Articles | Volume 17, issue 8
https://doi.org/10.5194/tc-17-3203-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-3203-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling Antarctic ice shelf basal melt patterns using the one-layer Antarctic model for dynamical downscaling of ice–ocean exchanges (LADDIE v1.0)
Research and Development Weather and Climate Modelling (RDWK), Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
André Jüling
Research and Development Weather and Climate Modelling (RDWK), Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Roderik S. W. van de Wal
Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht University, Utrecht, the Netherlands
Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
Paul R. Holland
British Antarctic Survey, Cambridge, UK
Related authors
Erwin Lambert, Dewi Le Bars, Eveline van der Linden, André Jüling, and Sybren Drijfhout
EGUsphere, https://doi.org/10.5194/egusphere-2024-2257, https://doi.org/10.5194/egusphere-2024-2257, 2024
Short summary
Short summary
Ocean warming around Antarctica leads to ice melting and sea-level rise. The meltwater that flows into the surrounding ocean can lead to enhanced warming of the seawater, thereby again increasing melting and sea-level rise. This process, however, is not currently included in climate models. Through a simple mathematical approach, we find that this process can lead to more melting and more sea-level rise, possibly increasing the Antarctic contribution to 21st century sea level rise by 80 %.
Erwin Lambert and Clara Burgard
EGUsphere, https://doi.org/10.5194/egusphere-2024-2358, https://doi.org/10.5194/egusphere-2024-2358, 2024
Short summary
Short summary
The effect of ocean warming on Antarctic ice sheet melting is a major source of uncertainty in estimates of future sea-level rise. We compare five melt models to show that ocean warming strongly increases melting. Despite their calibration on present-day melting, the models disagree on the amount of melt increase. In some important regions, the difference reaches a factor 100. We conclude that using various melt models is important to accurately estimate uncertainties in future sea-level rise.
Ann-Sofie Priergaard Zinck, Bert Wouters, Erwin Lambert, and Stef Lhermitte
The Cryosphere, 17, 3785–3801, https://doi.org/10.5194/tc-17-3785-2023, https://doi.org/10.5194/tc-17-3785-2023, 2023
Short summary
Short summary
The ice shelves in Antarctica are melting from below, which puts their stability at risk. Therefore, it is important to observe how much and where they are melting. In this study we use high-resolution satellite imagery to derive 50 m resolution basal melt rates of the Dotson Ice Shelf. With the high resolution of our product we are able to uncover small-scale features which may in the future help us to understand the state and fate of the Antarctic ice shelves and their (in)stability.
Eveline C. van der Linden, Dewi Le Bars, Erwin Lambert, and Sybren Drijfhout
The Cryosphere, 17, 79–103, https://doi.org/10.5194/tc-17-79-2023, https://doi.org/10.5194/tc-17-79-2023, 2023
Short summary
Short summary
The Antarctic ice sheet (AIS) is the largest uncertainty in future sea level estimates. The AIS mainly loses mass through ice discharge, the transfer of land ice into the ocean. Ice discharge is triggered by warming ocean water (basal melt). New future estimates of AIS sea level contributions are presented in which basal melt is constrained with ice discharge observations. Despite the different methodology, the resulting projections are in line with previous multimodel assessments.
Caroline Jacoba van Calcar, Pippa L. Whitehouse, Roderik S. W. van de Wal, and Wouter van der Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-2982, https://doi.org/10.5194/egusphere-2024-2982, 2024
Short summary
Short summary
The bedrock response to a melting Antarctic ice sheet delays grounding line retreat by up to 130 years and reduces sea level rise by up to 23% compared to excluding this effect. Current ice sheet models often use computationally fast but simplified Earth models that do not capture this feedback well. We recommend parameters for simple Earth models that approximate bedrock uplift and ice sheet evolution from a complex ice sheet - Earth model to improve sea level projections of the next centuries.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Bart van den Hurk, Nadia Pinardi, Alexander Bisaro, Giulia Galluccio, José A. Jiménez, Kate Larkin, Angélique Melet, Lavinia Giulia Pomarico, Kristin Richter, Kanika Singh, Roderik van de Wal, and Gundula Winter
State Planet, 3-slre1, 1, https://doi.org/10.5194/sp-3-slre1-1-2024, https://doi.org/10.5194/sp-3-slre1-1-2024, 2024
Short summary
Short summary
The Summary for Policymakers compiles findings from “Sea Level Rise in Europe: 1st Assessment Report of the Knowledge Hub on Sea Level Rise”. It covers knowledge gaps, observations, projections, impacts, adaptation measures, decision-making principles, and governance challenges. It provides information for each European basin (Mediterranean, Black Sea, North Sea, Baltic Sea, Atlantic, and Arctic) and aims to assist policymakers in enhancing the preparedness of European coasts for sea level rise.
Erwin Lambert, Dewi Le Bars, Eveline van der Linden, André Jüling, and Sybren Drijfhout
EGUsphere, https://doi.org/10.5194/egusphere-2024-2257, https://doi.org/10.5194/egusphere-2024-2257, 2024
Short summary
Short summary
Ocean warming around Antarctica leads to ice melting and sea-level rise. The meltwater that flows into the surrounding ocean can lead to enhanced warming of the seawater, thereby again increasing melting and sea-level rise. This process, however, is not currently included in climate models. Through a simple mathematical approach, we find that this process can lead to more melting and more sea-level rise, possibly increasing the Antarctic contribution to 21st century sea level rise by 80 %.
Erwin Lambert and Clara Burgard
EGUsphere, https://doi.org/10.5194/egusphere-2024-2358, https://doi.org/10.5194/egusphere-2024-2358, 2024
Short summary
Short summary
The effect of ocean warming on Antarctic ice sheet melting is a major source of uncertainty in estimates of future sea-level rise. We compare five melt models to show that ocean warming strongly increases melting. Despite their calibration on present-day melting, the models disagree on the amount of melt increase. In some important regions, the difference reaches a factor 100. We conclude that using various melt models is important to accurately estimate uncertainties in future sea-level rise.
Meike D. W. Scherrenberg, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-57, https://doi.org/10.5194/cp-2024-57, 2024
Preprint under review for CP
Short summary
Short summary
Glacial cycle duration changed from 41.000 to 100.000 years during the Mid-Pleistocene Transition (MPT), but the cause is still under debate. We simulate the MPT with an ice-sheet model forced by prescribed CO2 and insolation, and simple ice-climate interactions. Before the MPT, glacial cycles follow insolation. After the MPT, low CO2 levels may compensate warming at insolation maxima, increasing the length of glacial cycles until the North American ice sheet becomes large and thereby unstable.
Meike D. W. Scherrenberg, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past, 20, 1761–1784, https://doi.org/10.5194/cp-20-1761-2024, https://doi.org/10.5194/cp-20-1761-2024, 2024
Short summary
Short summary
During Late Pleistocene glacial cycles, the Eurasian and North American ice sheets grew and melted, resulting in over 100 m of sea-level change. Studying the melting of past ice sheets can improve our understanding of how ice sheets might respond in the future. In this study, we find that melting increases due to proglacial lakes forming at the margins of the ice sheets, primarily due to the reduced basal friction of floating ice. Furthermore, bedrock uplift rates can strongly influence melting.
Kim de Wit, Kim M. Cohen, and Roderik S. W. Van de Wal
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-271, https://doi.org/10.5194/essd-2024-271, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In the Holocene, deltas and coastal plains developed due to relative sea level rise (RSLR). Past coastal and inland water levels are preserved in geological indicators, like basal peats. We present a data set of 712 Holocene water-level indicators from the Dutch coastal plain, relevant for studying RSLR and regional subsidence, compiled in HOLSEA workbook format. Our new, internally consistent, expanded documentation encourages multiple data uses and to report RSLR uncertainties transparently.
Daniel Francis James Gunning, Kerim Hestnes Nisancioglu, Emilie Capron, and Roderik van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-1384, https://doi.org/10.5194/egusphere-2024-1384, 2024
Short summary
Short summary
This work documents the first results from ZEMBA: an energy balance model of the climate system. The model is a computationally efficient tool designed to study the response of climate to changes in the Earth’s orbit. We demonstrate ZEMBA reproduces many features of the Earth’s climate for both the pre-industrial period and the Earth’s most recent cold extreme- the Last Glacial Maximum. We intend to develop ZEMBA further and investigate the glacial cycles of the last 2.5 million years.
David T. Bett, Alexander T. Bradley, C. Rosie Williams, Paul R. Holland, Robert J. Arthern, and Daniel N. Goldberg
The Cryosphere, 18, 2653–2675, https://doi.org/10.5194/tc-18-2653-2024, https://doi.org/10.5194/tc-18-2653-2024, 2024
Short summary
Short summary
A new ice–ocean model simulates future ice sheet evolution in the Amundsen Sea sector of Antarctica. Substantial ice retreat is simulated in all scenarios, with some retreat still occurring even with no future ocean melting. The future of small "pinning points" (islands of ice that contact the seabed) is an important control on this retreat. Ocean melting is crucial in causing these features to go afloat, providing the link by which climate change may affect this sector's sea level contribution.
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Jorjo Bernales, Constantijn Berends, Willem Jan van de Berg, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-851, https://doi.org/10.5194/egusphere-2024-851, 2024
Short summary
Short summary
In this study, we present an improved way of representing ice thickness change rates into an ice sheet model. We apply this method using two ice sheet models on the Antarctic Ice Sheet. We found that the two largest outlet glaciers on the Antarctic Ice Sheet, the Thwaites Glacier and Pine Island Glacier, will collapse without further warming on a timescale of centuries. This would cause a sea level rise of about 1.2 meters globally.
Constantijn J. Berends, Victor Azizi, Jorge Bernales, and Roderik S. W. van de Wal
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-5, https://doi.org/10.5194/gmd-2024-5, 2024
Revised manuscript under review for GMD
Short summary
Short summary
Ice-sheet models are computer programs that can simulate how the Greenland and Antarctic ice sheets will evolve in the future. The accuracy of these models depends on their resolution: how small the details are that the model can resolve. We have created a model with a variable resolution, which can resolve a lot of detail in areas where lots of changes happen in the ice, and less detail in areas where the ice does not move so much. This makes the model both accurate and fast.
Lennert B. Stap, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past, 20, 257–266, https://doi.org/10.5194/cp-20-257-2024, https://doi.org/10.5194/cp-20-257-2024, 2024
Short summary
Short summary
Analysing simulations of Antarctic Ice Sheet variability during the early and mid-Miocene (23 to 14 Myr ago), we find that the ice sheet area adapts faster and more strongly than volume to climate change on quasi-orbital timescales. Considering the recent discovery that ice area, rather than volume, influences deep-ocean temperatures, this implies that the Miocene Antarctic Ice Sheet affects deep-ocean temperatures more than its volume suggests.
