Articles | Volume 17, issue 7
https://doi.org/10.5194/tc-17-2645-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-2645-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards modelling of corrugation ridges at ice-sheet grounding lines
British Antarctic Survey, Cambridge, UK
Katarzyna L. P. Warburton
Department of Applied Mathematics and Theoretical Physics, University
of Cambridge, Cambridge, UK
Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
Alastair G. C. Graham
College of Marine Science, University of South Florida, St Petersburg,
FL, USA
Jerome A. Neufeld
Department of Earth Sciences, University of Cambridge, Cambridge, UK
Department of Applied Mathematics and Theoretical Physics, University
of Cambridge, Cambridge, UK
Duncan R. Hewitt
Department of Mathematics, University College London, London, UK
Julian A. Dowdeswell
Scott Polar Research Institute, University of Cambridge, Cambridge, UK
Robert D. Larter
British Antarctic Survey, Cambridge, UK
Related authors
Yavor Kostov, Paul R. Holland, Kelly A. Hogan, James A. Smith, Nicolas C. Jourdain, Pierre Mathiot, Anna Olivé Abelló, Andrew H. Fleming, and Andrew J. S. Meijers
EGUsphere, https://doi.org/10.5194/egusphere-2025-2423, https://doi.org/10.5194/egusphere-2025-2423, 2025
Short summary
Short summary
Icebergs ground when they reach shallow topography such as Bear Ridge in the Amundsen Sea. Grounded icebergs can block the transport of sea-ice and create areas of higher and lower sea-ice concentration. We introduce a physically and observationally motivated representation of grounding in an ocean model. In addition, we improve the way simulated icebergs respond to winds, ocean currents, and density differences in sea water. We analyse the forces acting on freely floating and grounded icebergs.
Asmara A. Lehrmann, Rebecca L. Totten, Julia S. Wellner, Claus-Dieter Hillenbrand, Svetlana Radionovskaya, R. Michael Comas, Robert D. Larter, Alastair G. C. Graham, James D. Kirkham, Kelly A. Hogan, Victoria Fitzgerald, Rachel W. Clark, Becky Hopkins, Allison P. Lepp, Elaine Mawbey, Rosemary V. Smyth, Lauren E. Miller, James A. Smith, and Frank O. Nitsche
J. Micropalaeontol., 44, 79–105, https://doi.org/10.5194/jm-44-79-2025, https://doi.org/10.5194/jm-44-79-2025, 2025
Short summary
Short summary
Thwaites Glacier's retreat is driven by warm ocean water melting its ice shelf. Seafloor-dwelling marine protists, benthic foraminifera, reflect their environment. Here, ice margins, oceanography, and sea ice cover control live foraminiferal populations. Including dead foraminifera in the analyses shows the calcareous test preservation's role in the assemblage make-up. Understanding these modern communities helps interpret past glacial retreat controls through foraminifera in sediment records.
Tom A. Jordan, David Porter, Kirsty Tinto, Romain Millan, Atsuhiro Muto, Kelly Hogan, Robert D. Larter, Alastair G. C. Graham, and John D. Paden
The Cryosphere, 14, 2869–2882, https://doi.org/10.5194/tc-14-2869-2020, https://doi.org/10.5194/tc-14-2869-2020, 2020
Short summary
Short summary
Linking ocean and ice sheet processes allows prediction of sea level change. Ice shelves form a floating buffer between the ice–ocean systems, but the water depth beneath is often a mystery, leaving a critical blind spot in our understanding of how these systems interact. Here, we use airborne measurements of gravity to reveal the bathymetry under the ice shelves flanking the rapidly changing Thwaites Glacier and adjacent glacier systems, providing new insights and data for future models.
