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Abstract. Ice sheet marine margins via outlet glaciers are
susceptible to climate change and are expected to respond
through retreat, steepening, and acceleration, although with
significant spatial heterogeneity. However, research on ice—
ocean interactions has continued to rely on decentralized,
manual mapping of features at the ice—ocean interface, im-
peding progress in understanding the response of glaciers
and ice sheets to climate change. The proliferation of remote-
sensing images lays the foundation for a better understanding
of ice—ocean interactions and also necessitates the automa-
tion of terminus delineation. While deep learning (DL) tech-
niques have already been applied to automate the terminus
delineation, none involve sufficient quality control and au-
tomation to enable DL applications to “big data” problems
in glaciology. Here, we build on established methods to cre-
ate a fully automated pipeline for terminus delineation that
makes several advances over prior studies. First, we leverage
existing manually picked terminus traces (16440) as train-
ing data to significantly improve the generalization of the DL
algorithm. Second, we employ a rigorous automated screen-
ing module to enhance the data product quality. Third, we
perform a thoroughly automated uncertainty quantification
on the resulting data. Finally, we automate several steps in
the pipeline allowing data to be regularly delivered to public
databases with increased frequency. The automation level of
our method ensures the sustainability of terminus data pro-
duction. Altogether, these improvements produce the most
complete and high-quality record of terminus data that exists
for the Greenland Ice Sheet (GrIS). Our pipeline has suc-

cessfully picked 278239 termini for 295 glaciers in Green-
land from Landsat 5, 7, 8 and Sentinel-1 and Sentinel-2 im-
ages, spanning the period from 1984 to 2021. The pipeline
has been tested on glaciers in Greenland with an error of
79 m. The high sampling frequency and the controlled qual-
ity of our terminus data will enable better quantification of
ice sheet change and model-based parameterizations of ice—
ocean interactions.

1 Introduction

The declining mass balance of the world’s ice sheets and
glaciers represents the largest source of sea level rise oc-
curring since the 1900s, with losses from mountain glaciers,
the Greenland Ice Sheet (GrIS), and the Antarctic Ice Sheet
(AIS) representing 41 %, 25 %, and 4 % of total sea level
rise, respectively (IPCC, 2021). This loss of ice is driven by
climate-induced changes in the surface mass balance, which
primarily impacts snowfall accumulation and surface melt,
and so-called dynamic changes in ice flow that occur as a
result of changing ice flux to the ocean. Current work for
the two largest ice sheets on Earth suggests that much of the
past ice loss was dominated by the enhanced flow of ice as
revealed in satellite-derived ice surface velocities (Mouginot
et al., 2019; Rignot et al., 2019). Recent results suggest that
outlet glacier dynamics will continue to contribute 50 £20 %
of the total mass loss of the ice sheet through to the end
of the century (Choi et al., 2021). While a range of mech-
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anisms can lead to enhanced flow, there is a general consen-
sus that ocean-induced terminus retreat is one of the dom-
inant triggers for this enhanced flow (Catania et al., 2018;
King et al., 2020; Hill et al., 2018; Murray et al., 2015; Miles
et al., 2016; Cook et al., 2016; Seroussi et al., 2017; Miles
et al., 2013). Shrinking ocean-terminating glaciers will not
only impact sea level: increased freshwater discharge (via
meltwater and icebergs) into the climate-sensitive, convec-
tive polar regions also plays a role in global ocean circulation
(Boning et al., 2016; Luo et al., 2016; Oltmanns et al., 2018;
Pan et al., 2022). Regionally, increasing freshwater discharge
and the distribution and transport of sediments and nutrients
into the ocean also influence the marine ecosystem (Arrigo
etal., 2017; Bhatia et al., 2013; Arendt et al., 2016; Overeem
et al., 2017). Further, terminus-derived icebergs have been
shown to significantly contribute to fjord circulation, impact-
ing the magnitude, timing, and spatial distribution of subma-
rine melt at the terminus, which is itself a trigger of glacier
retreat (Moon et al., 2018) Thus, understanding and correctly
representing changes at the ice sheet marine margin is key to
predicting future polar ocean variability and the fate of de-
pendent systems.

In Greenland, the magnitude and timing of terminus-
driven dynamic mass loss vary widely between glaciers in
part due to differences in glacier geometry (Enderlin et al.,
2013; Brough et al., 2019; Bunce et al., 2018; Catania et al.,
2018; Felikson et al., 2017; Bassis and Jacobs, 2013). In
addition, regional variability in climate forcing also influ-
ences the response of marine-terminating glaciers, as sup-
ported by several observation- and modeling-based studies
(Holland et al., 2008; Rignot et al., 2016; Straneo and He-
imbach, 2013; Cook et al., 2016; Miles et al., 2016; Wood
etal.,2021). At present, the research community lacks agree-
ment regarding how to parameterize terminus behavior. This
is partly because myriad processes can occur at the ice—ocean
boundary, but these processes vary over space and time, both
within an individual glacier fjord but also between glaciers.
The research community also suffers from irregular avail-
ability and uneven distribution of terminus data, and data
that do exist are inconsistent in format, quality, sampling
frequency, and availability. This makes it more difficult for
terminus data to be used in models (e.g., numerical or ma-
chine learning) to test various terminus parameterizations.
Together, these factors contribute to an inability to quan-
tify the relationship governing interactions between external
and internal controls on glacier termini, which leads to large
ranges in published sea level rise projections over the com-
ing century. For example, numerical modeling studies project
between 5-33 cm of sea level rise contribution from the GrIS
by 2100 with discharge from outlet glaciers accounting for
8 %45 % of the total (Aschwanden et al., 2019).

Over the last few decades, the proliferation of new satel-
lite sensors has created an explosion of Earth science data
for use by scientists. The sheer volume of data, when cou-
pled with increasing computational capacity and the rapid
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improvement of deep learning (DL) algorithms, allows sci-
entists to construct exceptional spatiotemporal time series
of the changing Earth. This is particularly valuable for the
Earth’s cryosphere, which exhibits a great, non-linear sen-
sitivity to climate change. Recently, several studies have
demonstrated that it is possible to use DL methods to de-
lineate glacier termini (Mohajerani et al., 2019; Zhang et al.,
2019; Baumhoer et al., 2019; Cheng et al., 2020; Zhang et al.,
2021; Davari et al., 2021; Hartmann et al., 2021; Holzmann
et al., 2021; Marochov et al., 2021; Davari et al., 2021; Hei-
dler et al., 2021; Periyasamy et al., 2022; Heidler et al., 2022;
Loebel et al., 2022; Gourmelon et al., 2022; Davari et al.,
2022) with many generating data products that are of interest
to the glaciological community.