Neil C. Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Christopher Danek, Matthew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hattermann, Judith Hauck, F. Alexander Haumann, André Jüling, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023, https://doi.org/10.5194/gmd-16-7289-2023, 2023
Short summary
Short summary
Current climate models typically do not include full representation of ice sheets. As the climate warms and the ice sheets melt, they add freshwater to the ocean. This freshwater can influence climate change, for example by causing more sea ice to form. In this paper we propose a set of experiments to test the influence of this missing meltwater from Antarctica using multiple different climate models.
Caroline R. Holmes, Thomas J. Bracegirdle, Paul R. Holland, Julienne Stroeve, and Jeremy Wilkinson
EGUsphere, https://doi.org/10.5194/egusphere-2023-2881, https://doi.org/10.5194/egusphere-2023-2881, 2023
Short summary
Short summary
Until recently, observed Antarctic sea ice was increasing, while in contrast numerical climate models simulated a decrease over the same period (1979–2014). This apparent mismatch was one reason for low confidence in model projections of large 21st century sea ice loss and related aspects of Southern Hemisphere climate. Here we show that, with the inclusion of several low Antarctic sea ice years (notably 2017, 2022 and 2023), we can no longer conclude that modelled and observed trends differ.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Gemma K. O'Connor, Paul R. Holland, Eric J. Steig, Pierre Dutrieux, and Gregory J. Hakim
The Cryosphere, 17, 4399–4420, https://doi.org/10.5194/tc-17-4399-2023, https://doi.org/10.5194/tc-17-4399-2023, 2023
Short summary
Short summary
Glaciers in West Antarctica are rapidly melting, but the causes are unknown due to limited observations. A leading hypothesis is that an unusually large wind event in the 1940s initiated the ocean-driven melting. Using proxy reconstructions (e.g., using ice cores) and climate model simulations, we find that wind events similar to the 1940s event are relatively common on millennial timescales, implying that ocean variability or climate trends are also necessary to explain the start of ice loss.
Caroline J. van Calcar, Roderik S. W. van de Wal, Bas Blank, Bas de Boer, and Wouter van der Wal
Geosci. Model Dev., 16, 5473–5492, https://doi.org/10.5194/gmd-16-5473-2023, https://doi.org/10.5194/gmd-16-5473-2023, 2023
Short summary
Short summary
The waxing and waning of the Antarctic ice sheet caused the Earth’s surface to deform, which is stabilizing the ice sheet and mainly determined by the spatially variable viscosity of the mantle. Including this feedback in model simulations led to significant differences in ice sheet extent and ice thickness over the last glacial cycle. The results underline and quantify the importance of including this local feedback effect in ice sheet models when simulating the Antarctic ice sheet evolution.
Ann-Sofie Priergaard Zinck, Bert Wouters, Erwin Lambert, and Stef Lhermitte
The Cryosphere, 17, 3785–3801, https://doi.org/10.5194/tc-17-3785-2023, https://doi.org/10.5194/tc-17-3785-2023, 2023
Short summary
Short summary
The ice shelves in Antarctica are melting from below, which puts their stability at risk. Therefore, it is important to observe how much and where they are melting. In this study we use high-resolution satellite imagery to derive 50 m resolution basal melt rates of the Dotson Ice Shelf. With the high resolution of our product we are able to uncover small-scale features which may in the future help us to understand the state and fate of the Antarctic ice shelves and their (in)stability.
Iris Keizer, Dewi Le Bars, Cees de Valk, André Jüling, Roderik van de Wal, and Sybren Drijfhout
Ocean Sci., 19, 991–1007, https://doi.org/10.5194/os-19-991-2023, https://doi.org/10.5194/os-19-991-2023, 2023
Short summary
Short summary
Using tide gauge observations, we show that the acceleration of sea-level rise (SLR) along the coast of the Netherlands started in the 1960s but was masked by wind field and nodal-tide variations. This finding aligns with global SLR observations and expectations based on a physical understanding of SLR related to global warming.
Constantijn J. Berends, Roderik S. W. van de Wal, Tim van den Akker, and William H. Lipscomb
The Cryosphere, 17, 1585–1600, https://doi.org/10.5194/tc-17-1585-2023, https://doi.org/10.5194/tc-17-1585-2023, 2023
Short summary
Short summary
The rate at which the Antarctic ice sheet will melt because of anthropogenic climate change is uncertain. Part of this uncertainty stems from processes occurring beneath the ice, such as the way the ice slides over the underlying bedrock.
Inversion methodsattempt to use observations of the ice-sheet surface to calculate how these sliding processes work. We show that such methods cannot fully solve this problem, so a substantial uncertainty still remains in projections of sea-level rise.
Meike D. W. Scherrenberg, Constantijn J. Berends, Lennert B. Stap, and Roderik S. W. van de Wal
Clim. Past, 19, 399–418, https://doi.org/10.5194/cp-19-399-2023, https://doi.org/10.5194/cp-19-399-2023, 2023
Short summary
Short summary
Ice sheets have a large effect on climate and vice versa. Here we use an ice sheet computer model to simulate the last glacial cycle and compare two methods, one that implicitly includes these feedbacks and one that does not. We found that when including simple climate feedbacks, the North American ice sheet develops from two domes instead of many small domes. Each ice sheet melts slower when including feedbacks. We attribute this difference mostly to air temperature–ice sheet interactions.
Eveline C. van der Linden, Dewi Le Bars, Erwin Lambert, and Sybren Drijfhout
The Cryosphere, 17, 79–103, https://doi.org/10.5194/tc-17-79-2023, https://doi.org/10.5194/tc-17-79-2023, 2023
Short summary
Short summary
The Antarctic ice sheet (AIS) is the largest uncertainty in future sea level estimates. The AIS mainly loses mass through ice discharge, the transfer of land ice into the ocean. Ice discharge is triggered by warming ocean water (basal melt). New future estimates of AIS sea level contributions are presented in which basal melt is constrained with ice discharge observations. Despite the different methodology, the resulting projections are in line with previous multimodel assessments.
Paul R. Holland, Gemma K. O'Connor, Thomas J. Bracegirdle, Pierre Dutrieux, Kaitlin A. Naughten, Eric J. Steig, David P. Schneider, Adrian Jenkins, and James A. Smith
The Cryosphere, 16, 5085–5105, https://doi.org/10.5194/tc-16-5085-2022, https://doi.org/10.5194/tc-16-5085-2022, 2022
Short summary
Short summary
The Antarctic Ice Sheet is losing ice, causing sea-level rise. However, it is not known whether human-induced climate change has contributed to this ice loss. In this study, we use evidence from climate models and palaeoclimate measurements (e.g. ice cores) to suggest that the ice loss was triggered by natural climate variations but is now sustained by human-forced climate change. This implies that future greenhouse-gas emissions may influence sea-level rise from Antarctica.
Antony Siahaan, Robin S. Smith, Paul R. Holland, Adrian Jenkins, Jonathan M. Gregory, Victoria Lee, Pierre Mathiot, Antony J. Payne, Jeff K. Ridley, and Colin G. Jones
The Cryosphere, 16, 4053–4086, https://doi.org/10.5194/tc-16-4053-2022, https://doi.org/10.5194/tc-16-4053-2022, 2022
Short summary
Short summary
The UK Earth System Model is the first to fully include interactions of the atmosphere and ocean with the Antarctic Ice Sheet. Under the low-greenhouse-gas SSP1–1.9 (Shared Socioeconomic Pathway) scenario, the ice sheet remains stable over the 21st century. Under the strong-greenhouse-gas SSP5–8.5 scenario, the model predicts strong increases in melting of large ice shelves and snow accumulation on the surface. The dominance of accumulation leads to a sea level fall at the end of the century.
Constantijn J. Berends, Heiko Goelzer, Thomas J. Reerink, Lennert B. Stap, and Roderik S. W. van de Wal
Geosci. Model Dev., 15, 5667–5688, https://doi.org/10.5194/gmd-15-5667-2022, https://doi.org/10.5194/gmd-15-5667-2022, 2022
Short summary
Short summary
The rate at which marine ice sheets such as the West Antarctic ice sheet will retreat in a warming climate and ocean is still uncertain. Numerical ice-sheet models, which solve the physical equations that describe the way glaciers and ice sheets deform and flow, have been substantially improved in recent years. Here we present the results of several years of work on IMAU-ICE, an ice-sheet model of intermediate complexity, which can be used to study ice sheets of both the past and the future.
Lennert B. Stap, Constantijn J. Berends, Meike D. W. Scherrenberg, Roderik S. W. van de Wal, and Edward G. W. Gasson
The Cryosphere, 16, 1315–1332, https://doi.org/10.5194/tc-16-1315-2022, https://doi.org/10.5194/tc-16-1315-2022, 2022
Short summary
Short summary
To gain understanding of how the Antarctic ice sheet responded to CO2 changes during past warm climate conditions, we simulate its variability during the Miocene. We include feedbacks between the ice sheet and atmosphere in our model and force the model using time-varying climate conditions. We find that these feedbacks reduce the amplitude of ice volume variations. Erosion-induced changes in the bedrock below the ice sheet that manifested during the Miocene also have a damping effect.
André Jüling, Anna von der Heydt, and Henk A. Dijkstra
Ocean Sci., 17, 1251–1271, https://doi.org/10.5194/os-17-1251-2021, https://doi.org/10.5194/os-17-1251-2021, 2021
Short summary
Short summary
On top of forced changes such as human-caused global warming, unforced climate variability exists. Most multidecadal variability (MV) involves the oceans, but current climate models use non-turbulent, coarse-resolution oceans. We investigate the effect of resolving important turbulent ocean features on MV. We find that ocean heat content, ocean–atmosphere heat flux, and global mean surface temperature MV is more pronounced in the higher-resolution model relative to higher-frequency variability.
André Jüling, Xun Zhang, Daniele Castellana, Anna S. von der Heydt, and Henk A. Dijkstra
Ocean Sci., 17, 729–754, https://doi.org/10.5194/os-17-729-2021, https://doi.org/10.5194/os-17-729-2021, 2021
Short summary
Short summary
We investigate how the freshwater budget of the Atlantic changes under climate change, which has implications for the stability of the Atlantic Meridional Overturning Circulation. We compare the effect of ocean model resolution in a climate model and find many similarities between the simulations, enhancing trust in the current generation of climate models. However, ocean biases are reduced in the strongly eddying simulation, and significant local freshwater budget differences exist.
Constantijn J. Berends, Heiko Goelzer, and Roderik S. W. van de Wal
Geosci. Model Dev., 14, 2443–2470, https://doi.org/10.5194/gmd-14-2443-2021, https://doi.org/10.5194/gmd-14-2443-2021, 2021
Short summary
Short summary
The largest uncertainty in projections of sea-level rise comes from ice-sheet retreat. To better understand how these ice sheets respond to the changing climate, ice-sheet models are used, which must be able to reproduce both their present and past evolution. We have created a model that is fast enough to simulate an ice sheet at a high resolution over the course of an entire 120 000-year glacial cycle. This allows us to study processes that cannot be captured by lower-resolution models.