Kelly A. Hogan, Robert D. Larter, Alastair G. C. Graham, Robert Arthern, James D. Kirkham, Rebecca L. Totten, Tom A. Jordan, Rachel Clark, Victoria Fitzgerald, Anna K. Wåhlin, John B. Anderson, Claus-Dieter Hillenbrand, Frank O. Nitsche, Lauren Simkins, James A. Smith, Karsten Gohl, Jan Erik Arndt, Jongkuk Hong, and Julia Wellner
The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, https://doi.org/10.5194/tc-14-2883-2020, 2020
Short summary
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
Yavor Kostov, Paul R. Holland, Kelly A. Hogan, James A. Smith, Nicolas C. Jourdain, Pierre Mathiot, Anna Olivé Abelló, Andrew H. Fleming, and Andrew J. S. Meijers
EGUsphere, https://doi.org/10.5194/egusphere-2025-2423, https://doi.org/10.5194/egusphere-2025-2423, 2025
Short summary
Short summary
Icebergs ground when they reach shallow topography such as Bear Ridge in the Amundsen Sea. Grounded icebergs can block the transport of sea-ice and create areas of higher and lower sea-ice concentration. We introduce a physically and observationally motivated representation of grounding in an ocean model. In addition, we improve the way simulated icebergs respond to winds, ocean currents, and density differences in sea water. We analyse the forces acting on freely floating and grounded icebergs.
Asmara A. Lehrmann, Rebecca L. Totten, Julia S. Wellner, Claus-Dieter Hillenbrand, Svetlana Radionovskaya, R. Michael Comas, Robert D. Larter, Alastair G. C. Graham, James D. Kirkham, Kelly A. Hogan, Victoria Fitzgerald, Rachel W. Clark, Becky Hopkins, Allison P. Lepp, Elaine Mawbey, Rosemary V. Smyth, Lauren E. Miller, James A. Smith, and Frank O. Nitsche
J. Micropalaeontol., 44, 79–105, https://doi.org/10.5194/jm-44-79-2025, https://doi.org/10.5194/jm-44-79-2025, 2025
Short summary
Short summary
Thwaites Glacier's retreat is driven by warm ocean water melting its ice shelf. Seafloor-dwelling marine protists, benthic foraminifera, reflect their environment. Here, ice margins, oceanography, and sea ice cover control live foraminiferal populations. Including dead foraminifera in the analyses shows the calcareous test preservation's role in the assemblage make-up. Understanding these modern communities helps interpret past glacial retreat controls through foraminifera in sediment records.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Michael A. Cooper, Paulina Lewińska, William A. P. Smith, Edwin R. Hancock, Julian A. Dowdeswell, and David M. Rippin
The Cryosphere, 16, 2449–2470, https://doi.org/10.5194/tc-16-2449-2022, https://doi.org/10.5194/tc-16-2449-2022, 2022
Short summary
Short summary
Here we use old photographs gathered several decades ago to expand the temporal record of glacier change in part of East Greenland. This is important because the longer the record of past glacier change, the better we are at predicting future glacier behaviour. Our work also shows that despite all these glaciers retreating, the rate at which they do this varies markedly. It is therefore important to consider outlet glaciers from Greenland individually to take account of this differing behaviour.
Tom A. Jordan, David Porter, Kirsty Tinto, Romain Millan, Atsuhiro Muto, Kelly Hogan, Robert D. Larter, Alastair G. C. Graham, and John D. Paden
The Cryosphere, 14, 2869–2882, https://doi.org/10.5194/tc-14-2869-2020, https://doi.org/10.5194/tc-14-2869-2020, 2020
Short summary
Short summary
Linking ocean and ice sheet processes allows prediction of sea level change. Ice shelves form a floating buffer between the ice–ocean systems, but the water depth beneath is often a mystery, leaving a critical blind spot in our understanding of how these systems interact. Here, we use airborne measurements of gravity to reveal the bathymetry under the ice shelves flanking the rapidly changing Thwaites Glacier and adjacent glacier systems, providing new insights and data for future models.
Kelly A. Hogan, Robert D. Larter, Alastair G. C. Graham, Robert Arthern, James D. Kirkham, Rebecca L. Totten, Tom A. Jordan, Rachel Clark, Victoria Fitzgerald, Anna K. Wåhlin, John B. Anderson, Claus-Dieter Hillenbrand, Frank O. Nitsche, Lauren Simkins, James A. Smith, Karsten Gohl, Jan Erik Arndt, Jongkuk Hong, and Julia Wellner
The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, https://doi.org/10.5194/tc-14-2883-2020, 2020
Short summary
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
Cited articles
Alley, R. B., Blankenship, D. D., Bentley, C. R., and Rooney, S.:
Deformation of till beneath ice stream B, West Antarctica, Nature, 322,
57–59, 1986.