While these works represent a significant step forward,
making DL algorithms applicable to the total catalog of im-
age data necessitates a level of generalization, rigor, and au-
tomation that has not yet been accomplished due to several
outstanding challenges. First, applying deep learning to the
existing and substantial volume of images requires the deep
learning model to have a high level of generalization, com-
parable to the diversity found in all of the images. This di-
versity is introduced by spatial and temporal coverage of the
images and the difference in satellite sensors. Most previ-
ous studies applied DL algorithms to thousands of images,
with the most complete study generating 22 678 glacier ter-
mini (Cheng et al., 2020). However, the number is an order
of magnitude less than the number of the total catalog of im-
age data (more than 400000 in Greenland). The complex-
ity brought by such a large and diverse set of images could
fail with existing algorithms. Therefore, generalization of the
DL algorithm must be improved before applying it to the to-
tal catalog. Secondly, despite its power, DL technology can-
not perfectly identify termini for all available images. Most
previous studies have no quality control of the automatically
picked terminus traces, which can lead to spurious terminus
trace results. Only two studies (Zhang et al., 2021; Baumhoer
et al., 2019) developed automated quality control techniques,
but they have limited applications and are thus insufficient
to be applied to the large volume of glaciers. Thirdly, any
manual step in the pipeline requires intense effort and signifi-
cantly slows progress, considering the substantial processing
load. This necessitates improved automation in the pipeline
that runs from data collection to quality control and quanti-
fying data uncertainties, which previous studies have lacked.

Here, we build on established methods to implement an
automated pipeline for terminus delineation that makes sev-
eral advances over prior studies. First, we leverage existing
manually picked terminus data (Goliber et al., 2022) to use as
our training data, which greatly improves the generalization
of the DL model. Second, we employ a rigorous automated
screening module improving on previous methods (Zhang
et al., 2021) to refine data quality. Third, we perform a thor-
ough uncertainty quantification on our resulting data in order
to provide end users with quantified estimates of data qual-

https://doi.org/10.5194/tc-17-3485-2023



E. Zhang et al.: AutoTerm

ity. Finally, we automate multiple steps in the pipeline allow-
ing data (glacier IDs, termini, and ice, ocean, and bedrock
masks) to be regularly delivered to public databases with
increased and regular frequency. Altogether, these improve-
ments produce the most complete and high-quality record of
terminus data that exists for the GrIS — one that can be up-
dated as new imagery becomes available.

2 Input data of the pipeline
2.1 Remote-sensing imagery

Our data cover five satellites available on Google Earth En-
gine (GEE; described in detail below); Landsat 5, 7, and
8 and Sentinel-1 and Sentinel-2, with a diverse range of
image resolutions, repeat cycles, and operation times (Ta-
ble 1). Note that GEE only contains Landsat 7 images over
Greenland until 2013, although the satellite is still operat-
ing as of 2022. As the only satellite operating in winter,
Sentinel-1 is essential for analyzing seasonal terminus varia-
tions. However, despite the success of Sentinel-1 instruments
and their ground processing system in providing open-source
data with high geometric accuracy, Sentinel-1 images have
several issues. First, apparent georeferencing errors remain
between Sentinel-1 and optical images (Ye et al., 2021), thus
requiring a georeferencing adjustment for Sentinel-1 that
must be automatically applied. Second, the distribution of
Sentinel-1 images is not even across Greenland with some
glaciers located in between image gaps. Third, as SAR (syn-
thetic aperture radar) images, Sentinel-1 images are cloud-
free but suffer from speckle noise (Bamler, 2000), affecting
the image quality.

2.2 TermPicks: manually digitized terminus dataset

Deep learning methods employ training data to be used to
train the algorithm to predict termini in new imagery. Here,
we use a manually picked terminus dataset for Greenland
called TermPicks (Goliber et al., 2022), which covers 291
outlet glaciers in Greenland with over 39 000 terminus traces
spanning the period from 1916 to 2019. As the most com-
plete set of manually digitized terminus data for Greenland’s
outlet glaciers, TermPicks enriches the training set and im-
proves the generalization of the model. TermPicks merges
several existing glacier ID files across both published liter-
ature and several unpublished sources to properly identify
glaciers and homogenize terminus trace data. TermPicks data
have been cleaned to ensure quality and reformatted specif-
ically for deep learning applications. This dataset covers a
wide range of local conditions (e.g., weather, illumination
angle, ice mélange strength), glacier orientations, geome-
tries, and satellite sensor differences (e.g., different image
textures and pixel value ranges).
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2.3 Glacier identifications

Glacier identification is important for data management since
Greenland has numerous glaciers. Here, we include 295
outlet glaciers by combining IDs from Moon and Joughin
(2008) and TermPicks (Goliber et al., 2022). The criteria of
these two IDs are as follows: glaciers with velocities larger
than 50myr~!, grounding lines below sea level (ocean-
terminating), and termini greater than or equal to 1km in
width (Moon and Joughin, 2008; Goliber et al., 2022). To be
easily referenced with other datasets, we also include glacier
naming schemes cataloged by Bjgrk et al. (2015) along with
the IDs. Glacier IDs need to be updated continuously because
as glaciers retreat, the terminus may diverge into several trib-
utaries and, vice versa, as a glacier advances several tribu-
taries merge into one. Since the two ID files are based on
the more recent configuration of GrIS outlet glaciers, some
glacier termini do not appear in older Landsat 5 and 7 im-
ages because at that time they had merged with adjacent
tributaries. Thus, we do not include these glaciers in those
older images. Although a static glacier ID is sufficient for
current usage, updating the glacier IDs is an essential step in
maintaining the longevity of the pipeline in the future (see
Sect. 5.5).

2.4 Ice and ocean mask

Land, ice, and ocean masks serve as important data sources
for estimating ice-mass balance through elevation changes.
Measuring height differences without considering changes in
the position of glacier termini can result in significant spuri-
ous changes that can dominate estimates of ice-mass change
(Kjeldsen et al., 2020; Hansen et al., 2022). Ice masks de-
lineate the glacier area so that measured elevation or mass
change can be integrated over the glacier domain (and not,
for example, over ocean or rock). In addition, these masks
are used to remove measurements over open water so that
measured elevation or mass changes never represent, for ex-
ample, the difference between the height or mass of a glacier
and the height or mass of the open water that replaces it when
the glacier calves away during retreat.

With the newly generated terminus traces and an origi-
nal mask, we can update the mask and avoid the spurious
changes caused by using fixed terminus positions. The origi-
nal mask we use is the 2015 GrIMP ice mask from the Green-
land Ice Mapping Project (Howat, 2017). This mask used
manual delineation of the ice margin from the panchromatic
and pan-sharpened multispectral GrIMP 2015 image mosaic
(Howat, 2017). The ice mask includes snowfields and identi-
fies the ice sheet margin using visible information and breaks
in surface slope where it is visually difficult to differentiate
the ice margin. The ocean mask is produced similarly but ex-
amines only the coastline with the null of the ice and ocean
masks being ice-free terrain (Howat et al., 2014).
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Figure 1. Our automated deep learning pipeline. The black arrows represent aspects related to the training data via TermPicks traces and
done semi-automatically. The blue arrows represent the procedures that are fully automated when generating glacier terminus traces. The red
arrows represent the procedures in the workflow emplaced to maintain the longevity of producing terminus traces through automation.

