Articles | Volume 17, issue 7
https://doi.org/10.5194/tc-17-3101-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-3101-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Responses of dissolved organic carbon to freeze–thaw cycles associated with the changes in microbial activity and soil structure
You Jin Kim
Division of Life Sciences, Korea Polar Research Institute, 26
Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
Jinhyun Kim
Division of Life Sciences, Korea Polar Research Institute, 26
Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
Ji Young Jung
CORRESPONDING AUTHOR
Division of Life Sciences, Korea Polar Research Institute, 26
Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
Related authors
No articles found.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Cited articles
Al-Houri, Z. M., Barber, M. E., Yonge, D. R., Ullman, J. L., and Beutel, M.
W.: Impacts of frozen soils on the performance of infiltration treatment
facilities, Cold Reg. Sci. Technol., 59, 51–57,
https://doi.org/10.1016/j.coldregions.2009.06.002, 2009.
Athmann, M., Kautz, T., Pude, R., and Köpke, U.: Root growth in
biopores-evaluation with in situ endoscopy, Plant Soil, 371, 179–190,
https://doi.org/10.1007/s11104-013-1673-5, 2013.
Ban, Y., Lei, T., Liu, Z., and Chen, C.: Comparison of rill flow velocity
over frozen and thawed slopes with electrolyte tracer method, J. Hydrol.,
534, 630–637, https://doi.org/10.1016/j.jhydrol.2016.01.028, 2016.
Berggren, M., Klaus, M., Selvam, B. P., Ström, L., Laudon, H., Jansson, M., and Karlsson, J.: Quality transformation of dissolved organic carbon during water transit through lakes: contrasting controls by photochemical and biological processes, Biogeosciences, 15, 457–470, https://doi.org/10.5194/bg-15-457-2018, 2018.
Bird, N. R. A., Perrier, E., and Rieu, M.: The water retention function for
a model of soil structure with pore and solid fractal distributions, Eur. J.
Soil Sci., 51, 55–63, https://doi.org/10.1046/j.1365-2389.2000.00278.x,
2000.
Callaghan, T., Körner, C., Heal, O., Lee, S., and Cornelissen, J.:
Scenarios for ecosystem responses to global change, Global Change in
Europe's Cold Regions, Ecosystem Research Report, 65–134, http://urn.kb.se/resolve?urn=urn:nbn:se:polar:diva-4698 (last access: 17 July 2023), 1998.
Čapek, P., Diáková, K., Dickopp, J. E., Bárta, J., Wild, B.,
Schnecker, J., Alves, R. J. E., Aiglsdorfer, S., Guggenberger, G., Gentsch,
N., Hugelius, G., Lashchinsky, N., Gittel, A., Schleper, C., Mikutta, R.,
Palmtag, J., Shibistova, O., Urich, T., Richter, A., and
Šantrůčková, H.: The effect of warming on the vulnerability
of subducted organic carbon in arctic soils, Soil Biol. Biochem., 90,
19–29, https://doi.org/10.1016/j.soilbio.2015.07.013, 2015.
Dal Ferro, N., Delmas, P., Duwig, C., Simonetti, G., and Morari, F.:
Coupling X-ray microtomography and mercury intrusion porosimetry to quantify
aggregate structures of a cambisol under different fertilisation treatments,
Soil Tillage Res., 119, 13–21, https://doi.org/10.1016/j.still.2011.12.001,
2012.
da Silva, A. and Kay, B.: Estimating the least limiting water range of soils
from properties and management, Soil Sci. Soc. Am. J., 61, 877–883, 1997.
Davidson, E. A., Belk, E., and Boone, R. D.: Soil water content and
temperature as independent or confounded factors controlling soil
respiration in a temperate mixed hardwood forest, Glob. Change Biol., 4,
217–227, https://doi.org/10.1046/j.1365-2486.1998.00128.x, 1998.
Dettmann, U., Bechtold, M., Frahm, E., and Tiemeyer, B.: On the
applicability of unimodal and bimodal van Genuchten-Mualem based models to
peat and other organic soils under evaporation conditions, J. Hydrol., 515,
103–115, https://doi.org/10.1016/j.jhydrol.2014.04.047, 2014.
