-18-4723-2024,https://doi.org/10.5194/tc-18-4723-2024, 2024
Short summary

Cited articles

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., Makarenkov, V., and Nahavandi, S.: A review of uncertainty quantification in deep learning: Techniques, applications and challenges, Inform. Fusion, 76, 243–297, https://doi.org/10.1016/j.inffus.2021.05.008, 2021. a
Arendt, K. E., Agersted, M. D., Sejr, M. K., and Juul-Pedersen, T.: Glacial meltwater influences on plankton community structure and the importance of top-down control (of primary production) in a NE Greenland fjord, Estuar. Coast. Shelf Sci., 183, 123–135, https://doi.org/10.1016/j.ecss.2016.08.026, 2016. a
Arrigo, K. R., Dijken, G. L. v., Castelao, R. M., Luo, H., Rennermalm, A. K., Tedesco, M., Mote, T. L., Oliver, H., and Yager, P. L.: Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters, Geophys. Res. Lett., 44, 6278–6285, https://doi.org/10.1002/2017gl073583, 2017. a
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., Mottram, R., and Khan, S. A.: Contribution of the Greenland Ice Sheet to sea level over the next millennium, Sci. Adv., 5, eaav9396, https://doi.org/10.1126/sciadv.aav9396, 2019. a
Bamler, R.: Principles of synthetic aperture radar, Surv. Geophys., 21, 147–157, https://doi.org/10.1023/a:1006790026612, 2000. a
Download
Short summary
Glacier termini are essential for studying why glaciers retreat, but they need to be mapped automatically due to the volume of satellite images. Existing automated mapping methods have been limited due to limited automation, lack of quality control, and inadequacy in highly diverse terminus environments. We design a fully automated, deep-learning-based method to produce termini with quality control. We produced 278 239 termini in Greenland and provided a way to deliver new termini regularly.
Share