Alley, R. B., Blankenship, D., Rooney, S., and Bentley, C.: Sedimentation
beneath ice shelves – the view from ice stream B, Mar. Geol., 85,
101–120, 1989.
Alley, R. B., Anandakrishnan, S., Dupont, T. K., Parizek, B. R., and
Pollard, D.: Effect of sedimentation on ice-sheet grounding-line stability,
Science, 315, 1838–1841, 2007.
Anandakrishnan, S., Catania, G. A., Alley, R. B., and Horgan, H. J.:
Discovery of till deposition at the grounding line of Whillans Ice Stream,
Science, 315, 1835–1838, 2007.
Anderson, J. B., Kurtz, D. D., Domack, E. W., and Balshaw, K. M.: Glacial
and glacialmarine sediments of the Antarctic continental shelf, J.
Geol., 27, 399e414, https://doi.org/10.1086/628524, 1980.
Batchelor, C. L., Montelli, A., Ottesen, D., Evans, J., Dowdeswell, E. K.,
Christie, F. D. W., and Dowdeswell, J. A.: New insights into the formation
of submarine glacial landforms from high-resolution Autonomous Underwater
Vehicle data, Geomorphology, 370, 107396,
https://doi.org/10.1016/j.geomorph.2020.107396, 2020.
Batchelor, C. L., Christie, F. D. W., Ottesen, D., Montelli, A., Evans, J.,
Dowdeswell, E. K., Bjarnadóttir, L. R., and Dowdeswell, J. A.: Rapid,
buoyancy-driven ice-sheet retreat of hundreds of metres per day, Nature, 617,
105–110,
https://doi.org/10.1038/s41586-023-05876-1, 2023.
Begeman, C. B., Tulaczyk, S., Padman, L., King, M., Siegfried, M. R.,
Hodson, T. O., and Fricker, H. A.: Tidal Pressurization of the Ocean Cavity
Near an Antarctic Ice Shelf Grounding Line, J. Geophys. Res.-Oceans, 125, e2019JC015562, https://doi.org/10.1029/2019JC015562, 2020.
Boulton, G.: Push-moraines and glacier-contact fans in marine and
terrestrial environments, Sedimentology, 33, 677–698, 1986.
Boulton, G. S. and Hindmarsh, R. C. A.: Sediment deformation beneath glaciers: Rheology and geological consequences, J. Geophys. Res., 92, 9059–9082, https://doi.org/10.1029/JB092iB09p09059, 1987.
Boulton, G. and Jones Paul, M.: The influence of genetic processes on some
geotechnical properties of glacial tills, Q. J. Eng.
Geol., 9, 159–194, 1976.
Brunt, K. M., Fricker, H. A., and Laurie, P.: Analysis of ice plains of the Filchner-Ronne Ice Shelf, Antarctica, using ICESat laser altimetry, J. Glaciol., 57, 965–975, 2011.
Burton, D. J., Dowdeswell, J. A., Hogan, K. A., and Noormets, R.: Marginal
Fluctuations of a Svalbard Surge-Type Tidewater Glacier, Blomstrandbreen,
Since the Little Ice Age: A Record of Three Surges, Arct. Antarct.
Alp. Res., 48, 411–426, https://doi.org/10.1657/AAAR0014-094, 2016.
Chen, H., Rignot, E., Scheuchl, B., and Ehrenfeucht, S.: Grounding zone of
Amery Ice Shelf, Antarctica, from differential synthetic-aperture radar
interferometry, Geophys. Res. Lett., 50, e2022GL102430,
https://doi.org/10.1029/2022GL102430, 2023.