Constantijn J. Berends, Bas de Boer, and Roderik S. W. van de Wal
Clim. Past, 17, 361–377, https://doi.org/10.5194/cp-17-361-2021, https://doi.org/10.5194/cp-17-361-2021, 2021
Short summary
Short summary
For the past 2.6 million years, the Earth has experienced glacial cycles, where vast ice sheets periodically grew to cover large parts of North America and Eurasia. In the earlier part of this period, this happened every 40 000 years. This value changed 1.2 million years ago to 100 000 years: the Mid-Pleistocene Transition. We investigate this interesting period using an ice-sheet model, studying the interactions between ice sheets and the global climate.
Xuewei Li, Qinghua Yang, Lejiang Yu, Paul R. Holland, Chao Min, Longjiang Mu, and Dake Chen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-359, https://doi.org/10.5194/tc-2020-359, 2021
Preprint withdrawn
Short summary
Short summary
The Arctic sea ice thickness record minimum is confirmed occurring in autumn 2011. The dynamic and thermodynamic processes leading to the minimum thickness is analyzed based on a daily sea ice thickness reanalysis data covering the melting season. The results demonstrate that the dynamic transport of multiyear ice and the subsequent surface energy budget response is a critical mechanism actively contributing to the evolution of Arctic sea ice thickness in 2011.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Sophie Nowicki, Heiko Goelzer, Hélène Seroussi, Anthony J. Payne, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Patrick Alexander, Xylar S. Asay-Davis, Alice Barthel, Thomas J. Bracegirdle, Richard Cullather, Denis Felikson, Xavier Fettweis, Jonathan M. Gregory, Tore Hattermann, Nicolas C. Jourdain, Peter Kuipers Munneke, Eric Larour, Christopher M. Little, Mathieu Morlighem, Isabel Nias, Andrew Shepherd, Erika Simon, Donald Slater, Robin S. Smith, Fiammetta Straneo, Luke D. Trusel, Michiel R. van den Broeke, and Roderik van de Wal
The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020, https://doi.org/10.5194/tc-14-2331-2020, 2020
Short summary
Short summary
This paper describes the experimental protocol for ice sheet models taking part in the Ice Sheet Model Intercomparion Project for CMIP6 (ISMIP6) and presents an overview of the atmospheric and oceanic datasets to be used for the simulations. The ISMIP6 framework allows for exploring the uncertainty in 21st century sea level change from the Greenland and Antarctic ice sheets.
Heiko Goelzer, Brice P. Y. Noël, Tamsin L. Edwards, Xavier Fettweis, Jonathan M. Gregory, William H. Lipscomb, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 14, 1747–1762, https://doi.org/10.5194/tc-14-1747-2020, https://doi.org/10.5194/tc-14-1747-2020, 2020
Short summary
Short summary
Future sea-level change projections with process-based ice sheet models are typically driven with surface mass balance forcing derived from climate models. In this work we address the problems arising from a mismatch of the modelled ice sheet geometry with the one used by the climate model. The proposed remapping method reproduces the original forcing data closely when applied to the original geometry and produces a physically meaningful forcing when applied to different modelled geometries.
Alex Brisbourne, Bernd Kulessa, Thomas Hudson, Lianne Harrison, Paul Holland, Adrian Luckman, Suzanne Bevan, David Ashmore, Bryn Hubbard, Emma Pearce, James White, Adam Booth, Keith Nicholls, and Andrew Smith
Earth Syst. Sci. Data, 12, 887–896, https://doi.org/10.5194/essd-12-887-2020, https://doi.org/10.5194/essd-12-887-2020, 2020
Short summary
Short summary
Melting of the Larsen C Ice Shelf in Antarctica may lead to its collapse. To help estimate its lifespan we need to understand how the ocean can circulate beneath. This requires knowledge of the geometry of the sub-shelf cavity. New and existing measurements of seabed depth are integrated to produce a map of the ocean cavity beneath the ice shelf. The observed deep seabed may provide a pathway for circulation of warm ocean water but at the same time reduce rapid tidal melt at a critical location.
Heiko Goelzer, Violaine Coulon, Frank Pattyn, Bas de Boer, and Roderik van de Wal
The Cryosphere, 14, 833–840, https://doi.org/10.5194/tc-14-833-2020, https://doi.org/10.5194/tc-14-833-2020, 2020
Short summary
Short summary
In our ice-sheet modelling experience and from exchange with colleagues in different groups, we found that it is not always clear how to calculate the sea-level contribution from a marine ice-sheet model. This goes hand in hand with a lack of documentation and transparency in the published literature on how the sea-level contribution is estimated in different models. With this brief communication, we hope to stimulate awareness and discussion in the community to improve on this situation.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Constantijn J. Berends, Bas de Boer, Aisling M. Dolan, Daniel J. Hill, and Roderik S. W. van de Wal
Clim. Past, 15, 1603–1619, https://doi.org/10.5194/cp-15-1603-2019, https://doi.org/10.5194/cp-15-1603-2019, 2019
Short summary
Short summary
The Late Pliocene, 3.65–2.75 million years ago, is the most recent period in Earth's history that was warmer than the present. This makes it interesting for climatological research, because it provides a possible analogue for the near future. We used a coupled ice-sheet–climate model to simulate the behaviour of these systems during this period. We show that the warmest moment saw a sea-level rise of 8–14 m, with a CO2 concentration of 320–400 ppmv.
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Short summary
We compare a wide range of Antarctic ice sheet simulations with varying initialization techniques and model parameters to understand the role they play on the projected evolution of this ice sheet under simple scenarios. Results are improved compared to previous assessments and show that continued improvements in the representation of the floating ice around Antarctica are critical to reduce the uncertainty in the future ice sheet contribution to sea level rise.
Chen Cheng, Adrian Jenkins, Paul R. Holland, Zhaomin Wang, Chengyan Liu, and Ruibin Xia
The Cryosphere, 13, 265–280, https://doi.org/10.5194/tc-13-265-2019, https://doi.org/10.5194/tc-13-265-2019, 2019
Short summary
Short summary
The sub-ice platelet layer (SIPL) under fast ice is most prevalent in McMurdo Sound, Antarctica. Using a modified plume model, we investigated the responses of SIPL thickening rate and frazil concentration to variations in ice shelf water supercooling in McMurdo Sound. It would be key to parameterizing the relevant process in more complex three-dimensional, primitive equation ocean models, which relies on the knowledge of the suspended frazil size spectrum within the ice–ocean boundary layer.
Constantijn J. Berends, Bas de Boer, and Roderik S. W. van de Wal
Geosci. Model Dev., 11, 4657–4675, https://doi.org/10.5194/gmd-11-4657-2018, https://doi.org/10.5194/gmd-11-4657-2018, 2018
Short summary
Short summary
We have devised a novel way to couple a climate model to an ice-sheet model. Usually, climate models are too slow to simulate more than a few centuries, whereas our new model set-up can simulate a full 120 000-year ice age in about 12 h. This makes it possible to look at the interactions between global climate and ice sheets on long timescales, something which is relevant for both research into past climate and future projections.
Eef C. H. van Dongen, Nina Kirchner, Martin B. van Gijzen, Roderik S. W. van de Wal, Thomas Zwinger, Gong Cheng, Per Lötstedt, and Lina von Sydow
Geosci. Model Dev., 11, 4563–4576, https://doi.org/10.5194/gmd-11-4563-2018, https://doi.org/10.5194/gmd-11-4563-2018, 2018
Short summary
Short summary
Ice flow forced by gravity is governed by the full Stokes (FS) equations, which are computationally expensive to solve. Therefore, approximations to the FS equations are used, especially when modeling an ice sheet on long time spans. Here, we report a combination of an approximation with the FS equations that allows simulating the dynamics of ice sheets over long time spans without introducing artifacts caused by application of approximations in parts of the domain where they are not valid.
Sarah L. Bradley, Thomas J. Reerink, Roderik S. W. van de Wal, and Michiel M. Helsen
Clim. Past, 14, 619–635, https://doi.org/10.5194/cp-14-619-2018, https://doi.org/10.5194/cp-14-619-2018, 2018
Heiko Goelzer, Sophie Nowicki, Tamsin Edwards, Matthew Beckley, Ayako Abe-Ouchi, Andy Aschwanden, Reinhard Calov, Olivier Gagliardini, Fabien Gillet-Chaulet, Nicholas R. Golledge, Jonathan Gregory, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Joseph H. Kennedy, Eric Larour, William H. Lipscomb, Sébastien Le clec'h, Victoria Lee, Mathieu Morlighem, Frank Pattyn, Antony J. Payne, Christian Rodehacke, Martin Rückamp, Fuyuki Saito, Nicole Schlegel, Helene Seroussi, Andrew Shepherd, Sainan Sun, Roderik van de Wal, and Florian A. Ziemen
The Cryosphere, 12, 1433–1460, https://doi.org/10.5194/tc-12-1433-2018, https://doi.org/10.5194/tc-12-1433-2018, 2018
Short summary
Short summary
We have compared a wide spectrum of different initialisation techniques used in the ice sheet modelling community to define the modelled present-day Greenland ice sheet state as a starting point for physically based future-sea-level-change projections. Compared to earlier community-wide comparisons, we find better agreement across different models, which implies overall improvement of our understanding of what is needed to produce such initial states.
Brice Noël, Willem Jan van de Berg, J. Melchior van Wessem, Erik van Meijgaard, Dirk van As, Jan T. M. Lenaerts, Stef Lhermitte, Peter Kuipers Munneke, C. J. P. Paul Smeets, Lambertus H. van Ulft, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, https://doi.org/10.5194/tc-12-811-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional climate model RACMO2.3p2 at 11 km resolution (1958–2016) over the Greenland ice sheet (GrIS). The model successfully reproduces the present-day climate and surface mass balance, i.e. snowfall minus meltwater run-off, of the GrIS compared to in situ observations. Since run-off from marginal narrow glaciers is poorly resolved at 11 km, further statistical downscaling to 1 km resolution is required for mass balance studies.
Alek A. Petty, Julienne C. Stroeve, Paul R. Holland, Linette N. Boisvert, Angela C. Bliss, Noriaki Kimura, and Walter N. Meier
The Cryosphere, 12, 433–452, https://doi.org/10.5194/tc-12-433-2018, https://doi.org/10.5194/tc-12-433-2018, 2018
Short summary
Short summary
There was significant scientific and media attention surrounding Arctic sea ice in 2016, due primarily to the record-warm air temperatures and low sea ice conditions observed at the start of the year. Here we quantify and assess the record-low monthly sea ice cover in winter, spring and fall, and the lack of record-low sea ice conditions in summer. We explore the primary drivers of these monthly sea ice states and explore the implications for improved summer sea ice forecasting.
Werner M. J. Lazeroms, Adrian Jenkins, G. Hilmar Gudmundsson, and Roderik S. W. van de Wal
The Cryosphere, 12, 49–70, https://doi.org/10.5194/tc-12-49-2018, https://doi.org/10.5194/tc-12-49-2018, 2018
Short summary
Short summary
Basal melting of ice shelves is a major factor in the decline of the Antarctic Ice Sheet, which can contribute significantly to sea-level rise. Here, we investigate a new basal melt model based on the dynamics of meltwater plumes. For the first time, this model is applied to all Antarctic ice shelves. The model results in a realistic melt-rate pattern given suitable data for the topography and ocean temperature, making it a promising tool for future simulations of the Antarctic Ice Sheet.