3 Methods

Our overarching approach is to build an automated pipeline
(Fig. 1) for extracting outlet glacier termini from all available
satellite remote-sensing images on Google Earth Engine over
Greenland using deep learning (DL). Automation requires
steps above and beyond terminus delineation, including im-
age collection, pre-processing, quality control, and uncer-
tainty quantification (Fig. 1, blue arrows). Additionally, con-
verting the TermPicks terminus data into a training dataset
suitable for deep learning highly generalizes the model and
ensures the success of extracting glacier termini from new
datasets (Fig. 1, black arrows). In the long term, additional
efforts are required to maintain the pipeline, such as prepar-
ing more training data and updating the region of interest
(ROIJ) (Fig. 1, red arrows). We adopt similar post-processing
procedures with Zhang et al. (2019) that vectorize deep learn-
ing output to generate terminus traces. The whole pipeline is
built and executed with all software written in Python and
Bash.

The structure of the method section follows the order
of data processing. We first collect remote-sensing images
and conduct pre-processing (Sect. 3.1). Second, we gener-
ate the training dataset by converting the terminus traces in
TermPicks into label polygons and pairing polygons with
the remote-sensing images (Sect. 3.2). Third, we introduce
the model architecture and the training progress in Sect. 3.3.
Fourth, Sect. 3.4 to 3.6 are post-processing procedures after
applying the well-trained model to make inferences on all the
images collected via Google Earth Engine. Finally, we up-
date the ice and ocean mask with the newly generated glacier
termini (Sect. 3.7).
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3.1 Automated data collection and pre-processing

As the first step, automating image collection eliminates the
time involved in the manual collection of remote-sensing im-
agery. We use the Google Earth Engine (GEE) Python ap-
plication programming interface (API) (https://earthengine.
google.com/, last access: 21 August 2023) to automate our
search for satellite data with a given ROI for each glacier
and use GEE tools (https://github.com/gee-community/gee_
tools, last access: 21 August 2023) to automate data collec-
tion. The ROIs are bounding boxes, which require manual
preparation to span the range of terminus variations occur-
ring during the study period for each glacier. This is the
only manual step in data collection; however, it only needs
to be done once for each glacier and thus represents the
minimum manual effort. GEE provides a platform for sci-
entific analysis and visualization of geospatial datasets but
also hosts a large volume of satellite imagery that goes back
more than 40 years and stores these in a public data archive
(Table 1). The images, ingested on a daily basis, are then
made available for global-scale data mining. GEE also pro-
vides APIs and other tools to enable the analysis of large
datasets. Through the fusion of multiple datasets on GEE,
we can provide a publicly available, densely sampled termi-
nus position dataset that covers the observational time period
and importantly fills gaps in existing (manual and automat-
ically delineated) terminus datasets. We do not use a cloud
filter to maximize the number of available images where ter-
mini may be visible. This is because common cloud filters
are calculated based on the full image scene but not the area
of interest where a terminus might be located. Thus, image
scenes with high cloud coverage might still have clear views
of glacier termini. Instead, we filter cloud-covered termini
with a screening module described in Sect. 3.4. Overall, we
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Table 1. Satellite missions with publicly available data on Google Earth Engine for terminus extraction.

Sensor Coverage

Resolution

Repeat  Time range Access

Landsat 5
Landsat 7
Landsat 8
Sentinel-2
Sentinel-1

global 30m
global 15m
global 15m
global 10m
global 10m

18d 1972-2013
16d 1999-2013
16d 2013—present
10d 2015—present
6-12d  2014—present

Public
Public
Public
Public
Public

collected ~ 430000 images with a total volume of ~ 1 TB
spanning the GrIS over a period from 1984-2021.

In addition to automating the data acquisition process, we
also automate several data preparation steps before apply-
ing DL to delineate glacier termini. First, all satellite im-
ages are cropped to the ROI on the GEE platform to save
local processing and storage costs. For example, the size of
an entire Sentinel-1 scene is about 800 MB, while the size
of a cropped image is less than 10 MB, meaning that crop-
ping can decrease costs by a factor of ~ 80. Second, we pre-
process these cropped images on our local server to normal-
ize image differences between sensors with heterogeneous
image textures, resolutions, pixel values, etc. This normal-
ization is necessary since it will ease the terminus extraction
task for the DL algorithm by decreasing the complexity level
of the dataset, especially when applying DL to a substantial
volume of images. We first use histogram normalization to
equalize the pixel value differences between SAR and opti-
cal image types with different dynamic ranges and image tex-
tures (Zhang et al., 2021). We then normalize the image size,
which is commonly adopted in the computer vision field for
better capturing object features with various physical sizes
(Xu et al., 2017). The size normalization allows glaciers with
various natural sizes to have a similar image size in computer
vision, which largely decreases the complexity of delineat-
ing the glacier terminus. In other words, the normalization
makes small glaciers appear to the deep learning model as if
they had a similar physical size. Specifically, we upsample
small images (image width less than 1000 pixels) by an in-
teger value using cubic interpolation so that their widths are
just over 1000 pixels. We do not downsample images of large
glaciers to avoid losing spatial information. Moreover, since
the images will be subdivided into patches with overlaps be-
fore going through the model (Zhang et al., 2019), upsam-
pling the small images allows the model to make multiple
predictions over the same area, making the inferences more
robust. The effect of size normalization will be discussed in
Sect. 5.1.

3.2 Generating training data from TermPicks

The ability of the model to generalize and identify a glacier
terminus is primarily determined by the heterogeneity found
in the training dataset (LeCun et al., 2015). More precisely,
we want the training dataset to reflect the heterogeneity of
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Figure 2. An example of converting a polyline into a polygon label
and producing a labeled figure. (a) The source image, TermPicks
traces (red curves), and the reference polygon for this glacier (blue
polygon). The terminus of the reference polygon is upglacier from
all the TermPicks traces. (b) The red polygon shows a converted
polygon label from one of the TermPicks traces, and the binary label
image is derived from the polygon.

conditions observed in the real world. To accomplish this,
we leverage existing manually picked terminus data from
Greenland using TermPicks (Goliber et al., 2022), which
consists of the largest compilation of manually picked ter-
minus traces covering a range of satellite sensors and glacier
conditions. The TermPicks traces, which are polylines, need
to be converted into labeled polygons for generating binary
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labels (Fig. 2) for each glacier in Greenland. Each labeled
polygon contains the glacier terminus, fjord boundary, and
an outer boundary that ensures that the polygon covers the
corresponding source image. To automate the conversion of
terminus traces into polygon labels, we manually create one
reference polygon for each glacier. A reference polygon is
similar to a polygon label, but its terminus (blue polygon
in Fig. 2a) is up-glacier from all the TermPicks traces (red
curves in Fig. 2a) for that glacier. This ensures that each ref-
erence polygon has two intersections with a TermPicks trace
(on either end of the TermPicks trace). We then generate
polygon labels by connecting each TermPicks trace between
the two intersection points and the reference polygon (e.g.,
red polygon in Fig. 2b). Then, we pair the converted polygon
labels with the GEE collection of satellite images based on
date. Finally, we manually abandon training data mismatches
between polygon labels and images. This can occur when
manually picked traces do not extend across the fjord, con-
tain erroneous points (Fig. Sla, b in the Supplement), and/or
are offset due to differences in georeferencing (Fig. S1c). Af-
ter manual checking, we have 16440 polygon labels from
TermPicks for 249 glaciers. Most of the unused TermPicks
traces are due to not being able to match the source image, as
we only use the data available on GEE, which has a limited
temporal range.