Christ, A. J., Bierman, P. R., Schaefer, J. M., Dahl-Jensen, D., Steffensen,
J. P., Corbett, L. B., Peteet, D. M., Thomas, E. K., Steig, E. J., and
Rittenour, T. M.: A multimillion-year-old record of Greenland vegetation and
glacial history preserved in sediment beneath 1.4 km of ice at Camp Century,
P. Natl. Acad. Sci. USA, 118, e2021442118, https://doi.org/10.1073/pnas.2021442118, 2021.
Clarke, G. K.: Subglacial till: a physical framework for its properties and
processes, J. Geophys. Res.-Sol. Ea., 92, 9023–9036,
1987.
Davis, P. E. D., Nicholls, K. W., Holland, D. M., Schmidt, B. E., Washam,
P., Riverman, K. L., Arthern, R. J., Vaňková, I., Eayrs, C., Smith,
J. A., Anker, P. G. D., Mullen, A. D., Dichek, D., Lawrence, J. D., Meister,
M. M., Clyne, E., Basinski-Ferris, A., Rignot, E., Queste, B. Y., Boehme,
L., Heywood, K. J., Anandakrishnan, S., and Makinson, K.: Suppressed basal
melting in the eastern Thwaites Glacier grounding zone, Nature, 614,
479–485,
https://doi.org/10.1038/s41586-022-05586-0,
2023.
Dawson, G. and Bamber, J.: Antarctic Grounding Line Mapping From CryoSat-2
Radar Altimetry, Geophys. Res. Lett., 44, 11886–811893, 2017.
Demet, B. P., Nittrouer, J. A., Anderson, J. B., and Simkins, L. M.:
Sedimentary processes at ice sheet grounding-zone wedges revealed by
outcrops, Washington State (USA), Earth Surf. Proc. Land., 44,
1209–1220, 2019.
Domack, E. W.: Laminated terrigenous sediments from the Antarctic Peninsula: the role of subglacial and marine processes, Geological Society, London, Special Publications 53, 91–103, 1990.
Domack, E. W. and Harris, P. T.: A new depositional model for ice shelves,
based upon sediment cores from the Ross Sea and the Mac. Robertson shelf,
Antarctica, Ann. Glaciol., 27, 281–284, 1998.
Domack, E. W., Jacobson, E. A., Shipp, S., and Anderson, J. B.: Late
Pleistocene–Holocene retreat of the West Antarctic Ice-Sheet system in the
Ross Sea: Part 2 – Sedimentologic and stratigraphic signature, GSA Bulletin,
111, 1517–1536, 1999.
Dowdeswell, J. and Fugelli, E.: The seismic architecture and geometry of
grounding-zone wedges formed at the marine margins of past ice sheets,
Bulletin, 124, 1750–1761, 2012.
Dowdeswell, J., Batchelor, C., Montelli, A., Ottesen, D., Christie, F.,
Dowdeswell, E., and Evans, J.: Delicate seafloor landforms reveal past
Antarctic grounding-line retreat of kilometres per year, Science, 368,
1020–1024, 2020.
Dowdeswell, J. A., Cofaigh, C. O., and Pudsey, C. J.: Thickness and extent
of the subglacial till layer beneath an Antarctic paleo–ice stream,
Geology, 32, 13–16, 2004.
Drews, R., Wild, C. T., Marsh, O. J., Rack, T. A.,Ehlers, N., and Helm, V.: Grounding-Zone Flow Variability of Priestley Glacier, Antarctica, in a Diurnal Tidal Regime, Geophys. Res. Lett., 48, e2021GL093853, https://doi.org/10.1029/2021GL093853, 2021.
Engelhardt, H. and Kamb, B.: Basal hydraulic system of a West Antarctic ice
stream: constraints from borehole observations, J. Glaciol., 43,
207–230, 1997.
Engelhardt, H., Humphrey, N., Kamb, B., and Fahnestock, M.: Physical
conditions at the base of a fast moving Antarctic ice stream, Science, 248,
57–59, 1990.
Evans, D. J. A., Phillips, E., Hiemstra, J., and Auton, C.: Subglacial till:
formation, sedimentary characteristics and classification, Earth-Sci.
Rev., 78, 115–176, 2006.
Evans, D. J. A., Hiemstra, J. F., and Ó Cofaigh, C.: An assessment of clast
macrofabrics in glacigenic sediments based on A/B plane data, Geogr. Ann., 89, 103–120,
2007.