Renske C. de Winter, Thomas J. Reerink, Aimée B. A. Slangen, Hylke de Vries, Tamsin Edwards, and Roderik S. W. van de Wal
Nat. Hazards Earth Syst. Sci., 17, 2125–2141, https://doi.org/10.5194/nhess-17-2125-2017, https://doi.org/10.5194/nhess-17-2125-2017, 2017
Short summary
Short summary
This paper provides a full range of possible future sea levels on a regional scale, since it includes extreme, but possible, contributions to sea level change from dynamical mass loss from the Greenland and Antarctica ice sheets. In contrast to the symmetric distribution used in the IPCC report, it is found that an asymmetric distribution toward high sea level change values locally can increase the mean sea level by 1.8 m this century.
Lennert B. Stap, Roderik S. W. van de Wal, Bas de Boer, Richard Bintanja, and Lucas J. Lourens
Clim. Past, 13, 1243–1257, https://doi.org/10.5194/cp-13-1243-2017, https://doi.org/10.5194/cp-13-1243-2017, 2017
Short summary
Short summary
We show the results of transient simulations with a coupled climate–ice sheet model over the past 38 million years. The CO2 forcing of the model is inversely obtained from a benthic δ18O stack. These simulations enable us to study the influence of ice sheet variability on climate change on long timescales. We find that ice sheet–climate interaction strongly enhances Earth system sensitivity and polar amplification.
Michiel M. Helsen, Roderik S. W. van de Wal, Thomas J. Reerink, Richard Bintanja, Marianne S. Madsen, Shuting Yang, Qiang Li, and Qiong Zhang
The Cryosphere, 11, 1949–1965, https://doi.org/10.5194/tc-11-1949-2017, https://doi.org/10.5194/tc-11-1949-2017, 2017
Short summary
Short summary
Ice sheets reflect most incoming solar radiation back into space due to their high reflectivity (albedo). The albedo of ice sheets changes as a function of, for example, liquid water content and ageing of snow. In this study we have improved the description of albedo over the Greenland ice sheet in a global climate model. This is an important step, which also improves estimates of the annual ice mass gain or loss over the ice sheet using this global climate model.
Markella Prokopiou, Patricia Martinerie, Célia J. Sapart, Emmanuel Witrant, Guillaume Monteil, Kentaro Ishijima, Sophie Bernard, Jan Kaiser, Ingeborg Levin, Thomas Blunier, David Etheridge, Ed Dlugokencky, Roderik S. W. van de Wal, and Thomas Röckmann
Atmos. Chem. Phys., 17, 4539–4564, https://doi.org/10.5194/acp-17-4539-2017, https://doi.org/10.5194/acp-17-4539-2017, 2017
Short summary
Short summary
Nitrous oxide is the third most important anthropogenic greenhouse gas with an increasing mole fraction. To understand its natural and anthropogenic sources
we employ isotope measurements. Results show that while the N2O mole fraction increases, its heavy isotope content decreases. The isotopic changes observed underline the dominance of agricultural emissions especially at the early part of the record, whereas in the later decades the contribution from other anthropogenic sources increases.
Constantijn J. Berends and Roderik S. W. van de Wal
Geosci. Model Dev., 9, 4451–4460, https://doi.org/10.5194/gmd-9-4451-2016, https://doi.org/10.5194/gmd-9-4451-2016, 2016
Short summary
Short summary
This paper describes several improvements to the so-called "flood-fill algorithm" – a computer program widely known for its use in the "paint bucket" tool in several drawing programs such as MS Paint. However, it can also be used to determine the extent and depth of lakes in a topography map, which is useful in hydrology and climatology. In such cases, the default algorithm can be too slow to be of much use. Our improvements can make it up to 100 times faster, making it much more feasible.
Thomas J. Reerink, Willem Jan van de Berg, and Roderik S. W. van de Wal
Geosci. Model Dev., 9, 4111–4132, https://doi.org/10.5194/gmd-9-4111-2016, https://doi.org/10.5194/gmd-9-4111-2016, 2016
Short summary
Short summary
Ice sheets are part of the climate system and interact with the atmosphere and the ocean. OBLIMAP is a powerful tool to map climate fields between GCMs and ISMs (ice sheet models), which run on grids that differ in curvature, resolution and extent. OBLIMAP uses optimal aligned oblique projections, which minimize area distortions. OBLIMAP 2.0 allows for high-frequency embedded coupling and masked mapping. A fast search strategy realizes a huge performance gain and enables high-resolution mapping.
Xylar S. Asay-Davis, Stephen L. Cornford, Gaël Durand, Benjamin K. Galton-Fenzi, Rupert M. Gladstone, G. Hilmar Gudmundsson, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, Daniel F. Martin, Pierre Mathiot, Frank Pattyn, and Hélène Seroussi
Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, https://doi.org/10.5194/gmd-9-2471-2016, 2016
Short summary
Short summary
Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of ice sheets and glaciers, including assessing their contributions to sea level change. Here we describe the idealized experiments that make up three interrelated Model Intercomparison Projects (MIPs) for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities.
Peter Köhler, Lennert B. Stap, Anna S. von der Heydt, Bas de Boer, and Roderik S. W. van de Wal
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-23, https://doi.org/10.5194/cp-2016-23, 2016
Revised manuscript not accepted
Short summary
Short summary
Evidence indicate that specific equilibrium climate sensitivity, the global annual mean surface temperature change as a response to a change in radiative forcing, is state dependent. We here show that the interpretation of data in the state-dependent case is not straightforward. We analyse the differences of a point-wise approach and one based on a piece-wise linear analysis, combine both, compare with potential model results and apply the theoretical concepts to data of the last 800 kyr.
P. Köhler, B. de Boer, A. S. von der Heydt, L. B. Stap, and R. S. W. van de Wal
Clim. Past, 11, 1801–1823, https://doi.org/10.5194/cp-11-1801-2015, https://doi.org/10.5194/cp-11-1801-2015, 2015
Short summary
Short summary
We find that the specific equilibrium climate sensitivity due to radiative forcing of CO2 and land ice albedo has been state-dependent for the last 2.1Myr (most of the Pleistocene). Its value is ~45% larger during intermediate glaciated climates and interglacial periods than during Pleistocene full glacial conditions. The state dependency is mainly caused by a latitudinal dependency in ice sheet area changes. Due to uncertainties in CO2, firm conclusions for the Pliocene are not yet possible.
B. Noël, W. J. van de Berg, E. van Meijgaard, P. Kuipers Munneke, R. S. W. van de Wal, and M. R. van den Broeke
The Cryosphere, 9, 1831–1844, https://doi.org/10.5194/tc-9-1831-2015, https://doi.org/10.5194/tc-9-1831-2015, 2015
Short summary
Short summary
We compare Greenland Ice Sheet surface mass balance (SMB) from the updated polar version of the regional climate model RACMO2.3 and the previous version 2.1. RACMO2.3 has an adjusted rainfall-to-snowfall conversion favouring summer snowfall over rainfall. Enhanced summer snowfall reduce melt rates in the ablation zone by covering dark ice with highly reflective fresh snow. This improves the modelled SMB-elevation gradient and surface energy balance compared to observations in west Greenland.
D. Jansen, A. J. Luckman, A. Cook, S. Bevan, B. Kulessa, B. Hubbard, and P. R. Holland
The Cryosphere, 9, 1223–1227, https://doi.org/10.5194/tc-9-1223-2015, https://doi.org/10.5194/tc-9-1223-2015, 2015
Short summary
Short summary
Within the last year, a large rift in the southern part of the Larsen C Ice Shelf, Antarctic Peninsula, propagated towards the inner part of the ice shelf. In this study we present the development of the rift as derived from remote sensing data and assess the impact of possible calving scenarios on the future stability of the Larsen C Ice Shelf, using a numerical model. We find that the calving front is likely to become unstable after the anticipated calving events.
L. G. van der Wel, H. A. Been, R. S. W. van de Wal, C. J. P. P. Smeets, and H. A. J. Meijer
The Cryosphere, 9, 1089–1103, https://doi.org/10.5194/tc-9-1089-2015, https://doi.org/10.5194/tc-9-1089-2015, 2015
Short summary
Short summary
We performed 2H isotope diffusion measurements in the upper 3 metres of firn at Summit, Greenland, by following over a 4-year period isotope-enriched snow that we deposited.
We found that the diffusion process was much less rapid than in the most commonly used model. We discuss several aspects of the diffusion process that are still poorly constrained and might lead to this discrepancy. Quantitative knowledge of diffusion is necessary for use of the diffusion process itself as a climate proxy.
B. de Boer, A. M. Dolan, J. Bernales, E. Gasson, H. Goelzer, N. R. Golledge, J. Sutter, P. Huybrechts, G. Lohmann, I. Rogozhina, A. Abe-Ouchi, F. Saito, and R. S. W. van de Wal
The Cryosphere, 9, 881–903, https://doi.org/10.5194/tc-9-881-2015, https://doi.org/10.5194/tc-9-881-2015, 2015
Short summary
Short summary
We present results from simulations of the Antarctic ice sheet by means of an intercomparison project with six ice-sheet models. Our results demonstrate the difficulty of all models used here to simulate a significant retreat or re-advance of the East Antarctic ice grounding line. Improved grounding-line physics could be essential for a correct representation of the migration of the grounding line of the Antarctic ice sheet during the Pliocene.
R. S. W. van de Wal, C. J. P. P. Smeets, W. Boot, M. Stoffelen, R. van Kampen, S. H. Doyle, F. Wilhelms, M. R. van den Broeke, C. H. Reijmer, J. Oerlemans, and A. Hubbard
The Cryosphere, 9, 603–611, https://doi.org/10.5194/tc-9-603-2015, https://doi.org/10.5194/tc-9-603-2015, 2015
Short summary
Short summary
This paper addresses the feedback between ice flow and melt rates. Using 20 years of data covering the whole ablation area, we show that there is not a strong positive correlation between annual ice velocities and melt rates. Rapid variations around the equilibrium line indicate the possibility of rapid variations high on the ice sheet.
S. J. Koenig, A. M. Dolan, B. de Boer, E. J. Stone, D. J. Hill, R. M. DeConto, A. Abe-Ouchi, D. J. Lunt, D. Pollard, A. Quiquet, F. Saito, J. Savage, and R. van de Wal
Clim. Past, 11, 369–381, https://doi.org/10.5194/cp-11-369-2015, https://doi.org/10.5194/cp-11-369-2015, 2015
Short summary
Short summary
The paper assess the Greenland Ice Sheet’s sensitivity to a warm period in the past, a time when atmospheric CO2 concentrations were comparable to current levels. We quantify ice sheet volume and locations in Greenland and find that the ice sheets are less sensitive to differences in ice sheet model configurations than to changes in imposed climate forcing. We conclude that Pliocene ice was most likely to be limited to highest elevations in eastern and southern Greenland.