Although TermPicks covers a range of conditions and
brings great diversity to the training set, additional training
data would presumably improve the accuracy of the model
in difficult situations. We identify five conditions that pose
distinct challenges: (1) images covered by cloud but where
termini are still visible; (2) winter Sentinel-1 images with
blurry boundaries due to their coarse resolution, ice mélange,
and snow cover; (3) images with shadow over the terminus;
(4) images with tabular icebergs close to the glacier termi-
nus; and (5) similarities in texture between ice mélange and
glacier (Fig. S2). For these types of images, we manually
prepare an additional 1466 training examples. To further in-
crease the diversity of our training set, we perform data aug-
mentation for all the training examples, including rotating
images by 90, 180, and 270°, and image flipping following
(Zhang et al., 2019), increasing the training set by a factor of
4.

3.3 The architecture and training of deep learning
model

We use DeepLabv3+, a state-of-the-art deep learning al-
gorithm for image segmentation (Chen et al., 2018).
DeepLabv3+ combines an encoder—decoder architecture
with atrous spatial pyramid pooling, where the former can
obtain sharp object boundaries while the latter senses multi-
scale contextual information. Sharp boundaries can improve
delineation accuracy, and sensing multi-scale information
helps indirectly when we integrate remote-sensing datasets
with different spatial resolutions. This model architecture
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has been proven to have a large learning capability (Chen
et al., 2018), spatial transferability, and the capability of us-
ing multi-sensor remote-sensing images (Zhang et al., 2021).
To train the model, we use binary cross entropy as the loss
function and a stochastic gradient descent method as the
optimizer with an L2 regularization factor of 5 x 107, as
recommended by Zhang et al. (2021). Based on the learn-
ing rate in Chen et al. (2018) and Zhang et al. (2021), we
train the model with learning rates of 5 x 10_3, 2 x 10_3,
and 1 x 1072 and choose 2 x 1073 owing to its lowest val-
idation loss. To improve the efficiency of model training,
we choose the largest possible batch size (16) on four A100
GPUs with 160 GB GPU memory in total. We set the batch
size to a power of 2 to take full advantage of GPU process-
ing (Kandel and Castelli, 2020). From TermPicks traces, we
randomly select 100 traces as the test set and take the rest
into the training set. Among the training data, we randomly
select 5 % as the validation data to conduct early stopping
in order to mitigate overfitting. The training will be stopped
when the validation error stops decreasing for three consec-
utive epochs. The model training took seven epochs, about
1 week, and consumed 120 GB of memory. After the train-
ing, we apply the well-trained model to the test set in order
to quantify the test error and to all the images collected via
GEE in order to generate the terminus dataset. We measure
the test error by calculating the enclosed area bounded by the
TermPicks traces and the model predictions divided by the
length of the TermPicks traces. In the case where there are
crosses between a TermPicks trace and a model prediction,
we calculate the area on both sides of the crosses and then
add them together. Terminus picking and post-processing for
a single image takes less than 1 min.

3.4 Automated screen module

Despite the power of deep learning technology, it cannot per-
fectly identify termini for all available images. Moreover,
the model is expected to generate erroneous results from im-
ages where termini are invisible. These results should be de-
tected and removed. With this in mind, we have developed
an automated screening module to assist with quality con-
trol. Many previous DL methods applied to terminus delin-
eation do not have quality control (Mohajerani et al., 2019;
Zhang et al., 2019). Where it does exist, data screening has
been simplistic and not automatically applied. For example,
Zhang et al. (2021) only considers the complexity of the ter-
minus shape and removes traces with abnormal complexity
(which, in turn, requires a threshold to be established for each
glacier), Baumhoer et al. (2019) only considers outliers that
arise in a time series of terminus position change over time,
and Gourmelon et al. (2022) remove the outliers based on
terminus length. Cheng et al. (2020), however, did design an
automated data screening based on the deviation of two clas-
sifications from the model. Our screening module is based on
using the physical properties of glacier termini.

https://doi.org/10.5194/tc-17-3485-2023



E. Zhang et al.: AutoTerm

Sentinel-2

Length

5 consecutive
polygon areas

| Landsat-8 )
| —
S Pass | —
| Curvature @ —

more than 4 < T,

3491

—_—

| —

Sentinel-1

| Sentinel-2 |)

| N —

7145

-5140" 5135

Landsat-8 Landsabé

Repeat for 10 times

-51°40' 5135 -51°40° 5135

Landsat-8 Sentinel-2

Figure 3. (a) The pipeline of the screening module. 7y is the upper threshold, and 77, is the lower threshold. Each metric (length, curvature,
five consecutive areas) has its own threshold. Only the results from optical images are used to calculate the thresholds, and the thresholds
are applied uniformly to all the datasets. Examples of results abandoned for different reasons. (b) Short terminus. (¢, d) Long and complex
terminus. (e) Terminus forms a large polygon with its adjacent picks. The backgrounds are the source images of the wrong picks. The red
line in (e) is the wrong pick, and the blue curve shows its time-adjacent manual pick.