Evans, D. J. A., Ewertowski, M., and Orton, C., Fláajökull (north
lobe), Iceland: active temperate piedmont lobe glacial landsystem, J.
Maps, 12, 777–789, https://doi.org/10.1080/17445647.2015.1073185, 2016.
Eyles, N., Eyles, C. H., and Miall, A. D.: Lithofacies types and vertical
profile models; an alternative approach to the description and environmental
interpretation of glacial diamict and diamictite sequences, Sedimentology,
30, 393–410, 1983.
Graham, A.: Gridded multibeam bathymetry data from “The Bump” at Thwaites Glacier, collected by “Ran” Kongsberg Hugin AUV (Kongsberg EM2040), on the RV Nathaniel B. Palmer during cruise NBP19-02 (2019), figshare [data set], https://doi.org/10.6084/m9.figshare.20359920.v1, 2022.
Graham, A. G., Dutrieux, P., Vaughan, D. G., Nitsche, F. O., Gyllencreutz,
R., Greenwood, S. L., Larter, R. D., and Jenkins, A.: Seabed corrugations
beneath an Antarctic ice shelf revealed by autonomous underwater vehicle
survey: origin and implications for the history of Pine Island Glacier,
J. Geophys. Res.-Earth, 118, 1356–1366, 2013.
Graham, A. G. C., Wåhlin, A., Hogan, K. A., Nitsche, F. O., Heywood, K.
J., Minzoni, R., Smith, J. A., Hillenbrand, C.-D., Simkins, L., Wellner, J.
S., and Larter, R. D.: Rapid tidally-modulated retreat of Thwaites Glacier
from a pinning point in the pre-satellite era, Nat. Geosci., 15,
706–713, https://doi.org/10.1038/s41561-022-01019-9, 2022.
Gudmundsson, G. H., Krug, J., Durand, G., Favier, L., and Gagliardini, O.: The stability of grounding lines on retrograde slopes, The Cryosphere, 6, 1497–1505, https://doi.org/10.5194/tc-6-1497-2012, 2012.
Hamilton, E. L. and Bachman, R. T.: Sound velocity and related properties of
marine sediments, J. Acoust. Soc. Am., 72, 1891–1904, 1982.
Hillenbrand, C.-D., Grobe, H., Diekmann, B., Kuhn, G. and D. Fütterer:
Distribution of clay minerals and proxies for productivity in surface
sediments of the Bellingshausen and Amundsen seas (West Antarctica) - Relation to modern environmental conditions, Mar. Geol., 193, 253e271, https://doi.org/10.1016/S0025-3227(02)00659-X,
2003.
Hogan, K. A., Dowdeswell, J. A., and Cofaigh, C. Ó.: Glacimarine sedimentary processes and depositional environments in an embayment fed by West Greenland ice streams, Mar. Geol., 311, 1–16, 2012.
Hogan, K. A., Jakobsson, M., Mayer, L., Reilly, B. T., Jennings, A. E., Stoner, J. S., Nielsen, T., Andresen, K. J., Nørmark, E., Heirman, K. A., Kamla, E., Jerram, K., Stranne, C., and Mix, A.: Glacial sedimentation, fluxes and erosion rates associated with ice retreat in Petermann Fjord and Nares Strait, north-west Greenland, The Cryosphere, 14, 261–286, https://doi.org/10.5194/tc-14-261-2020, 2020a.
Hogan, K. A., Larter, R. D., Graham, A. G. C., Arthern, R., Kirkham, J. D., Totten, R. L., Jordan, T. A., Clark, R., Fitzgerald, V., Wåhlin, A. K., Anderson, J. B., Hillenbrand, C.-D., Nitsche, F. O., Simkins, L., Smith, J. A., Gohl, K., Arndt, J. E., Hong, J., and Wellner, J.: Revealing the former bed of Thwaites Glacier using sea-floor bathymetry: implications for warm-water routing and bed controls on ice flow and buttressing, The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, 2020b.