P. M. Alexander, M. Tedesco, X. Fettweis, R. S. W. van de Wal, C. J. P. P. Smeets, and M. R. van den Broeke
The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, https://doi.org/10.5194/tc-8-2293-2014, 2014
L. B. Stap, R. S. W. van de Wal, B. de Boer, R. Bintanja, and L. J. Lourens
Clim. Past, 10, 2135–2152, https://doi.org/10.5194/cp-10-2135-2014, https://doi.org/10.5194/cp-10-2135-2014, 2014
B. de Boer, P. Stocchi, and R. S. W. van de Wal
Geosci. Model Dev., 7, 2141–2156, https://doi.org/10.5194/gmd-7-2141-2014, https://doi.org/10.5194/gmd-7-2141-2014, 2014
A. B. A. Slangen, R. S. W. van de Wal, Y. Wada, and L. L. A. Vermeersen
Earth Syst. Dynam., 5, 243–255, https://doi.org/10.5194/esd-5-243-2014, https://doi.org/10.5194/esd-5-243-2014, 2014
A. A. Petty, P. R. Holland, and D. L. Feltham
The Cryosphere, 8, 761–783, https://doi.org/10.5194/tc-8-761-2014, https://doi.org/10.5194/tc-8-761-2014, 2014
A. M. Brisbourne, A. M. Smith, E. C. King, K. W. Nicholls, P. R. Holland, and K. Makinson
The Cryosphere, 8, 1–13, https://doi.org/10.5194/tc-8-1-2014, https://doi.org/10.5194/tc-8-1-2014, 2014
P. Dutrieux, D. G. Vaughan, H. F. J. Corr, A. Jenkins, P. R. Holland, I. Joughin, and A. H. Fleming
The Cryosphere, 7, 1543–1555, https://doi.org/10.5194/tc-7-1543-2013, https://doi.org/10.5194/tc-7-1543-2013, 2013
M. M. Helsen, W. J. van de Berg, R. S. W. van de Wal, M. R. van den Broeke, and J. Oerlemans
Clim. Past, 9, 1773–1788, https://doi.org/10.5194/cp-9-1773-2013, https://doi.org/10.5194/cp-9-1773-2013, 2013
M. M. Helsen, R. S. W. van de Wal, M. R. van den Broeke, W. J. van de Berg, and J. Oerlemans
The Cryosphere, 6, 255–272, https://doi.org/10.5194/tc-6-255-2012, https://doi.org/10.5194/tc-6-255-2012, 2012
R. S. W. van de Wal, B. de Boer, L. J. Lourens, P. Köhler, and R. Bintanja
Clim. Past, 7, 1459–1469, https://doi.org/10.5194/cp-7-1459-2011, https://doi.org/10.5194/cp-7-1459-2011, 2011
A. B. A. Slangen and R. S. W. van de Wal
The Cryosphere, 5, 673–686, https://doi.org/10.5194/tc-5-673-2011, https://doi.org/10.5194/tc-5-673-2011, 2011
D. Liebrand, L. J. Lourens, D. A. Hodell, B. de Boer, R. S. W. van de Wal, and H. Pälike
Clim. Past, 7, 869–880, https://doi.org/10.5194/cp-7-869-2011, https://doi.org/10.5194/cp-7-869-2011, 2011
I. G. M. Wientjes, R. S. W. Van de Wal, G. J. Reichart, A. Sluijs, and J. Oerlemans
The Cryosphere, 5, 589–601, https://doi.org/10.5194/tc-5-589-2011, https://doi.org/10.5194/tc-5-589-2011, 2011
M. R. van den Broeke, C. J. P. P. Smeets, and R. S. W. van de Wal
The Cryosphere, 5, 377–390, https://doi.org/10.5194/tc-5-377-2011, https://doi.org/10.5194/tc-5-377-2011, 2011
M. A. G. den Ouden, C. H. Reijmer, V. Pohjola, R. S. W. van de Wal, J. Oerlemans, and W. Boot
The Cryosphere, 4, 593–604, https://doi.org/10.5194/tc-4-593-2010, https://doi.org/10.5194/tc-4-593-2010, 2010
T. J. Reerink, M. A. Kliphuis, and R. S. W. van de Wal
Geosci. Model Dev., 3, 13–41, https://doi.org/10.5194/gmd-3-13-2010, https://doi.org/10.5194/gmd-3-13-2010, 2010
M. van den Broeke, P. Smeets, J. Ettema, C. van der Veen, R. van de Wal, and J. Oerlemans
The Cryosphere, 2, 179–189, https://doi.org/10.5194/tc-2-179-2008, https://doi.org/10.5194/tc-2-179-2008, 2008
J. Oerlemans, M. Dyurgerov, and R. S. W. van de Wal
The Cryosphere, 1, 59–65, https://doi.org/10.5194/tc-1-59-2007, https://doi.org/10.5194/tc-1-59-2007, 2007
J. O. Sewall, R. S. W. van de Wal, K. van der Zwan, C. van Oosterhout, H. A. Dijkstra, and C. R. Scotese
Clim. Past, 3, 647–657, https://doi.org/10.5194/cp-3-647-2007, https://doi.org/10.5194/cp-3-647-2007, 2007
Related subject area
Discipline: Ice sheets | Subject: Ocean Interactions
Local forcing mechanisms challenge parameterizations of ocean thermal forcing for Greenland tidewater glaciers
Basal melt rates and ocean circulation under the Ryder Glacier ice tongue and their response to climate warming: a high-resolution modelling study
Can rifts alter ocean dynamics beneath ice shelves?
Large-eddy simulations of the ice-shelf–ocean boundary layer near the ice front of Nansen Ice Shelf, Antarctica
The impact of tides on Antarctic ice shelf melting
Layered seawater intrusion and melt under grounded ice
The Antarctic Coastal Current in the Bellingshausen Sea
Surface emergence of glacial plumes determined by fjord stratification
Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution
Exploring mechanisms responsible for tidal modulation in flow of the Filchner–Ronne Ice Shelf
Melt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciers
Sensitivity of a calving glacier to ice–ocean interactions under climate change: new insights from a 3-D full-Stokes model
Brief communication: PICOP, a new ocean melt parameterization under ice shelves combining PICO and a plume model
Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing
Grounding line migration through the calving season at Jakobshavn Isbræ, Greenland, observed with terrestrial radar interferometry
Alexander O. Hager, David A. Sutherland, and Donald A. Slater
The Cryosphere, 18, 911–932, https://doi.org/10.5194/tc-18-911-2024, https://doi.org/10.5194/tc-18-911-2024, 2024
Short summary
Short summary
Warming ocean temperatures cause considerable ice loss from the Greenland Ice Sheet; however climate models are unable to resolve the complex ocean processes within fjords that influence near-glacier ocean temperatures. Here, we use a computer model to test the accuracy of assumptions that allow climate and ice sheet models to project near-glacier ocean temperatures, and thus glacier melt, into the future. We then develop new methods that improve accuracy by accounting for local ocean processes.
Jonathan Wiskandt, Inga Monika Koszalka, and Johan Nilsson
The Cryosphere, 17, 2755–2777, https://doi.org/10.5194/tc-17-2755-2023, https://doi.org/10.5194/tc-17-2755-2023, 2023
Short summary
Short summary
Understanding ice–ocean interactions under floating ice tongues in Greenland and Antarctica is a major challenge in climate modelling and a source of uncertainty in future sea level projections. We use a high-resolution ocean model to investigate basal melting and melt-driven circulation under the floating tongue of Ryder Glacier, northwestern Greenland. We study the response to oceanic and atmospheric warming. Our results are universal and relevant for the development of climate models.
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023, https://doi.org/10.5194/tc-17-2261-2023, 2023
Short summary
Short summary
Rifts are fractures on ice shelves that connect the ice on top to the ocean below. The impact of rifts on ocean circulation below Antarctic ice shelves has been largely unexplored as ocean models are commonly run at resolutions that are too coarse to resolve the presence of rifts. Our model simulations show that a kilometer-wide rift near the ice-shelf front modulates heat intrusion beneath the ice and inhibits basal melt. These processes are therefore worthy of further investigation.
Ji Sung Na, Taekyun Kim, Emilia Kyung Jin, Seung-Tae Yoon, Won Sang Lee, Sukyoung Yun, and Jiyeon Lee
The Cryosphere, 16, 3451–3468, https://doi.org/10.5194/tc-16-3451-2022, https://doi.org/10.5194/tc-16-3451-2022, 2022
Short summary
Short summary
Beneath the Antarctic ice shelf, sub-ice-shelf plume flow that can cause turbulent mixing exists. In this study, we investigate how this flow affects ocean dynamics and ice melting near the ice front. Our results obtained by validated simulation show that higher turbulence intensity results in vigorous ice melting due to the high heat entrainment. Moreover, this flow with meltwater created by this flow highly affects the ocean overturning circulations near the ice front.
Ole Richter, David E. Gwyther, Matt A. King, and Benjamin K. Galton-Fenzi
The Cryosphere, 16, 1409–1429, https://doi.org/10.5194/tc-16-1409-2022, https://doi.org/10.5194/tc-16-1409-2022, 2022
Short summary
Short summary
Tidal currents may play an important role in Antarctic ice sheet retreat by changing the rate at which the ocean melts glaciers. Here, using a computational ocean model, we derive the first estimate of present-day tidal melting that covers all of Antarctica. Our results suggest that large-scale ocean models aiming to accurately predict ice melt rates will need to account for the effects of tides. The inclusion of tide-induced friction at the ice–ocean interface should be prioritized.
Alexander A. Robel, Earle Wilson, and Helene Seroussi
The Cryosphere, 16, 451–469, https://doi.org/10.5194/tc-16-451-2022, https://doi.org/10.5194/tc-16-451-2022, 2022
Short summary
Short summary
Warm seawater may intrude as a thin layer below glaciers in contact with the ocean. Mathematical theory predicts that this intrusion may extend over distances of kilometers under realistic conditions. Computer models demonstrate that if this warm seawater causes melting of a glacier bottom, it can cause rates of glacier ice loss and sea level rise to be up to 2 times faster in response to potential future ocean warming.
Ryan Schubert, Andrew F. Thompson, Kevin Speer, Lena Schulze Chretien, and Yana Bebieva
The Cryosphere, 15, 4179–4199, https://doi.org/10.5194/tc-15-4179-2021, https://doi.org/10.5194/tc-15-4179-2021, 2021
Short summary
Short summary
The Antarctic Coastal Current (AACC) is an ocean current found along the coast of Antarctica. Using measurements of temperature and salinity collected by instrumented seals, the AACC is shown to be a continuous circulation feature throughout West Antarctica. Due to its proximity to the coast, the AACC's structure influences oceanic melting of West Antarctic ice shelves. These melt rates impact the stability of the West Antarctic Ice Sheet with global implications for future sea level change.