Estop-Aragonés, C., Olefeldt, D., Abbott, B. W., Chanton, J. P.,
Czimczik, C. I., Dean, J. F., Egan, J. E., Gandois, L., Garnett, M. H.,
Hartley, I. P., Hoyt, A., Lupascu, M., Natali, S. M., O'Donnell, J. A.,
Raymond, P. A., Tanentzap, A. J., Tank, S. E., Schuur, E. A. G., Turetsky,
M., and Anthony, K. W.: Assessing the Potential for Mobilization of Old Soil
Carbon After Permafrost Thaw: A Synthesis of 14C Measurements From the
Northern Permafrost Region, Global Biogeochem. Cy., 34, 1–26,
https://doi.org/10.1029/2020GB006672, 2020.
Feng, X., Nielsen, L. L., and Simpson, M. J.: Responses of soil organic
matter and microorganisms to freeze-thaw cycles, Soil Biol. Biochem., 39,
2027–2037, https://doi.org/10.1016/j.soilbio.2007.03.003, 2007.
Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E., and
Skaugen, T. E.: Temperature and Precipitation Development at Svalbard
1900–2100, Adv. Meteorol., 2011, 1–14,
https://doi.org/10.1155/2011/893790, 2011.
Foster, A., Jones, D. L., Cooper, E. J., and Roberts, P.: Freeze–thaw
cycles have minimal effect on the mineralisation of low molecular weight,
dissolved organic carbon in Arctic soils, Polar Biol., 39, 2387–2401,
https://doi.org/10.1007/s00300-016-1914-1, 2016.
Freppaz, M., Williams, B. L., Edwards, A. C., Scalenghe, R., and Zanini, E.:
Simulating soil freeze/thaw cycles typical of winter alpine conditions:
Implications for N and P availability, Appl. Soil Ecol., 35, 247–255,
https://doi.org/10.1016/j.apsoil.2006.03.012, 2007.
Gao, D., Zhang, L., Liu, J., Peng, B., Fan, Z., Dai, W., Jiang, P., and Bai,
E.: Responses of terrestrial nitrogen pools and dynamics to different
patterns of freeze-thaw cycle: A meta-analysis, Glob. Change Biol., 24,
2377–2389, https://doi.org/10.1111/gcb.14010, 2018.
Gao, D., Bai, E., Yang, Y., Zong, S., and Hagedorn, F.: A global
meta-analysis on freeze-thaw effects on soil carbon and phosphorus cycling,
Soil Biol. Biochem., 159, 108283,
https://doi.org/10.1016/j.soilbio.2021.108283, 2021.
Gao, L., Zhou, Z., Reyes, A. V., and Guo, L.: Yields and Characterization of
Dissolved Organic Matter From Different Aged Soils in Northern Alaska, J.
Geophys. Res.-Biogeo., 123, 2035–2052,
https://doi.org/10.1029/2018JG004408, 2018.
Groffman, P. M., Hardy, J. P., Fashu-Kanu, S., Driscoll, C. T., Cleavitt, N.
L., Fahey, T. J., and Fisk, M. C.: Snow depth, soil freezing and nitrogen
cycling in a northern hardwood forest landscape, Biogeochemistry, 102,
223–238, https://doi.org/10.1007/s10533-010-9436-3, 2011.
Grogan, P., Michelsen, A., Ambus, P., and Jonasson, S.: Freeze-thaw regime
effects on carbon and nitrogen dynamics in sub-arctic heath tundra
mesocosms, Soil Biol. Biochem., 36, 641–654,
https://doi.org/10.1016/j.soilbio.2003.12.007, 2004.
Hall, K. and André, M. F.: Rock thermal data at the grain scale:
Applicability to granular disintegration in cold environments, Earth Surf.
Process. Landf., 28, 823–836, https://doi.org/10.1002/esp.494, 2003.
Han, Z., Deng, M., Yuan, A., Wang, J., Li, H., and Ma, J.: Vertical
variation of a black soil's properties in response to freeze-thaw cycles and
its links to shift of microbial community structure, Sci. Total Environ.,
625, 106–113, https://doi.org/10.1016/j.scitotenv.2017.12.209, 2018.