Horgan, H. J., Alley, R. B., Christianson, K., Jacobel, R. W.,
Anandakrishnan, S., Muto, A., Beem, L. H., and Siegfried, M. R.: Estuaries
beneath ice sheets, Geology, 41, 1159–1162, 2013.
Horgan, H. J., van Haastrecht, L., Alley, R. B., Anandakrishnan, S., Beem, L. H., Christianson, K., Muto, A., and Siegfried, M. R.: Grounding zone subglacial properties from calibrated active-source seismic methods, The Cryosphere, 15, 1863–1880, https://doi.org/10.5194/tc-15-1863-2021, 2021.
Howard, S. L., Erofeeva, S., and Padman, L.: CATS2008: Circum-Antarctic
Tidal Simulation version 2008, U.S. Antarctic Program (USAP) Data Center [data set],
https://doi.org/10.15784/601235, 2019.
Jakobsson, M., Anderson, J. B., Nitsche, F. O., Dowdeswell, J. A.,
Gyllencreutz, R., Kirchner, N., Mohammad, R., O'Regan, M., Alley, R. B., and
Anandakrishnan, S.: Geological record of ice shelf break-up and grounding
line retreat, Pine Island Bay, West Antarctica, Geology, 39, 691–694, 2011.
Jakobsson, M., Anderson, J. B., Nitsche, F. O., Gyllencreutz, R., Kirshner, A. E., Kirchner, N., O'Regan, M., Mohammed, R., and Eriksson, B.: Ice sheet retreat dynamics inferred from glacial morphology of the central Pine Island Bay Trough, West Antarctica, Quaternary Sci. Rev., 38, 1–10, https://doi.org/10.1016/j.quascirev.2011.12.017, 2012.
Jamieson, S., Vieli, A., Livingstone, S., O Cofaigh, C., Stokes, C., Hillenbrand, C-. D., and Dowdeswell, J. A.: Ice-stream stability on a reverse bed slope. Nature Geosci., 5, 799–802, https://doi.org/10.1038/ngeo1600, 2012.
Kamb, B.: Basal zone of the West Antarctic ice streams and its role in
lubrication of their rapid motion, The West Antarctic ice sheet: behavior
and environment, Antarctic Research Series, 77, 157–199, 2001.
Kirshner, A. E., Anderson, J. B., Jakobsson, M., O'Regan, M., Majewski, W.,
and Nitsche, F. O.: Post-LGM deglaciation in Pine island Bay, west
Antarctica, Quaternary Sci. Rev., 38, 11–26, 2012.
Kowal, K. and Worster, M.: The formation of grounding zone wedges: Theory and experiments, J. Fluid Mech., 898, A12, https://doi.org/10.1017/jfm.2020.393, 2020.
Lindén, M. and Möller, P.: Marginal formation of De Geer moraines
and their implications to the dynamics of grounding-line recession, J.
Quaternary Sci.,
20, 113–133, 2005.
Lurton, X. and Lamarche, G. (Eds): Backscatter measurements by
seafloor-mapping sonars. Guidelines and Recommendations, 200 pp., https://geohab.org/wp-content/uploads/2018/09/BWSG-REPORT-MAY2015.pdf (last access: 14 June 2023), 2015.
McCave, I. N. and Hall, I. R.: Size sorting in marine muds: Processes,
pitfalls, and prospects for paleoflow-speed proxies, Geochem. Geophy.
Geosy., 7, Q10N05, https://doi.org/10.1029/2006GC001284, 2006.
McNeil, J., Taylor, C., and Lick, W.: Measurements of Erosion of Undisturbed
Bottom Sediments with Depth, J. Hydraul. Eng., 122, 316–324,
1996.
Menzies, J.: Micromorphological analyses of microfabrics and microstructures indicative of deformation processes in glacial sediments, Geological Society, London, Special Publications, 176, 24–257, 2000.
Mier, J. M. and Garcia, M. H.: Erosion of glacial till from the St. Clair
River (Great Lakes basin), J. Great Lakes Res., 37, 399–410,
2011.
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J.,
Bueso-Bello, J. L., Prats-Iraola, P., and Dini, L. J. N. G.: Rapid glacier
retreat rates observed in West Antarctica, Nat. Geosci., 15, 48–53, 2022.
