Articles | Volume 17, issue 6
https://doi.org/10.5194/tc-17-2261-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-2261-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Can rifts alter ocean dynamics beneath ice shelves?
Mattia Poinelli
CORRESPONDING AUTHOR
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Department of Earth System Science, University of California, Irvine, Irvine, CA, USA
Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands
Michael Schodlok
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Eric Larour
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Miren Vizcaino
Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands
Riccardo Riva
Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands
Related authors
No articles found.
Luc Houriez, Eric Larour, Lambert Caron, Nicole-Jeanne Schlegel, Surendra Adhikari, Erik Ivins, Tyler Pelle, Hélène Seroussi, Eric Darve, and Martin Fischer
The Cryosphere, 19, 4355–4372, https://doi.org/10.5194/tc-19-4355-2025, https://doi.org/10.5194/tc-19-4355-2025, 2025
Short summary
Short summary
This work examines how interactions between the ice sheet and the Earth’s evolving surface affect the future of Thwaites Glacier in Antarctica. We find that small features in the bedrock play a major role in these interactions which can delay the glacier’s retreat by decades or even centuries. This can significantly reduce sea-level rise projections. Our study highlights resolution requirements for similar ice–earth models and the importance of bedrock mapping efforts in Antarctica.
Surendra Adhikari, Lambert Caron, Holly K. Han, Luc Houriez, Eric Larour, and Erik Ivins
EGUsphere, https://doi.org/10.5194/egusphere-2025-3561, https://doi.org/10.5194/egusphere-2025-3561, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We present an efficient way of coupling ice sheet and solid Earth models, targeting ice sheet modelers with little knowledge of and interest in glacial isostatic adjustment processes. We distill solid Earth response signals into "Green's functions," which can be convolved with the spatiotemporal pattern of modeled ice mass change using simple matrix multiplication. The manuscript is timely and encourages greater participation with coupled ice/Earth simulations in the ongoing ISMIP effort.
Thirza Feenstra, Miren Vizcaino, Bert Wouters, Michele Petrini, Raymond Sellevold, and Katherine Thayer-Calder
The Cryosphere, 19, 2289–2314, https://doi.org/10.5194/tc-19-2289-2025, https://doi.org/10.5194/tc-19-2289-2025, 2025
Short summary
Short summary
We present the first evaluation of Greenland ice sheet (GrIS) and climate feedbacks with a CMIP model. Under 4×CO2 forcing, lower elevations reduce GrIS summer blocking and incoming solar radiation and increase precipitation. Simulated increases of near-surface summer temperature are much lower than the 6 K km-1 lapse rate that is commonly used in non-coupled simulations. CO2 reduction to pre-industrial (PI) halts GrIS mass loss regardless of higher global warming and albedo than PI control.
Lambert Caron, Erik Ivins, Eric Larour, Surendra Adhikari, and Laurent Metivier
EGUsphere, https://doi.org/10.5194/egusphere-2024-3414, https://doi.org/10.5194/egusphere-2024-3414, 2025
Short summary
Short summary
Presented here is a new model of the solid-Earth response to tides and mass changes in ice sheets, oceans, and groundwater, in of terms of gravity change and bedrock motion. The model is capable simulating mantle deformation including elasticity, transient and steady-state viscous flow. We detail our approach to numerical optimization, and report the accuracy of results with respect to community benchmarks. The resulting coupled system features kilometer-scale resolution and fast computation.
Michele Petrini, Meike D. W. Scherrenberg, Laura Muntjewerf, Miren Vizcaino, Raymond Sellevold, Gunter R. Leguy, William H. Lipscomb, and Heiko Goelzer
The Cryosphere, 19, 63–81, https://doi.org/10.5194/tc-19-63-2025, https://doi.org/10.5194/tc-19-63-2025, 2025
Short summary
Short summary
Anthropogenic warming is causing accelerated Greenland ice sheet melt. Here, we use a computer model to understand how prolonged warming and ice melt could threaten ice sheet stability. We find a threshold beyond which Greenland will lose more than 80 % of its ice over several thousand years, due to the interaction of surface and solid-Earth processes. Nearly complete Greenland ice sheet melt occurs when the ice margin disconnects from a region of high elevation in western Greenland.
Sarah L. Bradley, Raymond Sellevold, Michele Petrini, Miren Vizcaino, Sotiria Georgiou, Jiang Zhu, Bette L. Otto-Bliesner, and Marcus Lofverstrom
Clim. Past, 20, 211–235, https://doi.org/10.5194/cp-20-211-2024, https://doi.org/10.5194/cp-20-211-2024, 2024
Short summary
Short summary
The Last Glacial Maximum (LGM) was the most recent period with large ice sheets in Europe and North America. We provide a detailed analysis of surface mass and energy components for two time periods that bracket the LGM: 26 and 21 ka BP. We use an earth system model which has been adopted for modern ice sheets. We find that all Northern Hemisphere ice sheets have a positive surface mass balance apart from the British and Irish ice sheets and the North American ice sheet complex.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Fernando S. Paolo, Alex S. Gardner, Chad A. Greene, Johan Nilsson, Michael P. Schodlok, Nicole-Jeanne Schlegel, and Helen A. Fricker
The Cryosphere, 17, 3409–3433, https://doi.org/10.5194/tc-17-3409-2023, https://doi.org/10.5194/tc-17-3409-2023, 2023
Short summary
Short summary
We report on a slowdown in the rate of thinning and melting of West Antarctic ice shelves. We present a comprehensive assessment of the Antarctic ice shelves, where we analyze at a continental scale the changes in thickness, flow, and basal melt over the past 26 years. We also present a novel method to estimate ice shelf change from satellite altimetry and a time-dependent data set of ice shelf thickness and basal melt rates at an unprecedented resolution.
Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour
Geosci. Model Dev., 16, 2277–2302, https://doi.org/10.5194/gmd-16-2277-2023, https://doi.org/10.5194/gmd-16-2277-2023, 2023
Short summary
Short summary
This is the first description of the open-source Glacier Energy and Mass Balance (GEMB) model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. The model is evaluated against the current state of the art and in situ observations and is shown to perform well.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023, https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, and Aimée B. A. Slangen
Earth Syst. Dynam., 13, 1351–1375, https://doi.org/10.5194/esd-13-1351-2022, https://doi.org/10.5194/esd-13-1351-2022, 2022
Short summary
Short summary
The mass loss from Antarctica, Greenland and glaciers and variations in land water storage cause sea-level changes. Here, we characterize the regional trends within these sea-level contributions, taking into account mass variations since 1993. We take a comprehensive approach to determining the uncertainties of these sea-level changes, considering different types of errors. Our study reveals the importance of clearly quantifying the uncertainties of sea-level change trends.
Blake A. Castleman, Nicole-Jeanne Schlegel, Lambert Caron, Eric Larour, and Ala Khazendar
The Cryosphere, 16, 761–778, https://doi.org/10.5194/tc-16-761-2022, https://doi.org/10.5194/tc-16-761-2022, 2022
Short summary
Short summary
In the described study, we derive an uncertainty range for global mean sea level rise (SLR) contribution from Thwaites Glacier in a 200-year period under an extreme ocean warming scenario. We derive the spatial and vertical resolutions needed for bedrock data acquisition missions in order to limit global mean SLR contribution from Thwaites Glacier to ±2 cm in a 200-year period. We conduct sensitivity experiments in order to present the locations of critical regions in need of accurate mapping.
Kevin Bulthuis and Eric Larour
Geosci. Model Dev., 15, 1195–1217, https://doi.org/10.5194/gmd-15-1195-2022, https://doi.org/10.5194/gmd-15-1195-2022, 2022
Short summary
Short summary
We present and implement a stochastic solver to sample spatially and temporal varying uncertain input parameters in the Ice-sheet and Sea-level System Model, such as ice thickness or surface mass balance. We represent these sources of uncertainty using Gaussian random fields with Matérn covariance function. We generate random samples of this random field using an efficient computational approach based on solving a stochastic partial differential equation.
Sarah Hanus, Markus Hrachowitz, Harry Zekollari, Gerrit Schoups, Miren Vizcaino, and Roland Kaitna
Hydrol. Earth Syst. Sci., 25, 3429–3453, https://doi.org/10.5194/hess-25-3429-2021, https://doi.org/10.5194/hess-25-3429-2021, 2021
Short summary
Short summary
This study investigates the effects of climate change on runoff patterns in six Alpine catchments in Austria at the end of the 21st century. Our results indicate a substantial shift to earlier occurrences in annual maximum and minimum flows in high-elevation catchments. Magnitudes of annual extremes are projected to increase under a moderate emission scenario in all catchments. Changes are generally more pronounced for high-elevation catchments.
Daniel Cheng, Wayne Hayes, Eric Larour, Yara Mohajerani, Michael Wood, Isabella Velicogna, and Eric Rignot
The Cryosphere, 15, 1663–1675, https://doi.org/10.5194/tc-15-1663-2021, https://doi.org/10.5194/tc-15-1663-2021, 2021
Short summary
Short summary
Tracking changes in Greenland's glaciers is important for understanding Earth's climate, but it is time consuming to do so by hand. We train a program, called CALFIN, to automatically track these changes with human levels of accuracy. CALFIN is a special type of program called a neural network. This method can be applied to other glaciers and eventually other tracking tasks. This will enhance our understanding of the Greenland Ice Sheet and permit better models of Earth's climate.
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Short summary
ISSM-SLPS is a new projection system for future sea level that increases the resolution and accuracy of current projection systems and improves the way uncertainty is treated in such projections. This will pave the way for better inclusion of state-of-the-art results from existing intercomparison efforts carried out by the scientific community, such as GlacierMIP2 or ISMIP6, into sea-level projections.