Heal, O., Broll, G., Hooper, D., McConnel, J., Webb, N., and Wookey, P.:
Impacts of global change on tundra soil biology, Global Change in Europe's
Cold Regions, Ecosystem Research Report, 65–134, http://urn.kb.se/resolve?urn=urn:nbn:se:polar:diva-4680 (last access: 17 July 2023), 1998.
Henry, H. A. L.: Climate change and soil freezing dynamics: Historical trends
and projected changes, Climatic Change, 87, 421–434,
https://doi.org/10.1007/s10584-007-9322-8, 2008.
Henry, H. A. L.: Plant and Microbe Adaptations to Cold in a Changing World, Proceedings from Plant and Microbe Adaptations to Cold,
Springer New York, NY, 17–28,
https://doi.org/10.1007/978-1-4614-8253-6, 2013.
IPCC: Climate Change 2014: Synthesis Report, Contribution of Working group
to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Team, C. W., Pachauri, R. K., and Meyer, L. A.,
Geneva, Switzerland, https://doi.org/10.1177/0002716295541001010, 2014.
Jim, C. Y. and Ng, Y. Y.: Porosity of roadside soil as indicator of edaphic
quality for tree planting, Ecol. Eng., 120, 364–374,
https://doi.org/10.1016/j.ecoleng.2018.06.016, 2018.
Kameyama, K., Miyamoto, T., Shiono, T., and Shinogi, Y.: Influence of
Sugarcane Bagasse-derived Biochar Application on Nitrate Leaching in
Calcaric Dark Red Soil, J. Environ. Qual., 41, 1131–1137,
https://doi.org/10.2134/jeq2010.0453, 2012.
Kim, H. M., Lee, M. J., Jung, J. Y., Hwang, C. Y., Kim, M., Ro, H. M., Chun,
J., and Lee, Y. K.: Vertical distribution of bacterial community is
associated with the degree of soil organic matter decomposition in the
active layer of moist acidic tundra, J. Microbiol., 54, 713–723,
https://doi.org/10.1007/s12275-016-6294-2, 2016.
Kim, Y. J. and Yoo, G.: Suggested key variables for assessment of soil
quality in urban roadside tree systems, J. Soils Sediments, 21, 2130–2140,
https://doi.org/10.1007/s11368-020-02827-5, 2021.
Kim, Y. J., Hyun, J., Yoo, S. Y., and Yoo, G.: The role of biochar in
alleviating soil drought stress in urban roadside greenery, Geoderma, 404,
115223, https://doi.org/10.1016/j.geoderma.2021.115223, 2021.
Kim, Y. J., Laffly, D., Kim, S. eun, Nilsen, L., Chi, J., Nam, S., Lee, Y.
B., Jeong, S., Mishra, U., Lee, Y. K., and Jung, J. Y.: Chronological
changes in soil biogeochemical properties of the glacier foreland of Midtre
Lovénbreen, Svalbard, attributed to soil-forming factors, Geoderma, 415,
115777, https://doi.org/10.1016/j.geoderma.2022.115777, 2022.
Koponen, H. T. and Bååth, E.: Soil bacterial growth after a
freezing/thawing event, Soil Biol. Biochem., 100, 229–232,
https://doi.org/10.1016/j.soilbio.2016.06.029, 2016.
Kreyling, J., Beierkuhnlein, C., Pritsch, K., Schloter, M., and Jentsch, A.:
Recurrent soil freeze-thaw cycles enhance grassland productivity, New
Phytol., 177, 938–945, https://doi.org/10.1111/j.1469-8137.2007.02309.x,
2008.
Kuzyakov, Y. and Domanski, G.: Carbon input by plants into the soil. Review,
J. Plant Nutr. Soil Sci., 163, 421–431,
https://doi.org/10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R, 2000.
Kwon, M. J., Haraguchi, A., and Kang, H.: Long-term water regime
differentiates changes in decomposition and microbial properties in tropical
peat soils exposed to the short-term drought, Soil Biol. Biochem., 60,
33–44, https://doi.org/10.1016/j.soilbio.2013.01.023, 2013.
Larsen, K. S., Jonasson, S., and Michelsen, A.: Repeated freeze-thaw cycles
and their effects on biological processes in two arctic ecosystem types,
Appl. Soil Ecol., 21, 187–195,
https://doi.org/10.1016/S0929-1393(02)00093-8, 2002.