Eva De Andrés, Donald A. Slater, Fiamma Straneo, Jaime Otero, Sarah Das, and Francisco Navarro
The Cryosphere, 14, 1951–1969, https://doi.org/10.5194/tc-14-1951-2020, https://doi.org/10.5194/tc-14-1951-2020, 2020
Short summary
Short summary
Buoyant plumes at tidewater glaciers result from localized subglacial discharges of surface melt. They promote glacier submarine melting and influence the delivery of nutrients to the fjord's surface waters. Combining plume theory with observations, we have found that increased fjord stratification, which is due to larger meltwater content, prevents the vertical growth of the plume and buffers submarine melting. We discuss the implications for nutrient fluxes, CO2 trapping and water export.
Donald A. Slater, Denis Felikson, Fiamma Straneo, Heiko Goelzer, Christopher M. Little, Mathieu Morlighem, Xavier Fettweis, and Sophie Nowicki
The Cryosphere, 14, 985–1008, https://doi.org/10.5194/tc-14-985-2020, https://doi.org/10.5194/tc-14-985-2020, 2020
Short summary
Short summary
Changes in the ocean around Greenland play an important role in determining how much the ice sheet will contribute to global sea level over the coming century. However, capturing these links in models is very challenging. This paper presents a strategy enabling an ensemble of ice sheet models to feel the effect of the ocean for the first time and should therefore result in a significant improvement in projections of the Greenland ice sheet's contribution to future sea level change.
Sebastian H. R. Rosier and G. Hilmar Gudmundsson
The Cryosphere, 14, 17–37, https://doi.org/10.5194/tc-14-17-2020, https://doi.org/10.5194/tc-14-17-2020, 2020
Short summary
Short summary
The flow of ice shelves is now known to be strongly affected by ocean tides, but the mechanism by which this happens is unclear. We use a viscoelastic model to try to reproduce observations of this behaviour on the Filchner–Ronne Ice Shelf in Antarctica. We find that tilting of the ice shelf explains the short-period behaviour, while tidally induced movement of the grounding line (the boundary between grounded and floating ice) explains the more complex long-period response.
David A. Lilien, Ian Joughin, Benjamin Smith, and Noel Gourmelen
The Cryosphere, 13, 2817–2834, https://doi.org/10.5194/tc-13-2817-2019, https://doi.org/10.5194/tc-13-2817-2019, 2019
Short summary
Short summary
We used a number of computer simulations to understand the recent retreat of a rapidly changing group of glaciers in West Antarctica. We found that significant melt underneath the floating extensions of the glaciers, driven by relatively warm ocean water at depth, was likely needed to cause the large retreat that has been observed. If melt continues around current rates, retreat is likely to continue through the coming century and extend beyond the present-day drainage area of these glaciers.
Joe Todd, Poul Christoffersen, Thomas Zwinger, Peter Råback, and Douglas I. Benn
The Cryosphere, 13, 1681–1694, https://doi.org/10.5194/tc-13-1681-2019, https://doi.org/10.5194/tc-13-1681-2019, 2019
Short summary
Short summary
The Greenland Ice Sheet loses 30 %–60 % of its ice due to iceberg calving. Calving processes and their links to climate are not well understood or incorporated into numerical models of glaciers. Here we use a new 3-D calving model to investigate calving at Store Glacier, West Greenland, and test its sensitivity to increased submarine melting and reduced support from ice mélange (sea ice and icebergs). We find Store remains fairly stable despite these changes, but less so in the southern side.
Tyler Pelle, Mathieu Morlighem, and Johannes H. Bondzio
The Cryosphere, 13, 1043–1049, https://doi.org/10.5194/tc-13-1043-2019, https://doi.org/10.5194/tc-13-1043-2019, 2019
Short summary
Short summary
How ocean-induced melt under floating ice shelves will change as ocean currents evolve remains a big uncertainty in projections of sea level rise. In this study, we combine two of the most recently developed melt models to form PICOP, which overcomes the limitations of past models and produces accurate ice shelf melt rates. We find that our model is easy to set up and computationally efficient, providing researchers an important tool to improve the accuracy of their future glacial projections.
Chad A. Greene, Duncan A. Young, David E. Gwyther, Benjamin K. Galton-Fenzi, and Donald D. Blankenship
The Cryosphere, 12, 2869–2882, https://doi.org/10.5194/tc-12-2869-2018, https://doi.org/10.5194/tc-12-2869-2018, 2018
Short summary
Short summary
We show that Totten Ice Shelf accelerates each spring in response to the breakup of seasonal landfast sea ice at the ice shelf calving front. The previously unreported seasonal flow variability may have aliased measurements in at least one previous study of Totten's response to ocean forcing on interannual timescales. The role of sea ice in buttressing the flow of the ice shelf implies that long-term changes in sea ice cover could have impacts on the mass balance of the East Antarctic Ice Sheet.
Surui Xie, Timothy H. Dixon, Denis Voytenko, Fanghui Deng, and David M. Holland
The Cryosphere, 12, 1387–1400, https://doi.org/10.5194/tc-12-1387-2018, https://doi.org/10.5194/tc-12-1387-2018, 2018
Short summary
Short summary
Time-varying velocity and topography of the terminus of Jakobshavn Isbræ were observed with a terrestrial radar interferometer in three summer campaigns (2012, 2015, 2016). Surface elevation and tidal responses of ice speed suggest a narrow floating zone in early summer, while in late summer the entire glacier is likely grounded. We hypothesize that Jakobshavn Isbræ advances a few km in winter to form a floating zone but loses this floating portion in the subsequent summer through calving.
Cited articles
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.:
Interannual variations in meltwater input to the Southern Ocean from
Antarctic ice shelves, Nat. Geosci., 13, 616–620,
https://doi.org/10.1038/s41561-020-0616-z, 2020. a, b, c
Alley, K. E., Scambos, T. A., Siegfried, M. R., and Fricker, H. A.: Impacts of
warm water on Antarctic ice shelf stability through basal channel
formation, Nat. Geosci., 9, 290–293, https://doi.org/10.1038/ngeo2675, 2016. a, b, c, d
Alley, K. E., Scambos, T. A., Alley, R. B., and Holschuh, N.: Troughs developed
in ice-stream shear margins precondition ice shelves for ocean-driven
breakup, Sci. Adv., 5, eaax2215, https://doi.org/10.1126/sciadv.aax2215, 2019. a, b, c, d
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a, b, c, d
Berger, S., Drews, R., Helm, V., Sun, S., and Pattyn, F.: Detecting high spatial variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica, The Cryosphere, 11, 2675–2690, https://doi.org/10.5194/tc-11-2675-2017, 2017. a
Bull, C. Y. S., Jenkins, A., Jourdain, N. C., Vaňková, I., Holland, P. R.,
Mathiot, P., Hausmann, U., and Sallée, J.-B.: Remote Control of
Filchner-Ronne Ice Shelf Melt Rates by the Antarctic Slope
Current, J. Geophys. Res.-Oceans, 126, e2020JC016550,
https://doi.org/10.1029/2020JC016550, 2021. a, b
Carrere, L., Lyard, F., Cancet, M., Guillot, A., and Roblou, L.: FES 2012:
A New Global Tidal Model Taking Advantage of Nearly 20
Years of Altimetry, in: Proceedings of the 20 years of progress in radar altimetry symposium, Venice, 1–20,
https://ui.adsabs.harvard.edu/abs/2013ESASP.710E..13C (last access: 2 August 2023), 2013. a
Davis, P. E. D., Nicholls, K. W., Holland, D. M., Schmidt, B. E., Washam, P.,
Riverman, K. L., Arthern, R. J., Vaňková, I., Eayrs, C., Smith, J. A.,
Anker, P. G. D., Mullen, A. D., Dichek, D., Lawrence, J. D., Meister, M. M.,
Clyne, E., Basinski-Ferris, A., Rignot, E., Queste, B. Y., Boehme, L.,
Heywood, K. J., Anandakrishnan, S., and Makinson, K.: Suppressed basal
melting in the eastern Thwaites Glacier grounding zone, Nature, 614,
479–485, https://doi.org/10.1038/s41586-022-05586-0, 2023. a
Dutrieux, P., Vaughan, D. G., Corr, H. F. J., Jenkins, A., Holland, P. R., Joughin, I., and Fleming, A. H.: Pine Island glacier ice shelf melt distributed at kilometre scales, The Cryosphere, 7, 1543–1555, https://doi.org/10.5194/tc-7-1543-2013, 2013. a, b, c, d
Dutrieux, P., Rydt, J. D., Jenkins, A., Holland, P. R., Ha, H. K., Lee, S. H.,
Steig, E. J., Ding, Q., Abrahamsen, E. P., and Schröder, M.: Strong
Sensitivity of Pine Island Ice-Shelf Melting to Climatic
Variability, Science, 343, 174–178, https://doi.org/10.1126/science.1244341, 2014. a, b
Favier, L., Jourdain, N. C., Jenkins, A., Merino, N., Durand, G., Gagliardini, O., Gillet-Chaulet, F., and Mathiot, P.: Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3) , Geosci. Model Dev., 12, 2255–2283, https://doi.org/10.5194/gmd-12-2255-2019, 2019. a, b, c, d, e
Feldmann, J., Reese, R., Winkelmann, R., and Levermann, A.: Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations, The Cryosphere, 16, 1927–1940, https://doi.org/10.5194/tc-16-1927-2022, 2022. a, b
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout,
S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G.,
Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B.,
Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level
Change, in: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte,
V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y.,
Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R.,
Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., 1211–1362,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/9781009157896.011, 2021. a
Gaspar, P.: Modeling the Seasonal Cycle of the Upper Ocean, J.
Phys. Oceanogr., 18, 161–180,
https://doi.org/10.1175/1520-0485(1988)018<0161:MTSCOT>2.0.CO;2, 1988. a
Goldberg, D. N. and Holland, P. R.: The Relative Impacts of
Initialization and Climate Forcing in Coupled Ice Sheet-Ocean
Modeling: Application to Pope, Smith, and Kohler Glaciers,
J. Geophys. Res.-Earth, 127, e2021JF006570,
https://doi.org/10.1029/2021JF006570, 2022. a
Goldberg, D. N., Smith, T. A., Narayanan, S. H. K., Heimbach, P., and
Morlighem, M.: Bathymetric Influences on Antarctic Ice-Shelf Melt
Rates, J. Geophys. Res.-Oceans, 125, e2020JC016370,
https://doi.org/10.1029/2020JC016370, 2020. a
Gourmelen, N., Goldberg, D. N., Snow, K., Henley, S. F., Bingham, R. G.,
Kimura, S., Hogg, A. E., Shepherd, A., Mouginot, J., Lenaerts, J. T. M.,
Ligtenberg, S. R. M., and Berg, W. J. v. d.: Channelized Melting Drives
Thinning Under a Rapidly Melting Antarctic Ice Shelf,
Geophys. Res. Lett., 44, 9796–9804, https://doi.org/10.1002/2017GL074929,
2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Gudmundsson, G. H., Paolo, F. S., Adusumilli, S., and Fricker, H. A.:
Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves,
Geophys. Res. Lett., 46, 13903–13909,
https://doi.org/10.1029/2019GL085027, 2019. a
Hattermann, T., Nicholls, K. W., Hellmer, H. H., Davis, P. E. D., Janout,
M. A., Østerhus, S., Schlosser, E., Rohardt, G., and Kanzow, T.: Observed
interannual changes beneath Filchner-Ronne Ice Shelf linked to
large-scale atmospheric circulation, Nat. Commun., 12, 2961,
https://doi.org/10.1038/s41467-021-23131-x, 2021. a
Hausmann, U., Sallée, J.-B., Jourdain, N. C., Mathiot, P., Rousset, C., Madec,
G., Deshayes, J., and Hattermann, T.: The Role of Tides in Ocean-Ice
Shelf Interactions in the Southwestern Weddell Sea, J.