Based on the previous work (Zhang et al., 2021; Baumhoer
et al., 2019; Gourmelon et al., 2022), we develop an auto-
mated screening module that forgoes any manual interven-
tion or prior knowledge of the data (Fig. 3). The outliers are
quantified in three different categories: (1) the number of in-
tersections between terminus and glacier flow line, (2) ter-
minus length, (3) terminus curvature, and (4) the abnormally
large area enclosed by the two temporally closest termini.
This latter case refers to outliers in a time series of terminus
change. Terminus curvature is computed among every three
adjacent points along the terminus based on Peijin Zhang’s
work (Zhang, 2018), and then an average is taken for each
terminus trace. Finally, we calculate the area enclosed by
two temporally adjacent termini to determine the change in
glacier area over time. We will only keep termini that have
a single intersection with the glacier flow line. For each of
the last three metrics, we calculate the lower (71.) and upper
thresholds (7yy) based on the interquartile range:

T, =01-15x(Q3—-01), (1)
Ty = Q3+ 1.5x(Q3 - Q1), (2)
where Q3 is the 75th percentile and Q1 is the 25th percentile
of the data range. The thresholds are calculated automatically
based on the results of the same glacier and the same satel-

lite. Since the Sentinel-1 images suffer from speckle noise,
Landsat 7 is affected by SLC-off (scan-line corrector off),
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and Landsat 5 has a small number of images, the results gen-
erated from these satellites are of relatively poor quality com-
pared to the other datasets, or the obtained thresholds are
inappropriate. Therefore, we calculate the thresholds based
on results from Landsat 8 and Sentinel-2 and apply them
uniformly to all remaining datasets. For outliers in termi-
nus length, we remove both the lower and upper thresholds
(Egs. 1 and 2) because we do not anticipate large changes
in terminus length in either direction (bigger or smaller). In
contrast, terminus curvature and area change outliers are only
removed with the upper threshold (Eq. 1). This is because
high-quality terminus traces are expected to be smooth with
little curvature and have a time derivative of terminus change
that is small at the sampling frequency permitted. Exceptions
to this latter assumption exist when large calving events oc-
cur. In that case, if all of the traces are accurate, only one
anomalously large area change will occur over a short period
(typically less than 1 month). To remove incorrect traces and
retain traces providing information on large calving events,
we examine the change in the terminus area over five con-
secutive area polygons (in a moving time window) and re-
move the first large-area polygon only if more than one large-
area change is identified. The removal of outliers changes the
data distribution, and we will have new thresholds in the next
screening. We repeat this screening procedure 10 times or
until we do not find any more outliers to maintain the quality
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of the terminus product (Fig. 3). Finally, we estimate the suc-
cess rate by calculating the percentage of the terminus traces
that pass the screening module.

3.5 Georeferencing adjustment for Sentinel-1

Location errors occur for Sentinel-1 images along the az-
imuth direction (Small and Schubert, 2019) introducing error
in georeferencing for this sensor in our data (Fig. S3). Al-
though applications have been made to correct these georef-
erencing errors in post-processing (Ye et al., 2021), they have
not been widely deployed for public use. Owing to the over-
lap of multiple sensors, it is possible to have more than one
machine-predicted terminus trace for a single date, allowing
us to use duplicate traces to aid in performing a georefer-
encing adjustment for Sentinel-1. This is done by calculating
all of the areas enclosed by Sentinel-1 traces and comparing
these to area enclosed by traces on the same day, but from
optical sensors. Then we take the averaged area difference
between these two time series to adjust the georeferencing
offset in the retreat time series.

3.6 Uncertainty quantification

Traditional uncertainty quantification for glacier terminus
position is conducted by calculating the difference between
manually picked termini and automatically picked termini
(e.g., Cheng et al., 2020). However, the model accuracy
likely varies over time as glaciers experience different condi-
tions (e.g., cloud cover). Uncertainty quantification thus re-
quires significant manual effort to ensure that the computed
uncertainty is representative of such variability. We compute
the uncertainty in two ways. First, we use duplicate traces
(described above) to automatically quantify the uncertainties
for each glacier. For this, only the traces with the highest
source image resolution (Table 1) are kept (Sentinel-2 and
Landsat 8). We do not use duplicate Sentinel-1 traces because
they are used for the georeferencing offset for that sensor, and
we do not use Landsat 5 or 7 because of the lack of overlap
with other datasets. Uncertainty from duplicate traces is com-
puted by comparing the average area enclosed by the dupli-
cate Landsat 8 traces and Sentinel-2 traces for the same date.
For each glacier, we average the uncertainties from all du-
plicated traces and use the mean to represent the uncertainty
in that glacier. We also divide this area by the piecewise ter-
minus length to get the uncertainty in terminus position as a
measure of length change. This is done because some data
users may prefer to examine terminus change in length in-
stead of terminus change in area.

We also compute uncertainty through deploying the Monte
Carlo (MC) dropout (Gal and Ghahramani, 2016) method,
which has become widely adopted in the uncertainty quan-
tification for DL methods (Abdar et al., 2021). Dropout is a
regularization technique that prevents overfitting of the data
ensuring that the model works well with new imagery that is
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not contained in the training data. MC dropout yields vari-
ants of our DL model by dropping out random subsets of
the model’s neurons during prediction (setting their values to
zero). These variants make multiple inferences for a single
remote-sensing image, and the differences between these in-
ferences can be used to quantify the model uncertainty. Hart-
mann et al. (2021) applied MC dropout to glacier terminus
delineation and built a two-stage approach. They used the un-
certainty in the first model as additional information to train
the second model. The multiple outputs of the second model
are averaged to eliminate the uncertainty and get the final
prediction. Here, we deploy MC dropout and use model vari-
ants to pick multiple terminus traces for a single image. By
quantifying the average difference between the traces from
the original model and the variants, we measure the uncer-
tainties in the terminus position, providing a different per-
spective on uncertainty quantification from duplicate traces.
MC dropout requires multiple inferences and is computation-
ally time-consuming. To strike a balance between computa-
tional cost and the reliability of the MC dropout, we ran-
domly chose 10 images from each of the five sensors and
made three inferences for each of the images. Thus, in total,
each glacier will have six measures of uncertainty: one from
duplicate traces and the other five estimated by MC dropout
for each sensor.

3.7 Ice and ocean masks

The newly generated terminus traces are also used to update
the GrIMP mask for accurate estimates of ice-mass balance.
While we can update masks monthly, we do not expect sig-
nificant changes in glacier area on this timescale. We thus
only create updated masks annually beginning in 2018 to
serve the ICESat-2 community needs for improved accuracy
of laser returns during periods of extensive glacier terminus
retreat. To create a new ice mask we first select terminus
traces at a time of minimum ice extent (late fall) for every
glacier. These termini are combined with geometries delin-
eating the edges of outlet fjords and the edges of static ice
margins from GrIMP (Howat et al., 2014) to form a contin-
uous boundary of the ice sheet. We use the new terminus to
update only the ocean mask and consider the bedrock mask
to be static. The ice mask is updated automatically because
of the shared ice—ocean boundary with the ocean mask. Prac-
tically, we first vectorize the ocean mask into a shapefile.
Second, we crop the shapefile with the glacier ROIs and re-
place the parts in the ROIs with the newly generated terminus
traces. Then, we convert the updated shapefile to a raster as
the new ocean mask. Finally, the residual of the new ocean
mask and original bed mask serve as the new ice mask.
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4 Results

In addition to terminus delineation, we have successfully au-
tomated data collection, pre-processing, data quality control
(Fig. 3), uncertainty quantification, the measurement of ter-
minus variation (Fig. 1, blue color), and the derivation of
annual land, ice, and ocean masks for Greenland. The im-
provements in automation enable the pipeline to generate a
tremendous number of terminus trace data continuously with
controlled quality and measured uncertainties. As a result,
the pipeline can automatically produce new terminus traces
from all newly acquired satellite images in Greenland.