Lehrsch, G. A.: Freeze-thaw cycles increase near-surface aggregate
stability, Soil Sci., 163, 63–70,
https://doi.org/10.1097/00010694-199801000-00009, 1998.
Li, G. Y. and Fan, H. M.: Effect of Freeze-Thaw on Water Stability of
Aggregates in a Black Soil of Northeast China, Pedosphere, 24, 285–290,
https://doi.org/10.1016/S1002-0160(14)60015-1, 2014.
Liang, A., Zhang, Y., Zhang, X., Yang, X., McLaughlin, N., Chen, X., Guo,
Y., Jia, S., Zhang, S., Wang, L., and Tang, J.: Investigations of
relationships among aggregate pore structure, microbial biomass, and soil
organic carbon in a Mollisol using combined non-destructive measurements and
phospholipid fatty acid analysis, Soil Tillage Res., 185, 94–101,
https://doi.org/10.1016/j.still.2018.09.003, 2019.
Liao, X., Kang, H., Haidar, G., Wang, W., and Malghani, S.: The impact of
biochar on the activities of soil nutrients acquisition enzymes is
potentially controlled by the pyrolysis temperature: A meta-analysis,
Geoderma, 411, 115692, https://doi.org/10.1016/j.geoderma.2021.115692, 2022.
Likos, W. J., Lu, N., and Godt, J. W.: Hysteresis and Uncertainty in Soil
Water-Retention Curve Parameters, J. Geotech. Geoenviron., 140,
1–11, https://doi.org/10.1061/(asce)gt.1943-5606.0001071, 2014.
Lim, A. G., Loiko, S. V., Kuzmina, D. M., Krickov, I. V., Shirokova, L. S.,
Kulizhsky, S. P., Vorobyev, S. N., and Pokrovsky, O. S.: Dispersed ground
ice of permafrost peatlands: Potential unaccounted carbon, nutrient and
metal sources, Chemosphere, 266, 128953,
https://doi.org/10.1016/j.chemosphere.2020.128953, 2021.
Lipson, D. A. and Monson, R. K.: Plant-microbe competition for soil amino
acids in the alpine tundra: Effects of freeze-thaw and dry-rewet events,
Oecologia, 113, 406–414, https://doi.org/10.1007/s004420050393, 1998.
Lipson, D. A. and Schmidt, S. K.: Seasonal changes in an alpine soil
bacterial community in the Colorado Rocky Mountains, Appl. Environ.
Microbiol., 70, 2867–2879, https://doi.org/10.1128/AEM.70.5.2867-2879.2004,
2004.
Lipson, D. A., Schmidt, S. K., and Monson, R. K.: Carbon availability and
temperature control the post-snowmelt decline in alpine soil microbial
biomass, Soil Biol. Biochem., 32, 441–448,
https://doi.org/10.1016/S0038-0717(99)00068-1, 2000.
Liu, B., Ma, R., and Fan, H.: Evaluation of the impact of freeze-thaw cycles
on pore structure characteristics of black soil using X-ray computed
tomography, Soil Tillage Res., 206, 104810,
https://doi.org/10.1016/j.still.2020.104810, 2021.
Lu, Y., Liu, S., Zhang, Y., Wang, L., and Li, Z.: Hydraulic conductivity of
gravelly soils with various coarse particle contents subjected to
freeze–thaw cycles, J. Hydrol., 598, 126302,
https://doi.org/10.1016/j.jhydrol.2021.126302, 2021.
Ma, R., Jiang, Y., Liu, B., and Fan, H.: Effects of pore structure
characterized by synchrotron-based micro-computed tomography on aggregate
stability of black soil under freeze-thaw cycles, Soil Tillage Res., 207,
104855, https://doi.org/10.1016/j.still.2020.104855, 2021.
Maikhuri, R. K. and Rao, K. S.: Soil quality and soil health: A review, Int.
J. Ecol. Environ. Sci., 38, 19–37, 2012.
Männistö, M. K., Tiirola, M., and Häggblom, M. M.: Effect of
freeze-thaw cycles on bacterial communities of Arctic tundra soil, Microb.