Geophys. Res.-Oceans, 125, e2019JC015847,
https://doi.org/10.1029/2019JC015847, 2020. a, b, c, d, e, f, g, h, i
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hewitt, H., Fox-Kemper, B., Pearson, B., Roberts, M., and Klocke, D.: The small
scales of the ocean may hold the key to surprises, Nat. Clim. Change, 12,
496–499, https://doi.org/10.1038/s41558-022-01386-6, 2022. a
Hewitt, I. J.: Subglacial Plumes, Annu. Rev. Fluid Mech., 52,
145–169, https://doi.org/10.1146/annurev-fluid-010719-060252, 2020. a
Holland, D. M. and Jenkins, A.: Modeling Thermodynamic Ice–Ocean
Interactions at the Base of an Ice Shelf, J. Phys.
Oceanogr., 29, 1787–1800,
https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2, 1999. a
Holland, D. M. and Jenkins, A.: Adaptation of an Isopycnic Coordinate
Ocean Model for the Study of Circulation beneath Ice Shelves,
Mon. Weather Rev., 129, 1905–1927,
https://doi.org/10.1175/1520-0493(2001)129<1905:AOAICO>2.0.CO;2, 2001. a
Holland, P. R. and Feltham, D. L.: Frazil dynamics and precipitation in a water
column with depth-dependent supercooling, J. Fluid Mech., 530,
101–124, https://doi.org/10.1017/S002211200400285X, 2005. a
Holland, P. R., Corr, H. F. J., Vaughan, D. G., Jenkins, A., and Skvarca, P.:
Marine ice in Larsen Ice Shelf, Geophys. Res. Lett., 36,
L11604, https://doi.org/10.1029/2009GL038162, 2009. a
Jenkins, A.: A one-dimensional model of ice shelf-ocean interaction,
J. Geophys. Res.-Oceans, 96, 20671–20677, https://doi.org/10.1029/91JC01842,
1991. a, b, c, d
Jenkins, A.: Convection-Driven Melting near the Grounding Lines of
Ice Shelves and Tidewater Glaciers, J. Phys. Oceanogr.,
41, 2279–2294, https://doi.org/10.1175/JPO-D-11-03.1, 2011. a
Jenkins, A., Corr, H. F. J., Nicholls, K. W., Stewart, C. L., and Doake, C.
S. M.: Interactions between ice and ocean observed with phase-sensitive radar
near an Antarctic ice-shelf grounding line, J. Glaciol., 52,
325–346, https://doi.org/10.3189/172756506781828502, 2006. a, b
Jenkins, A., Nicholls, K. W., and Corr, H. F. J.: Observation and
Parameterization of Ablation at the Base of Ronne Ice Shelf,
Antarctica, J. Phys. Oceanogr., 40, 2298–2312,
https://doi.org/10.1175/2010JPO4317.1, 2010. a, b, c
Jordan, J. R., Holland, P. R., Jenkins, A., Piggott, M. D., and Kimura, S.:
Modeling ice-ocean interaction in ice-shelf crevasses, J. Geophys.
Res.-Oceans, 119, 995–1008, https://doi.org/10.1002/2013JC009208, 2014. a, b
Jordan, J. R., Holland, P. R., Goldberg, D., Snow, K., Arthern, R., Campin,
J.-M., Heimbach, P., and Jenkins, A.: Ocean-Forced Ice-Shelf Thinning
in a Synchronously Coupled Ice-Ocean Model, J. Geophys.
Res.-Oceans, 123, 864–882, https://doi.org/10.1002/2017JC013251, 2018. a, b
Jourdain, N. C., Mathiot, P., Merino, N., Durand, G., Sommer, J. L., Spence,
P., Dutrieux, P., and Madec, G.: Ocean circulation and sea-ice thinning
induced by melting ice shelves in the Amundsen Sea, J.
Geophys. Res.-Oceans, 122, 2550–2573, https://doi.org/10.1002/2016JC012509,
2017. a, b
Jourdain, N. C., Asay-Davis, X., Hattermann, T., Straneo, F., Seroussi, H., Little, C. M., and Nowicki, S.: A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections, The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020, 2020. a, b
Khazendar, A. and Jenkins, A.: A model of marine ice formation within
Antarctic ice shelf rifts, J. Geophys. Res.-Oceans, 108,
3235, https://doi.org/10.1029/2002JC001673, 2003. a
Khazendar, A., Rignot, E., Schroeder, D. M., Seroussi, H., Schodlok, M. P.,
Scheuchl, B., Mouginot, J., Sutterley, T. C., and Velicogna, I.: Rapid
submarine ice melting in the grounding zones of ice shelves in West
Antarctica, Nat. Commun., 7, 13243, https://doi.org/10.1038/ncomms13243,
2016. a, b, c, d, e
Killworth, P. D. and Edwards, N. R.: A Turbulent Bottom Boundary Layer
Code for Use in Numerical Ocean Models, J. Phys.
Oceanogr., 29, 1221–1238,
https://doi.org/10.1175/1520-0485(1999)029<1221:ATBBLC>2.0.CO;2, 1999. a
Kimura, S., Jenkins, A., Regan, H., Holland, P. R., Assmann, K. M., Whitt,
D. B., Wessem, M. V., van de Berg, W. J., Reijmer, C. H., and Dutrieux, P.:
Oceanographic Controls on the Variability of Ice-Shelf Basal
Melting and Circulation of Glacial Meltwater in the Amundsen Sea
Embayment, Antarctica, J. Geophys. Res.-Oceans, 122,
10131–10155, https://doi.org/10.1002/2017JC012926, 2017. a
Lambert, E.: Data supporting “Modeling Antarctic ice shelf basal melt patterns using the one-Layer Antarctic model for Dynamical Downscaling of Ice–ocean Exchanges (LADDIE v1.0)”, Zenodo [data set], https://doi.org/10.5281/zenodo.8014160, 2023. a
Lambert, E. and Jesse, F.: LADDIE v1.0, Zenodo [code], https://doi.org/10.5281/zenodo.8199579, 2023. a
Lambert, E. and Jüling, A.: LADDIE model description paper, Zenodo [code], https://doi.org/10.5281/zenodo.8199587, 2023. a
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air–sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009. a
Lazeroms, W. M. J., Jenkins, A., Rienstra, S. W., and van de Wal, R. S. W.: An
Analytical Derivation of Ice-Shelf Basal Melt Based on the
Dynamics of Meltwater Plumes, J. Phys. Oceanogr., 49,
917–939, https://doi.org/10.1175/JPO-D-18-0131.1, 2019. a, b, c
Lhermitte, S., Sun, S., Shuman, C., Wouters, B., Pattyn, F., Wuite, J.,
Berthier, E., and Nagler, T.: Damage accelerates ice shelf instability and
mass loss in Amundsen Sea Embayment, P. Natl.
Acad. Sci. USA, 117, 24735–24741, https://doi.org/10.1073/pnas.1912890117,
2020. a, b
Lilien, D. A., Joughin, I., Smith, B., and Gourmelen, N.: Melt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciers, The Cryosphere, 13, 2817–2834, https://doi.org/10.5194/tc-13-2817-2019, 2019. a
MacAyeal, D. R., Rignot, E., and Hulbe, C. L.: Ice-shelf dynamics near the
front of the Filchner-Ronne Ice Shelf, Antaretica, revealed by
SAR interferometry: model/interferogram comparison, J. Glaciol.,
44, 419–428, https://doi.org/10.3189/S0022143000002744, 1998. a
Madec, G., Bourdallé-Badie, R., Chanut, J., Clementi, E., Coward, A., Ethé,
C., Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S.,
Mocavero, S., Rousset, C., Storkey, D., Vancoppenolle, M., Müller, S.,
Nurser, G., Bell, M., and Samson, G.: NEMO ocean engine,
Zenodo, https://doi.org/10.5281/zenodo.1464816, 2019. a, b
Makinson, K., Holland, P. R., Jenkins, A., Nicholls, K. W., and Holland, D. M.:
Influence of tides on melting and freezing beneath Filchner-Ronne Ice
Shelf, Antarctica, Geophys. Res. Lett., 38, L06601,
https://doi.org/10.1029/2010GL046462, 2011. a, b, c
Marsh, O. J., Fricker, H. A., Siegfried, M. R., Christianson, K., Nicholls,
K. W., Corr, H. F. J., and Catania, G.: High basal melting forming a channel
at the grounding line of Ross Ice Shelf, Antarctica, Geophys.
Res. Lett., 43, 250–255, https://doi.org/10.1002/2015GL066612, 2016. a
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J., Bueso-Bello,
J. L., Prats-Iraola, P., and Dini, L.: Rapid glacier retreat rates observed
in West Antarctica, Nat. Geosci., 15, 48–53,
https://doi.org/10.1038/s41561-021-00877-z, 2022. a, b
Millgate, T., Holland, P. R., Jenkins, A., and Johnson, H. L.: The effect of
basal channels on oceanic ice-shelf melting, J. Geophys. Res.-Oceans, 118, 6951–6964, https://doi.org/10.1002/2013JC009402, 2013. a
Moholdt, G., Padman, L., and Fricker, H. A.: Basal mass budget of Ross and
Filchner-Ronne ice shelves, Antarctica, derived from Lagrangian
analysis of ICESat altimetry, J. Geophys. Res.-Earth, 119, 2361–2380, https://doi.org/10.1002/2014JF003171, 2014. a, b, c
Moorman, R., Morrison, A. K., and Hogg, A. M.: Thermal Responses to
Antarctic Ice Shelf Melt in an Eddy-Rich Global Ocean–Sea
Ice Model, J. Climate, 33, 6599–6620,
https://doi.org/10.1175/JCLI-D-19-0846.1, 2020. a
Morlighem, M.: MEaSUREs BedMachine Antarctica, Version 2.0, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder,
Colorado USA [data set],
https://doi.org/10.5067/E1QL9HFQ7A8M, 2020. a
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G.,
Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum,
J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert,
A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan, R.,
Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A.,
Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., Broeke, M. R. v. d.,
Ommen, T. D. v., Wessem, M. v., and Young, D. A.: Deep glacial troughs and
stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet,
Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020. a, b, c, d
Morrison, A. K., Hogg, A. M., England, M. H., and Spence, P.: Warm
Circumpolar Deep Water transport toward Antarctica driven by local
dense water export in canyons, Sci. Adv., 6, eaav2516,
https://doi.org/10.1126/sciadv.aav2516, 2020. a
Nakayama, Y., Manucharyan, G., Zhang, H., Dutrieux, P., Torres, H. S., Klein,
P., Seroussi, H., Schodlok, M., Rignot, E., and Menemenlis, D.: Pathways of
ocean heat towards Pine Island and Thwaites grounding lines, Sci.