4.1 Data quality

Our model is capable of handling different image scales and
resolutions, heavy shadowing, ice mélange, light cloud cover,
and Landsat 7 scan-line errors (Fig. 4). Thus we can pick
the terminus trace whenever it can be clearly seen in an im-
age. Further, our screening module is capable of removing
erroneous terminus traces with numerous causes (e.g., cloud
cover, image resolution, Fig. 3). With these removed, a time
series of terminus variation shows clear signals without spu-
rious changes in terminus position (Fig. 5). Data quality is
assessed via test error, success rate, and uncertainty. The test
error provides a general estimation of the model’s perfor-
mance. Our averaged test error is 79 m (Table S1 in the Sup-
plement), which is comparable to previous studies where er-
rors range from 33 to 108 m (Mohajerani et al., 2019; Zhang
et al., 2019; Baumbhoer et al., 2019; Cheng et al., 2020), al-
though the test set and the way of calculating test error are
slightly different. Our success rate is determined by exam-
ining how many terminus traces pass the screening module
and dividing this by the number of images available for each
glacier. The success rate of the test set is 90 %, and the test
error was reduced to 62m after the screening module. For
the entire dataset, we find an average success rate of 64 %
(Fig. 6), but this varies temporally and spatially. Such varia-
tions could be caused by the uneven distribution of the train-
ing data glaciers with more training data having higher suc-
cess rates. We have improved the seasonality of the termi-
nus position. However, the model does struggle to delineate
termini in many wintertime Sentinel-1 images, probably be-
cause of blurry boundaries and the lack of sufficient training
data specifically using Sentinel-1 imagery. For example, we
only have 484 Sentinel-1 traces from TermPicks and an addi-
tional 936 manually prepared Sentinel-1 traces as part of this
work. As a result, many more traces from Sentinel-1 images
did not pass the screening module (Fig. 7).

The uncertainties are measured in two ways: using dupli-
cate traces and the MC dropout method. The MC dropout
measures model uncertainties in neural network parameters,
while duplicate traces quantify the performance difference
of the model on various datasets. Using duplicate traces, we
find an average uncertainty of ~ 37 m with a range from 10
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to 204 m (Fig. 8a). The duplicate trace uncertainty variation
between glaciers along with success rates might be because
the training data are not evenly distributed for each glacier;
glaciers with less training data will probably have larger un-
certainties and lower success rates. Uncertainty also varies
across sensor type. Figure 8b—f show the uncertainties in dif-
ferent satellite sensors from MC dropout. Among the five
datasets used, Landsat 8 and Sentinel-2 have the lowest av-
erage uncertainties, probably because they have the highest
spatial resolution. Landsat 7 images suffer from the scan-
line corrector (SLC) failure, which contributes to the uncer-
tainties in the derived results. The reasons for the Landsat
5 uncertainty might be twofold. First, Landsat 5 does not
have a panchromatic band, and, thus, its resolution is coarser
than other Landsat sensors. Second, floating ice tongues were
more prevalent at the time of Landsat 5 data acquisition than
they are now (Hill et al., 2018), which challenges the model
to accurately delineate ice tongue edges without significant
training data. The higher uncertainty in Sentinel-1 images
could be due to their low image quality, coarse resolution,
and the lower volume of training data derived from this sen-
sor. Figure S4 shows multiple predictions of terminus traces
resulting from MC dropout with a comparison to the original
terminus prediction for two glaciers. Due to the randomness
of the model parameter that is shut down during this calcula-
tion, MC dropout makes some predictions noisier (Fig. S4a).
Further, we observe that prediction noise is larger when the
original terminus predictions significantly deviate from real-
ity (Fig. S4b).

4.2 Data quantity

Using the pipeline, we generated 278 239 glacier termini for
295 glaciers from 433 721 images (Fig. 6). Generally, we find
that variations in satellite coverage cause significant spatial
variations in image availability. For instance, in central east
Greenland (glaciers 127 to 138), the relatively low number
of images is caused by the shortage of Sentinel-1 images in
this region. There are only ~ 60 Sentinel-1 images in total
for each of these glaciers, while other glaciers have 300-
600 images available. We also find the launch of Landsat 8,
Sentinel-1, and Sentinel-2 greatly improve the frequency of
remote-sensing images (Fig. 7) providing ~ 100 traces per
year per glacier for the most recent (> 2014) period. Figure 9
shows a heatmap of terminus traces for selected glaciers. The
Supplement provides similar heatmaps for the full record of
glaciers (Figs. S6-S10). Importantly, Sentinel-1 images fill
data gaps in winter when optical sensors struggle with low-
light conditions. These wintertime terminus picks provide
near-continuous characterization of the seasonality of termi-
nus position (Fig. 10).
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Cloudy Landsat-8 Sentinel-1 with Ice mélange
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Figure 4. Examples of the automatically picked glacier terminus. The model can handle different scales and resolutions, light cloud cover (a,
¢), ice mélange (b), heavy shadowing (d), complex geometry (e), and Landsat 7 scan-line errors (f). All the results are beyond the training
set.
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Figure 5. (a) An example of terminus variation over time from our results showing clear seasonal and longer-term signals in terminus change.
We highlight the ability of our screening module to detect erroneous traces (red x signs). After 2014, seasonal variations are more apparent
owing to the addition of wintertime records from Sentinel-1. (b) Detail of (a) over 2013-2021 showing the comparison between our results
and manual traces from TermPicks covering 2013-2020 (Goliber et al., 2022) and CALFIN covering 2013-2019 (Cheng et al., 2020).
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Figure 6. (a) Total number of images and (b) overall success rate of AutoTerm for each glacier. The ellipse in (a) indicates the glaciers
127 to 138 with relatively low numbers of images. The spatial variations in image numbers are caused by the variations in satellite spatial
coverage. The spatial variations in success rates are caused by the uneven distribution of training data. Glaciers with more training data have
higher success rates. The boundary of the GrIS is provided by the Generic Mapping Tools (GMT, https://www.generic-mapping-tools.org/,

last access: 21 August 2023).
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Due to the blurry boundaries of wintertime Sentinel-1 images, some of these terminus predictions did not pass the screening module (red
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4.3 Ice mask

In addition to terminus trace data, we also generate three
new ice, ocean, and bedrock masks for 2018, 2019, and
2020 (Fig. 11). Each newly generated ice mask is provided
as a single GeoTIFF file with black representing the ocean,
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gray representing the bedrock, and white representing the ice
(Fig. 11a). To identify how valuable updates to the ice masks
are, we compare our masks with the 2015 GrIMP ice mask
product (Howat et al., 2014) for each year (Fig. 11b—d). We
find ongoing retreat of most glaciers after 2018 with glaciers
in the northwest and southeast of Greenland dominating the
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by GMT.

retreating. The net area change in ice extent is 520 km? for
2018, 660km? for 2019, and 72 km? for 2020. The largest
area change was 45.5km? at Kjer Glacier, which was pre-
viously attached to a nunatak and has now detached from
it and diverged into two tributaries (glacier IDs 28 and 29).
The one blue circle in Fig. 11b shows the advance of Jakob-
shavn Isbre (Sermeq Kujalleq), which has been associated
with regional cooling of ocean water (Khazendar et al., 2019;
Joughin et al., 2019).