Mohajerani, Y., Jeong, S., Scheuchl, B., Velicogna, I., Rignot, E., and
Milillo, P.: Automatic delineation of glacier grounding lines in
differential interferometric synthetic-aperture radar data using deep
learning, Sci. Rep., 11, 1–10, 2021.
Ottesen, D. and Dowdeswell, J. A.: Assemblages of submarine landforms
produced by tidewater glaciers in Svalbard, J. Geophys. Res.-Earth, 111, F01016, https://doi.org/10.1029/2005JF000330, 2006.
Padman, L., Fricker, H. A., Coleman, R., Howard, S., and Erofeeva, L.: A new
tide model for the Antarctic ice shelves and seas, Ann. Glaciol., 34,
247–254, 2002.
Pegler, S. and Worster, M.: An experimental and theoretical study of the
dynamics of grounding lines, J. Fluid Mech., 728, 5–28,
https://doi.org/10.1017/jfm.2013.269, 2013.
Pike, L., Gaskin, S., and Ashmore, P.: Flume tests on fluvial erosion
mechanisms in till-bed channels, Earth Surf. Proc.
Land., 43, 259–270, 2018.
Powell, R. D., Dawber, M., McInnes, J. N., and Pyne, A. R.: Observations of
the grounding-line area at a floating glacier terminus, Ann.
Glaciol., 22, 217–223, 1996.
Pritchard, H., Ligtenberg, S. R., Fricker, H. A., Vaughan, D. G., van den
Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal
melting of ice shelves, Nature, 484, 502–505, 2012.
Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.:
Extensive dynamic thinning on the margins of the Greenland and Antarctic ice
sheets, Nature, 461, 971–975, 2009.
Rea, B. R. and Evans, D. J. A.: An assessment of surge-induced crevassing
and the formation of crevasse squeeze ridges, J. Geophys.
Res.-Earth, 116, F04005, https://doi.org/10.1029/2011JF001970, 2011.
Reinardy, B. T., Larter, R. D., Hillenbrand, C. D., Murray, T., Hiemstra, J. F.
and Booth, A. D.: Streaming flow of an Antarctic Peninsula palaeo-ice stream,
both by basal sliding and deformation of substrate, J.
Glaciol., 57, 596–608, 2011.
Rignot, E., Mouginot, J., and Scheuchl, B.: Antarctic grounding line mapping
from differential satellite radar interferometry, Geophys. Res.
Lett., 38, L10504, https://doi.org/10.1029/2011GL047109, 2011.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-shelf melting
around Antarctica, Science, 341, 266–270, 2013.
Robel, A. A., Schoof, C., and Tziperman, E.: Rapid grounding line migration
induced by internal ice stream variability, J. Geophys. Res.-Earth, 119, 2430–2447, 2014.
Robel, A., Tsai, V., Minchew, B., and Simons, M.: Tidal modulation of ice shelf
buttressing stresses, Ann. Glaciol., 58, 12–20,
https://doi.org/10.1017/aog.2017.22, 2017.
Sayag, R. and Worster, M. G.: Elastic dynamics and tidal migration of
grounding lines modify subglacial lubrication and melting, Geophys.
Res. Lett., 40, 5877–5881, 2013.
Sayag, R. and Worster, M. G.: Elastic response of a grounded ice sheet
coupled to a floating ice shelf, Phys. Rev. E, 84, 036111, https://doi.org/10.1103/PhysRevE.84.036111, 2011.
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and
hysteresis, J. Geophys. Res.-Earth, 112, F03S28, https://doi.org/10.1029/2006JF000664, 2007.
Shackleton, C. S., Winsborrow, M. C., Andreassen, K., Lucchi, R. G., and
Bjarnadóttir, L. R.: Ice-margin retreat and grounding-zone dynamics
during initial deglaciation of the Storfjordrenna Ice Stream, western
Barents Sea, Boreas, 49, 38–51, 2020.