Rep.-UK, 9, 16649, https://doi.org/10.1038/s41598-019-53190-6, 2019. a
Nakayama, Y., Greene, C. A., Paolo, F. S., Mensah, V., Zhang, H., Kashiwase,
H., Simizu, D., Greenbaum, J. S., Blankenship, D. D., Abe-Ouchi, A., and
Aoki, S.: Antarctic Slope Current Modulates Ocean Heat Intrusions
Towards Totten Glacier, Geophys. Res. Lett., 48,
e2021GL094149, https://doi.org/10.1029/2021GL094149, 2021. a
Naughten, K. A., De Rydt, J., Rosier, S. H. R., Jenkins, A., Holland, P. R.,
and Ridley, J. K.: Two-timescale response of a large Antarctic ice shelf to
climate change, Nat. Commun., 12, 1991,
https://doi.org/10.1038/s41467-021-22259-0, 2021. a, b, c
Naughten, K. A., Holland, P. R., Dutrieux, P., Kimura, S., Bett, D. T., and
Jenkins, A.: Simulated Twentieth-Century Ocean Warming in the
Amundsen Sea, West Antarctica, Geophys. Res. Lett., 49,
e2021GL094566, https://doi.org/10.1029/2021GL094566, 2022. a, b, c
Nicholls, K. W., Østerhus, S., Makinson, K., Gammelsrød, T., and Fahrbach,
E.: Ice-ocean processes over the continental shelf of the southern Weddell
Sea, Antarctica: A review, Rev. Geophys., 47, RG3003,
https://doi.org/10.1029/2007RG000250, 2009. a, b, c
Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A.,
Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R., Ghosh, T., Hay,
J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level
Rise and Implications for Low-Lying Islands, Coasts and
Communities, in: IPCC Special Report on the Ocean and Cryosphere
in a Changing Climate, edited by: Pörtner, H.-O.,
Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E.,
Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M., 321–445, Cambridge University Press,
Cambridge, UK and New York, NY, USA,
https://doi.org/10.1017/9781009157964.006,
2019. a
Payne, A. J., Holland, P. R., Shepherd, A. P., Rutt, I. C., Jenkins, A., and
Joughin, I.: Numerical modeling of ocean-ice interactions under Pine
Island Bay's ice shelf, J. Geophys. Res.-Oceans, 112, C10019,
https://doi.org/10.1029/2006JC003733, 2007. a, b
Pelle, T., Morlighem, M., and Bondzio, J. H.: Brief communication: PICOP, a new ocean melt parameterization under ice shelves combining PICO and a plume model, The Cryosphere, 13, 1043–1049, https://doi.org/10.5194/tc-13-1043-2019, 2019. a
Pelletier, C., Fichefet, T., Goosse, H., Haubner, K., Helsen, S., Huot, P.-V., Kittel, C., Klein, F., Le clec'h, S., van Lipzig, N. P. M., Marchi, S., Massonnet, F., Mathiot, P., Moravveji, E., Moreno-Chamarro, E., Ortega, P., Pattyn, F., Souverijns, N., Van Achter, G., Vanden Broucke, S., Vanhulle, A., Verfaillie, D., and Zipf, L.: PARASO, a circum-Antarctic fully coupled ice-sheet–ocean–sea-ice–atmosphere–land model involving f.ETISh1.7, NEMO3.6, LIM3.6, COSMO5.0 and CLM4.5, Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, 2022. a
Reese, R., Albrecht, T., Mengel, M., Asay-Davis, X., and Winkelmann, R.: Antarctic sub-shelf melt rates via PICO, The Cryosphere, 12, 1969–1985, https://doi.org/10.5194/tc-12-1969-2018, 2018a. a, b, c
Reese, R., Gudmundsson, G. H., Levermann, A., and Winkelmann, R.: The far reach
of ice-shelf thinning in Antarctica, Nat. Clim. Change, 8, 53–57,
https://doi.org/10.1038/s41558-017-0020-x, 2018b. a
Richter, O., Gwyther, D. E., Galton-Fenzi, B. K., and Naughten, K. A.: The Whole Antarctic Ocean Model (WAOM v1.0): development and evaluation, Geosci. Model Dev., 15, 617–647, https://doi.org/10.5194/gmd-15-617-2022, 2022. a
Rignot, E. and Jacobs, S. S.: Rapid Bottom Melting Widespread near
Antarctic Ice Sheet Grounding Lines, Science, 296, 2020–2023,
https://doi.org/10.1126/science.1070942, 2002. a
Rosevear, M. G., Gayen, B., and Galton-Fenzi, B. K.: The role of
double-diffusive convection in basal melting of Antarctic ice shelves,
P. Natl. Acad. Sci. USA, 118, e2007541118,
https://doi.org/10.1073/pnas.2007541118, 2021. a
Rosevear, M. G., Gayen, B., and Galton-Fenzi, B. K.: Regimes and transitions in
the basal melting of Antarctic ice shelves, J. Phys.
Oceanogr., 1, 2589–2608, https://doi.org/10.1175/JPO-D-21-0317.1, 2022. a
Sandhäger, H., Vaughan, D. G., and Lambrecht, A.: Meteoric, marine and total
ice thickness maps of Filchner-Ronne-Schelfeis, Antarctica, FRISP Report No. 15, 23–30,
2004. a
Scheuchl, B., Mouginot, J., Rignot, E., Morlighem, M., and Khazendar, A.:
Grounding line retreat of Pope, Smith, and Kohler Glaciers, West
Antarctica, measured with Sentinel-1a radar interferometry data,
Geophys. Res. Lett., 43, 8572–8579, https://doi.org/10.1002/2016GL069287,
2016. a
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and
hysteresis, J. Geophys. Res.-Earth, 112, F03S28,
https://doi.org/10.1029/2006JF000664, 2007. a
Sergienko, O. V.: Basal channels on ice shelves, J. Geophys. Res.-Earth, 118, 1342–1355, https://doi.org/10.1002/jgrf.20105, 2013. a, b
Seroussi, H. and Morlighem, M.: Representation of basal melting at the grounding line in ice flow models, The Cryosphere, 12, 3085–3096, https://doi.org/10.5194/tc-12-3085-2018, 2018. a, b
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, 2020. a, b, c
Shean, D. E., Joughin, I. R., Dutrieux, P., Smith, B. E., and Berthier, E.: Ice shelf basal melt rates from a high-resolution digital elevation model (DEM) record for Pine Island Glacier, Antarctica, The Cryosphere, 13, 2633–2656, https://doi.org/10.5194/tc-13-2633-2019, 2019. a, b, c
Siahaan, A., Smith, R. S., Holland, P. R., Jenkins, A., Gregory, J. M., Lee, V., Mathiot, P., Payne, A. J. ., Ridley, J. K. ., and Jones, C. G.: The Antarctic contribution to 21st-century sea-level rise predicted by the UK Earth System Model with an interactive ice sheet, The Cryosphere, 16, 4053–4086, https://doi.org/10.5194/tc-16-4053-2022, 2022. a
Smith, R. S., Mathiot, P., Siahaan, A., Lee, V., Cornford, S. L., Gregory,
J. M., Payne, A. J., Jenkins, A., Holland, P. R., Ridley, J. K., and Jones,
C. G.: Coupling the U.K. Earth System Model to Dynamic Models
of the Greenland and Antarctic Ice Sheets, J. Adv.
Model. Earth Sy., 13, e2021MS002520, https://doi.org/10.1029/2021MS002520,
2021. a
Stewart, C. L., Christoffersen, P., Nicholls, K. W., Williams, M. J. M., and
Dowdeswell, J. A.: Basal melting of Ross Ice Shelf from solar heat
absorption in an ice-front polynya, Nat. Geosci., 12, 435–440,
https://doi.org/10.1038/s41561-019-0356-0, 2019. a, b
Sun, S., Cornford, S. L., Moore, J. C., Gladstone, R., and Zhao, L.: Ice shelf fracture parameterization in an ice sheet model, The Cryosphere, 11, 2543–2554, https://doi.org/10.5194/tc-11-2543-2017, 2017. a
Sun, S., Pattyn, F., Simon, E. G., Albrecht, T., Cornford, S., Calov, R.,
Dumas, C., Gillet-Chaulet, F., Goelzer, H., Golledge, N. R., Greve, R.,
Hoffman, M. J., Humbert, A., Kazmierczak, E., Kleiner, T., Leguy, G. R.,
Lipscomb, W. H., Martin, D., Morlighem, M., Nowicki, S., Pollard, D., Price,
S., Quiquet, A., Seroussi, H., Schlemm, T., Sutter, J., van de Wal, R. S. W.,
Winkelmann, R., and Zhang, T.: Antarctic ice sheet response to sudden and
sustained ice-shelf collapse (ABUMIP), J. Glaciol., 66, 891–904,
https://doi.org/10.1017/jog.2020.67, 2020. a
Thompson, A. F., Stewart, A. L., Spence, P., and Heywood, K. J.: The
Antarctic Slope Current in a Changing Climate, Rev.
Geophys., 56, 741–770, https://doi.org/10.1029/2018RG000624, 2018. a, b
van der Linden, E. C., Le Bars, D., Lambert, E., and Drijfhout, S.: Antarctic contribution to future sea level from ice shelf basal melt as constrained by ice discharge observations, The Cryosphere, 17, 79–103, https://doi.org/10.5194/tc-17-79-2023, 2023. a
Wåhlin, A. K., Graham, A. G. C., Hogan, K. A., Queste, B. Y., Boehme, L.,
Larter, R. D., Pettit, E. C., Wellner, J., and Heywood, K. J.: Pathways and
modification of warm water flowing beneath Thwaites Ice Shelf, West
Antarctica, Sci. Adv., 7, eabd7254, https://doi.org/10.1126/sciadv.abd7254,
2021. a
Zeising, O., Steinhage, D., Nicholls, K. W., Corr, H. F. J., Stewart, C. L., and Humbert, A.: Basal melt of the southern Filchner Ice Shelf, Antarctica, The Cryosphere, 16, 1469–1482, https://doi.org/10.5194/tc-16-1469-2022, 2022. a
Short summary
A major uncertainty in the study of sea level rise is the melting of the Antarctic ice sheet by the ocean. Here, we have developed a new model, named LADDIE, that simulates this ocean-driven melting of the floating parts of the Antarctic ice sheet. This model simulates fine-scale patterns of melting and freezing and requires significantly fewer computational resources than state-of-the-art ocean models. LADDIE can be used as a new tool to force high-resolution ice sheet models.
A major uncertainty in the study of sea level rise is the melting of the Antarctic ice sheet by...