4.4 Data format

AutoTerm contains shapefiles of terminus traces and four
supplementary data, including (1) a complete record of un-
certainties, (2) identification of glaciers, (3) temporal cov-
erage of terminus traces, (4) time series of terminus varia-
tions, and (5) ice masks. The terminus traces of a particular
glacier are assembled in a single shapefile with an attribute
table showing the metadata of each trace. The metadata con-
tain the date in YYYY-MM-DD format, glacier ID, source
image satellite, and the uncertainty of each trace by averag-
ing the two types of uncertainties provided. The entire record
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of uncertainties is provided in a spreadsheet. Each glacier
has six averaged uncertainty measures, including one from
duplicate trace uncertainty and five from MC dropout uncer-
tainties in different satellites. Data end users can choose an
average of the two uncertainty measures as a total uncertainty
or use one uncertainty value from the spreadsheet based on
the prevalence of the data type used. The identification file
includes the glacier location, ID, name, and region of in-
terest. For each glacier, we will provide a figure similar to
Fig. 7 showing the temporal coverage of terminus traces and
a time series figure identical to Fig. 5 showing the terminus
variation. The temporal coverage and time series figures will
be packaged into two KMZ files, respectively. In the KMZ
files, the figures are assigned with the locations of their cor-
responding glaciers. By doing so, we can easily access the
information on data gaps and terminus variation, comparing
adjacent glaciers. The format of ice masks is described in
Sect. 4.3.
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Figure 9. Example heatmap of the number of successful traces pre-
dicted in each year for glaciers 1-50. The full record of annual trace
numbers can be found in the Supplement.

5 Discussion
5.1 Methodological improvements

Building on previous DL-based studies, the major improve-
ments we achieve in this work are (1) increasing the general-
ization level of the deep learning model to enable more and
better quality terminus predictions, (2) deploying size nor-
malization to improve the accuracy of terminus delineation
for small glaciers, (3) designing a rigorous automated screen-
ing module to control the data quality, and (4) automating
several additional steps in the pipeline such as data collec-
tion and uncertainty quantification to allow the data to be
regularly delivered.

The substantial generalization improvement we observe is
due in large part to converting the TermPicks (Goliber et al.,
2022) dataset into a rich training dataset. All previous DL-
based studies use training data that are manually prepared
by the individual authors with CALFIN having the most
training data (1773 training pairs; Cheng et al., 2020). Be-
cause model generalization is tied to the diversity of training
data, small volumes of training data limit the ability of the
model to generalize and thus reduce the accuracy of termi-
nus predictions. Instead, we prepare the training data semi-
automatically and only manually check for mismatches be-
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tween TermPicks traces and the source images, saving time.
Further, TermPicks covers a larger variety of glacier con-
ditions, geometries, and satellite sensor differences. In to-
tal, we have 16440 training pairs from TermPicks and 1466
training examples prepared manually. This diversity is much
more representative of the real world and improves the suc-
cess of the model. To demonstrate the generalization brought
by TermPicks, we train the model with only 1466 training
examples prepared manually. That model has a test error of
315m and a success rate of 46 %, while the model trained
with TermPicks has a testing error of 79 m and a success rate
of 90 %.

Despite numerous studies that have demonstrated the fea-
sibility of using DL algorithms to automate terminus delin-
eation, there is an additional degree of automation needed to
deal with the emerging big data now available on cloud ser-
vices. Our automated pipeline saves substantial manual ef-
fort, even though we still employ some manual effort, like
preparing the regions of interest. As the volume of images
increases, so does the difficulty for the model to succeed on
all of them. As a result, the need for quality control becomes
paramount, particularly given that there are plans for follow-
on Landsat missions extending terminus time series indefi-
nitely into the future. Although we could devote more effort
to manually preparing additional training examples and im-
proving the model accuracy, we opted to build a screening
module enabling improved data quality. This choice results in
significant time savings over adding additional training data.
Terminus data produced from machine learning will always
have larger uncertainty than manually delineated data since
we use manually delineated data as our training data. The un-
certainty in data generated from deep learning has been tradi-
tionally quantified by measuring the difference between au-
tomatically picked termini and manually picked ones, which
is rigorous but also requires significant manual effort. Fur-
ther, how representative such uncertainty is depends on the
diversity of conditions covered by manual delineations. As
a result, improved uncertainty estimates come at the cost of
labor required to compute them. Our implementation of du-
plicate traces and MC dropout provides an estimate of uncer-
tainty automatically while only sacrificing a modest amount
of rigor over manual delineation. For instance, if both dupli-
cated traces deviate from reality but are close to each other,
the uncertainty would not represent reality.

Image normalization homogenizes images and thus eases
the difficulties of terminus delineation under various con-
ditions (e.g., weather, illumination, geometry). In addition
to histogram normalization (Zhang et al., 2021), we also
conduct size normalization to deal with the diversity of
glacier sizes around Greenland. Although the design of
DeepLabV3+ enables the model to sense multi-scale contex-
tual information, glacier sizes in Greenland vary by orders of
magnitude (1-80 km in width), necessitating size normaliza-
tion. Since we upsample small images, size normalization is
especially useful in increasing the accuracy of terminus pre-
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Figure 10. An example showing the importance of including Sentinel-1 traces for glacier ID 164. (a) With Sentinel-1 (green circles), Landsat
8 (red circles), and Sentinel-2 (orange) and (b) with only Landsat 8§ and Sentinel-2 data. In (a), we quantify the inter-annual and seasonal
variation in terminus position using the singular spectrum analysis method (Zhang et al., 2018). Uncertainties are shown as vertical bars for
each terminus trace and are measured by duplicate traces. Legends in (b) are shared by both panels (a) and (b).
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Figure 11. An example of an updated ice mask for 2020 (a) and the terminus change between the updated masks and the original 2015
GrIMP ice mask (b—d; 2018-2020). Red circles represent retreating glaciers and blue circles represent advancing glaciers. The size of the
circle indicates the difference in area change in each glacier from the original mask. The boundary of the GrIS in (b—d) is the same as Fig. 6,

provided by GMT.

dictions for small glaciers and capturing detailed features in
the terminus (Fig. 12). We randomly select 36 images of five
small glaciers as the test set for size normalization. These im-
ages are beyond the training set. Table S3 shows that the size
normalization effectively decreases the test error for all five
glaciers. We estimate the uncertainties from all duplicated
traces of that five glaciers, which also reveals the effective-
ness of the size normalization (Table S3).
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5.2 Advantages of AutoTerm

Owing to the automation level we have achieved, AutoTerm
produces terminus data with complete spatial coverage, sub-
seasonal sampling interval (Fig. 9), and full-width terminus
morphology. Previous studies on terminus variation either
have a high temporal resolution (Schild and Hamilton, 2013;
Kehrl et al., 2017; Fried et al., 2018; Catania et al., 2018) or
complete spatial coverage (Murray et al., 2015; Wood et al.,
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Figure 12. An example showing the effect of size normalization for
glacier ID 54. After normalization, delineation of the terminus is
more accurate and captures small features.