Ecol., 58, 621–631, https://doi.org/10.1007/s00248-009-9516-x, 2009.
Matzner, E. and Borken, W.: Do freeze-thaw events enhance C and N losses
from soils of different ecosystems? A review, Eur. J. Soil Sci., 59,
274–284, https://doi.org/10.1111/j.1365-2389.2007.00992.x, 2008.
Oztas, T. and Fayetorbay, F.: Effect of freezing and thawing processes on
soil aggregate stability, Catena, 52, 1–8,
https://doi.org/10.1016/S0341-8162(02)00177-7, 2003.
Peng, X., Horn, R., and Hallett, P.: Soil structure and its functions in
ecosystems: Phase matter & scale matter, Soil Tillage Res., 146, 1–3,
https://doi.org/10.1016/j.still.2014.10.017, 2015.
Perez-Mon, C., Frey, B., and Frossard, A.: Functional and Structural
Responses of Arctic and Alpine Soil Prokaryotic and Fungal Communities Under
Freeze-Thaw Cycles of Different Frequencies, Front. Microbiol., 11, 1–14,
https://doi.org/10.3389/fmicb.2020.00982, 2020.
Rabot, E., Wiesmeier, M., Schlüter, S., and Vogel, H. J.: Soil structure
as an indicator of soil functions: A review, Geoderma, 314, 122–137,
https://doi.org/10.1016/j.geoderma.2017.11.009, 2018.
Raich, J. and Schlesinger, W.: The global carbon dioxdie flux in soil
respiration and its relationship to vegetation and climate, Tellus B, 44,
81–99, 1992.
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen,
O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed
nearly four times faster than the globe since 1979, Commun. Earth Environ.,
3, 1–10, https://doi.org/10.1038/s43247-022-00498-3, 2022.
Royer, A., Picard, G., Vargel, C., Langlois, A., Gouttevin, I., and Dumont,
M.: Improved Simulation of Arctic Circumpolar Land Area Snow Properties and
Soil Temperatures, Front. Earth Sci., 9, 1–19,
https://doi.org/10.3389/feart.2021.685140, 2021.
Sander, T. and Gerke, H. H.: Preferential Flow Patterns in Paddy Fields
Using a Dye Tracer, Vadose Zone J., 6, 105–115,
https://doi.org/10.2136/vzj2006.0035, 2007.
Sawicka, J. E., Robador, A., Hubert, C., Jørgensen, B. B., and
Brüchert, V.: Effects of freeze-thaw cycles on anaerobic microbial
processes in an Arctic intertidal mud flat, ISME J., 4, 585–594,
https://doi.org/10.1038/ismej.2009.140, 2010.
Schimel, J. P. and Clein, J. S.: Microbial response to freeze-thaw cycles in
tundra and taiga soils, Soil Biol. Biochem., 28, 1061–1066,
https://doi.org/10.1016/0038-0717(96)00083-1, 1996.
Schimel, J. P. and Mikan, C.: Changing microbial substrate use in Arctic
tundra soils through a freeze-thaw cycle, Soil Biol. Biochem., 37,
1411–1418, https://doi.org/10.1016/j.soilbio.2004.12.011, 2005.
Šimůnek, J., van Genuchten, T., and Kodešová, R.: HYDRUS
Software Applications to Subsurface Flow and Contaminant Transport Problems,
in: Proceedings of the 4th International Conference, 404, ISBN 978-80-213-2380-3, 2013.
Sinsabaugh, R. L.: Phenol oxidase, peroxidase and organic matter dynamics of
soil, Soil Biol. Biochem., 42, 391–404,
https://doi.org/10.1016/j.soilbio.2009.10.014, 2010.
Sjursen, H., Michelsen, A., and Holmstrup, M.: Effects of freeze-thaw cycles
on microarthropods and nutrient availability in a sub-Arctic soil, Appl.
Soil Ecol., 28, 79–93, https://doi.org/10.1016/j.apsoil.2004.06.003, 2005.
Sletten, R. S.: The formation of pedogenic carbonates on Svalbard: The
influence of cold temperatures and freezing, Permafrost, 5, 467–472, 1988.
