Articles | Volume 17, issue 8
https://doi.org/10.5194/tc-17-3203-2023
https://doi.org/10.5194/tc-17-3203-2023
Research article
 | 
09 Aug 2023
Research article |  | 09 Aug 2023

Modelling Antarctic ice shelf basal melt patterns using the one-layer Antarctic model for dynamical downscaling of ice–ocean exchanges (LADDIE v1.0)

Erwin Lambert, André Jüling, Roderik S. W. van de Wal, and Paul R. Holland

Related authors

Quantifying the feedback between Antarctic meltwater release and subsurface Southern Ocean warming
Erwin Lambert, Dewi Le Bars, Eveline van der Linden, André Jüling, and Sybren Drijfhout
EGUsphere, https://doi.org/10.5194/egusphere-2024-2257,https://doi.org/10.5194/egusphere-2024-2257, 2024
Short summary
Brief Communication: Sensitivity of Antarctic ice-shelf melting to ocean warming across basal melt models
Erwin Lambert and Clara Burgard
EGUsphere, https://doi.org/10.5194/egusphere-2024-2358,https://doi.org/10.5194/egusphere-2024-2358, 2024
Short summary
Unveiling spatial variability within the Dotson Melt Channel through high-resolution basal melt rates from the Reference Elevation Model of Antarctica
Ann-Sofie Priergaard Zinck, Bert Wouters, Erwin Lambert, and Stef Lhermitte
The Cryosphere, 17, 3785–3801, https://doi.org/10.5194/tc-17-3785-2023,https://doi.org/10.5194/tc-17-3785-2023, 2023
Short summary
Antarctic contribution to future sea level from ice shelf basal melt as constrained by ice discharge observations
Eveline C. van der Linden, Dewi Le Bars, Erwin Lambert, and Sybren Drijfhout
The Cryosphere, 17, 79–103, https://doi.org/10.5194/tc-17-79-2023,https://doi.org/10.5194/tc-17-79-2023, 2023
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ocean Interactions
Local forcing mechanisms challenge parameterizations of ocean thermal forcing for Greenland tidewater glaciers
Alexander O. Hager, David A. Sutherland, and Donald A. Slater
The Cryosphere, 18, 911–932, https://doi.org/10.5194/tc-18-911-2024,https://doi.org/10.5194/tc-18-911-2024, 2024
Short summary
Basal melt rates and ocean circulation under the Ryder Glacier ice tongue and their response to climate warming: a high-resolution modelling study
Jonathan Wiskandt, Inga Monika Koszalka, and Johan Nilsson
The Cryosphere, 17, 2755–2777, https://doi.org/10.5194/tc-17-2755-2023,https://doi.org/10.5194/tc-17-2755-2023, 2023
Short summary
Can rifts alter ocean dynamics beneath ice shelves?
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023,https://doi.org/10.5194/tc-17-2261-2023, 2023
Short summary
Large-eddy simulations of the ice-shelf–ocean boundary layer near the ice front of Nansen Ice Shelf, Antarctica
Ji Sung Na, Taekyun Kim, Emilia Kyung Jin, Seung-Tae Yoon, Won Sang Lee, Sukyoung Yun, and Jiyeon Lee
The Cryosphere, 16, 3451–3468, https://doi.org/10.5194/tc-16-3451-2022,https://doi.org/10.5194/tc-16-3451-2022, 2022
Short summary
The impact of tides on Antarctic ice shelf melting
Ole Richter, David E. Gwyther, Matt A. King, and Benjamin K. Galton-Fenzi
The Cryosphere, 16, 1409–1429, https://doi.org/10.5194/tc-16-1409-2022,https://doi.org/10.5194/tc-16-1409-2022, 2022
Short summary

Cited articles

Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves, Nat. Geosci., 13, 616–620, https://doi.org/10.1038/s41561-020-0616-z, 2020. a, b, c
Alley, K. E., Scambos, T. A., Siegfried, M. R., and Fricker, H. A.: Impacts of warm water on Antarctic ice shelf stability through basal channel formation, Nat. Geosci., 9, 290–293, https://doi.org/10.1038/ngeo2675, 2016. a, b, c, d
Alley, K. E., Scambos, T. A., Alley, R. B., and Holschuh, N.: Troughs developed in ice-stream shear margins precondition ice shelves for ocean-driven breakup, Sci. Adv., 5, eaax2215, https://doi.org/10.1126/sciadv.aax2215, 2019. a, b, c, d
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a, b, c, d
Berger, S., Drews, R., Helm, V., Sun, S., and Pattyn, F.: Detecting high spatial variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica, The Cryosphere, 11, 2675–2690, https://doi.org/10.5194/tc-11-2675-2017, 2017. a
Download
Short summary
A major uncertainty in the study of sea level rise is the melting of the Antarctic ice sheet by the ocean. Here, we have developed a new model, named LADDIE, that simulates this ocean-driven melting of the floating parts of the Antarctic ice sheet. This model simulates fine-scale patterns of melting and freezing and requires significantly fewer computational resources than state-of-the-art ocean models. LADDIE can be used as a new tool to force high-resolution ice sheet models.