2021) but not both because of the laborious effort required
with manual terminus delineation. Even with DL-based ter-
minus prediction, most data available comes from CALFIN
(Cheng et al., 2020), which produced 22 678 terminus traces
across 66 Greenland glaciers, limited in part because they
only examined Landsat imagery. Our inclusion of Sentinel-1
data improves the temporal sampling of the terminus data
3-fold over CALFIN, providing an average sampling fre-
quency of ~ 100 traces per year for the most recent (> 2014)
period (Figs. 5b and 10). These additional winter terminus
traces allow improved accuracy for quantifying seasonality
and inter-annual variability (Fig. 10). Further, our ability to
provide full-width terminus trace morphology enables a de-
tailed investigation of the specific processes controlling the
ice—ocean interface (Murray et al., 2015; Fried et al., 2018;
Rignot et al., 2016; Slater et al., 2021).

5.3 Limitations

Despite the success in automating the pipeline and produc-
ing a massive number of terminus trace data, our workflow
is limited by the immense computational power (120 GB of
GPU memory) and long training time (5-7 d) required, which
also make uncertainty quantification challenging. This de-
gree of processing time is due to the extensive volume of
training data, which are crucial to generalizing the model
and improving model performance. The second limitation is
caused by our assumption that the screening module provides
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high-quality results. This assumption rests on the choice of
thresholds defined by the interquartile range in the screen-
ing module. Thus, when most results for a glacier are not
credible, the screening module might not be able to clean
the results because the random distribution of the terminus
attributes leads to improper thresholds. The resulting termi-
nus variation series could be spurious, and additional train-
ing data or a more advanced model will be required to im-
prove the data quality. The third limitation is that even though
we include additional training data, the model might strug-
gle with some challenging situations (Fig. S2). The fourth
limitation is that further validation will be needed to apply
it globally despite the success of the screening module in
Greenland. The fifth limitation comes from the biased value
of duplicate uncertainty as Landsat 8 and Sentinel-2 images
have the highest resolution among the five satellites. A final
limitation is that not all the data that can provide terminus
trace information are included here. For example, there are
numerous satellite and airborne sensors that are not available
on GEE (e.g., air photos, ASTER, and other SAR products).
Our workflow is limited to what is available on GEE. As a
result, AutoTerm only produces a high sampling frequency
with winter traces after 2014.

5.4 Difference between the two types of uncertainties

The differences in the two types of uncertainties are caused
by their quantification methods and source images. When us-
ing MC dropout to quantify uncertainty, the model varies,
but the input images are fixed, while the situation is reversed
when we quantify uncertainty measured by duplicate traces.
As a result, the MC dropout uncertainty emphasizes uncer-
tainty in the model itself, while duplicate traces rely on data
uncertainty inferred from the difference between Landsat 8
and Sentinel-2 imagery. Additionally, the MC dropout uncer-
tainty permits quantification of uncertainty for each dataset
and is thus influenced by the characteristics of the training
data as a whole, such as the SLC failure in Landsat 7. On the
contrary, the uncertainty from duplicate traces is more rep-
resentative of Landsat 7 and Sentinel-2 than other datasets.
Since Landsat 8 and Sentinel-2 images have the highest res-
olution among the five satellites, using the duplicate uncer-
tainty to represent the error of results obtained from other
satellites would be biased towards lower values. Moreover,
different ways of choosing source images in two types of un-
certainties bring discrepancies. The source images for com-
puting the MC dropout are randomly selected, but this is not
true for duplicate traces. The dates having duplicate traces
from both Landsat 8 and Sentinel-2 images are governed by
satellite coverage. Overall, uncertainties from MC dropout
and duplicate traces are roughly equivalent, especially for
Landsat 8 and Sentinel-2 results since duplicate trace uncer-
tainties are also based on these two satellites (Fig. S5).

The Cryosphere, 17, 3485-3503, 2023



3500

5.5 Future effort required for maintaining the pipeline

Maintaining the longevity of the pipeline is essential as
glaciers and ice sheets in our chosen regions undergo rapid
and large-scale changes with time. To continuously produce
terminus traces each year in the future, the ROI for each
glacier can be automatically updated based on the intersec-
tion between the glacier centerline and the most recent termi-
nus trace. With an updated ROI, new images can be collected
via GEE and the entire pipeline can be rerun to produce new
terminus trace data for that year. Moreover, manually prepar-
ing additional training data might be required as the model
could fail to pick the terminus from new images. The model’s
failure will result in many termini not passing the screening
and high uncertainty. The pipeline can use the low success
rates and high uncertainty to alert us to prepare more train-
ing data for the corresponding glaciers. Annually, these ter-
minus data can be used to calculate updated glacier terminus
change data, which in turn inform the need for the genera-
tion of new land, ice, and ocean masks. We can also update
glacier ID files triggered by the bifurcation or confluence of
termini. For example, when a glacier retreats and, in doing
so0, diverges into several tributaries or when an ice shelf col-
lapses and exposes new glacier termini, the existing glacier
IDs (numbers) can be suffixed with letters (a, b, ¢, etc.) indi-
cating that the origin of each tributary is embedded within the
ID. When several tributaries merge into one main terminus,
for example through advance, the ID of the largest tributary
will be kept. Lastly, we depend on future community feed-
back about our products to assist in identifying issues not
caught by our screening module. This is because the massive
number of data precludes the ability to guarantee the quality
of each individual trace.

6 Conclusions

This study builds a fully automated, deep-learning-based
pipeline that can continuously produce terminus traces from
multi-sensor remote-sensing images. We convert a large vol-
ume of manually picked terminus traces to be used as training
data, allowing the model to tackle diverse conditions found in
“big data”. In addition to terminus delineation, we automate
data collection, quality control, and uncertainty estimation
in order to generate a terminus dataset with comprehensive
spatial coverage and dense temporal sampling, which we call
AutoTerm. AutoTerm covers 295 outlet glaciers in Greenland
and contains 278 239 terminus traces with controlled qual-
ity and uncertainties. The comprehensiveness of the termi-
nus dataset will benefit the community for conducting a pan-
Greenland investigation of terminus variation and model-
based parameterizations of ice—ocean interactions. Owing to
the transferability of deep learning, the entire pipeline has the
potential to be applied to many other outlet glaciers around
the world.
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