Song, Y., Zou, Y., Wang, G., and Yu, X.: Altered soil carbon and nitrogen
cycles due to the freeze-thaw effect: A meta-analysis, Soil Biol. Biochem.,
109, 35–49, https://doi.org/10.1016/j.soilbio.2017.01.020, 2017.
Troy, S. M., Lawlor, P. G., O' Flynn, C. J., and Healy, M. G.: Impact of
biochar addition to soil on greenhouse gas emissions following pig manure
application, Soil Biol. Biochem., 60, 173–181,
https://doi.org/10.1016/j.soilbio.2013.01.019, 2013.
Viklander, P.: Permeability and volume changes in till due to cyclic
freeze/thaw, Can. Geotech. J., 35, 471–477,
https://doi.org/10.1139/t98-015, 1998.
Walker, V. K., Palmer, G. R., and Voordouw, G.: Freeze-thaw tolerance and
clues to the winter survival of a soil community, Appl. Environ. Microbiol.,
72, 1784–1792, https://doi.org/10.1128/AEM.72.3.1784-1792.2006, 2006.
Wang, E., Cruse, R. M., Chen, X., and Daigh, A.: Effects of moisture
condition and freeze/thaw cycles on surface soil aggregate size distribution
and stability, Can. J. Soil Sci., 92, 529–536,
https://doi.org/10.4141/CJSS2010-044, 2012.
White, D. M., Garland, D. S., Ping, C. L., and Michaelson, G.:
Characterizing soil organic matter quality in arctic soil by cover type and
depth, Cold Reg. Sci. Technol., 38, 63–73,
https://doi.org/10.1016/j.coldregions.2003.08.001, 2004.
Xu, C., Guo, L., Dou, F., and Ping, C. L.: Potential DOC production from
size-fractionated Arctic tundra soils, Cold Reg. Sci. Technol., 55,
141–150, https://doi.org/10.1016/j.coldregions.2008.08.001, 2009.
Yang, X. Y., Chang, K. H., Kim, Y. J., Zhang, J., and Yoo, G.: Effects of
different biochar amendments on carbon loss and leachate characterization
from an agricultural soil, Chemosphere, 226, 625–635,
https://doi.org/10.1016/j.chemosphere.2019.03.085, 2019.
Yi, Y., Kimball, J. S., Rawlins, M. A., Moghaddam, M., and Euskirchen, E.
S.: The role of snow cover affecting boreal-arctic soil freeze-thaw and
carbon dynamics, Biogeosciences, 12, 5811–5829,
https://doi.org/10.5194/bg-12-5811-2015, 2015.
Yoo, G., Kim, H., and Choi, J. Y.: Soil Aggregate Dynamics Influenced by
Biochar Addition using the 13C Natural Abundance Method, Soil Sci. Soc. Am.
J., 81, 612–621, https://doi.org/10.2136/sssaj2016.09.0313, 2017.
Yoo, S. Y., Kim, Y. J., and Yoo, G.: Understanding the role of biochar in
mitigating soil water stress in simulated urban roadside soil, Sci. Total
Environ., 738, 139798, https://doi.org/10.1016/j.scitotenv.2020.139798, 2020.
Zaffar, M. and Lu, S. G.: Pore size distribution of clayey soils and its
correlation with soil organic matter, Pedosphere, 25, 240–249,
https://doi.org/10.1016/S1002-0160(15)60009-1, 2015.
Zhang, Z., Ma, W., Feng, W., Xiao, D., and Hou, X.: Reconstruction of Soil
Particle Composition During Freeze-Thaw Cycling: A Review, Pedosphere, 26,
167–179, https://doi.org/10.1016/S1002-0160(15)60033-9, 2016.
Short summary
This study demonstrated the response of organic soils in the Arctic tundra to freeze–thaw cycles (FTCs), focusing on the quantitative and qualitative characteristics of dissolved organic carbon (DOC). The highlights found in this study are as follows: (i) FTCs altered DOC properties without decreasing soil microbial activities, and (ii) soil aggregate distribution influenced by FTCs changed DOC characteristics by enhancing microbial activities and altering specific-sized soil pore proportion.
This study demonstrated the response of organic soils in the Arctic tundra to freeze–thaw cycles...