Simkins, L. M., Greenwood, S. L., and Anderson, J. B.: Diagnosing ice sheet grounding line stability from landform morphology, The Cryosphere, 12, 2707–2726, https://doi.org/10.5194/tc-12-2707-2018, 2018.
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo,
F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K.,
Markus, T., Neumann, T., Siegfried, M. R., and Zwally, H. J.: Pervasive ice
sheet mass loss reflects competing ocean and atmosphere processes, Science, 368,
1239–1242, 2020.
Smith, J. A., Hillenbrand, C.-D., Kuhn, G., Larter, R. D., Graham, A. G. C.,
Ehrmann, W., Moreton, S. G., and Forwick, M.: Deglacial history of the West
Antarctic Ice Sheet in the western Amundsen Sea Embayment, Quaternary
Sci. Rev., 30, 488–505, 2011.
Smith, J. A., Hillenbrand, C.-D., Kuhn, G., Klages, J. P., Graham, A. G. C.,
Larter, R. D., Ehrmann, W., Moreton, S. G., Wiers, S., and Frederichs, T.:
New constraints on the timing of West Antarctic Ice Sheet retreat in the
eastern Amundsen Sea since the Last Glacial Maximum, Global Planet.
Change, 122, 224–237, https://doi.org/10.1016/j.gloplacha.2014.07.015, 2013.
Smith, J. A., Graham, A. G., Post, A. L., Hillenbrand, C.-D., Bart, P. J.,
and Powell, R. D.: The marine geological imprint of Antarctic ice shelves,
Nat. Commun., 10, 1–16, 2019.
Sugiyama, S., Sawagaki, T., Fukuda, T., and Aoki, S.: Active water exchange
and life near the grounding line of an Antarctic outlet glacier, Earth
Planet. Sc. Lett., 399, 52–60, 2014.
Thomas, R. H.: The dynamics of marine ice sheets, J. Glaciol., 24,
167–177, 1979.
Todd, B. J., Valentine, P. C., Longva, O., And Shaw, J.: Glacial landforms
on German Bank, Scotian Shelf: evidence for Late Wisconsinan ice-sheet
dynamics and implications for the formation of De Geer moraines, Boreas, 36,
148–169, 2007.
Tsai, V. C. and Gudmundsson, G. H.: An improved model for tidally modulated
grounding-line migration, J. Glaciol., 61, 216–222, 2015.
Tulaczyk, S., Kamb, B., Scherer, R. P., and Engelhardt, H. F.: Sedimentary
processes at the base of a West Antarctic ice stream; constraints from
textural and compositional properties of subglacial debris, J.
Sediment. Res., 68, 487–496, 1998.
van der Meer, J. J., Menzies, J., and Rose, J.: Subglacial till: the
deforming glacier bed, Quaternary Sci. Rev., 22, 1659–1685, 2003.
Walker, R. T., Parizek, B. R., Alley, R. B., Anandakrishnan, S., Riverman, K. L., and Christianson, K.: Ice-shelf tidal flexure and subglacial pressure variations, Earth Planet. Sc. Lett., 361, 422–428, https://doi.org/10.1016/j.epsl.2012.11.08, 2013.
Warburton, K., Hewitt, D., and Neufeld, J.: Research data supporting Towards modelling of corrugation ridges at ice-sheet grounding lines, Apollo – University of Cambridge Repository [data set], https://doi.org/10.17863/CAM.96524, 2023.
Warburton, K. L. P., Hewitt, D. R., and Neufeld, J. A.: Tidal Grounding-Line
Migration Modulated by Subglacial Hydrology, Geophys. Res. Lett.,
47, e2020GL089088, https://doi.org/10.1029/2020GL089088, 2020.
Short summary
Delicate sea floor ridges – corrugation ridges – that form by tidal motion at Antarctic grounding lines record extremely fast retreat of ice streams in the past. Here we use a mathematical model, constrained by real-world observations from Thwaites Glacier, West Antarctica, to explore how corrugation ridges form. We identify
till extrusion, whereby deformable sediment is squeezed out from under the ice like toothpaste as it settles down at each low-tide position, as the most likely process.
Delicate sea floor ridges – corrugation ridges – that form by tidal motion at Antarctic...