Cited articles
Adcroft, A., Hill, C., and Marshall, J.: The representation of topography by shaved cells in a height coordinate model, Mon. Weather Rev., 125, 2293–2315, https://doi.org/10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2, 1997. a
Amundson, J., Kienholz, C., Hager, A. O., Jackson, R. H., Motyka, R. J., Nash, J. D., and Sutherland, D. A.: Formation, flow and break-up of ephemeral ice mélange at LeConte Glacier and Bay, Alaska, J. Glaciol., 66, 577–590, https://doi.org/10.1017/jog.2020.29, 2020. a
Banwell, A. F., Willis, I. C., MacDonald, G. J., Goodsell, B., Mayer, D. P.,
Powell, A., and MacAyeal, D. R.: Calving and rifting on the McMurdo Ice
Shelf, Antarctica, Ann. Glaciol., 58, 78–87, https://doi.org/10.1017/aog.2017.12,
2017. a, b
Bassis, J. N., Coleman, R., Fricker, H. A., and Minster, J. B.: Episodic
propagation of a rift on the Amery Ice Shelf, East Antarctica, Geophys. Res. Lett., 32, 1–5, https://doi.org/10.1029/2004GL022048, 2005. a, b
Borstad, C., McGrath, D., and Pope, A.: Fracture propagation and stability of
ice shelves governed by ice shelf heterogeneity., Geophys. Res. Lett., 44, 4186–4194, https://doi.org/10.1002/2017GL072648, 2017. a
Bradley, A. T., Bett, D. T., Dutrieux, P., De Rydt, J., and Holland, P. R.: The Influence of Pine Island Ice Shelf Calving on Basal Melting, J. Geophys. Res.-Oceans, 127, e2022JC018621, https://doi.org/10.1029/2022JC018621, 2022. a
Burchard, H., Bolding, K., Jenkins, A., Losch, M., Reinert, M., and Umlauf, L.: The vertical structure and entrainment of subglacial melt water plumes, J. Adv. Model. Earth Syst., 14, e2021MS002925, https://doi.org/10.1029/2021MS002925, 2022. a, b
Campin, J. M., Heimbach, P., Losch, M., Forget, G., Hill, E., Adcroft, A., Menemenlis, D., Chris, H., Jahn, O., Scott, J., Mazloff, M., Fox-Kemper, B., Nguyen, A., Doddridge, E., Fenty, I., Bates, M., Eichmann, A., Smith, T., Martin, T., Lauderdale, J., Abernathey, R., Deremble, B., Goldberg, D., Bourgault, P., and Dussin, P.: MITgcm/MITgcm: mid 2020 version (Version checkpoint67s), Zenodo [code], https://doi.org/10.5281/zenodo.3967889, 2020. a
Dinniman, M. S., Asay-Davis, X. S., Galton-Fenzi, B. K., Holland, P. R.,
Jenkins, A., and Timmermann, R.: Modeling Ice Shelf/Ocean Interaction in
Antarctica: A Review, Oceanography, 29, 144–153,
https://doi.org/10.5670/oceanog.2016.106, 2016. a
Doake, C. S. M., Corr, H., Rott, H., Skvarca, P., and Young, N.: Breakup and
conditions for stability of the northern Larsen Ice Shelf, Antarctica,
Nature, 398, 778–780, https://doi.org/10.1038/35832, 1998. a
Dupont, T. K. and Alley, R. B.: Assessment of the importance of ice-shelf
buttressing to ice-sheet flow, Geophys. Res. Lett., 32, L04503,
https://doi.org/10.1029/2004GL022024, 2005. a
Fuerst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M., Braun,
M., and Gagliardini, O.: The safety band of Antarctic ice shelves, Nat.
Clim. Change, 6, 479–482, https://doi.org/10.1038/nclimate2912, 2016. a
Goldberg, D. N., Little, C. M., Sergienko, O. V., Gnanadesikan, A., Hallberg,
R., and Oppenheimer, M.: Investigation of land ice-ocean interaction with a
fully coupled ice-ocean model: 1. Model description and behavior, J. Geophys. Res., 117, 1–16, https://doi.org/10.1029/2011JF002247, 2012. a, b
Grosfeld, K., Gerdes, R., and Determan, J.: Thermohaline circulation and
interaction between ice shelf cavities and the adjacent open ocean, J. Geophys. Res., 102, 15595–15610, https://doi.org/10.1029/97JC00891, 1997. a
Hellmer, H. H. and Olbers, D. J.: A two-dimensional model of the thermohaline
circulation under an ice shelf, Antarct. Sci., 1, 325–336,
https://doi.org/10.1017/S0954102089000490, 1989. a
Hewitt, I. J.: Subglacial Plumes, Annu. Rev. Fluid Mech., 52, 145–169, 2020. a
Holland, D. M. and Jenkins, A.: Modeling thermodynamic ice-ocean interactions
at the base of an ice shelf, J. Phys. Oceanogr., 29, 1787–1800,
1999. a
Holland, P. R., Corr, H. F. J., Vaughan, D. G., and Jenkins, A.: Marine ice in Larsen Ice Shelf, Geophys. Res. Lett., 36, L11604, https://doi.org/10.1029/2009GL038162, 2009. a
IPCC: Summary for Policymakers, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, ISBN 1009157973, 2019. a
Jackett, D. R. and McDougall, T. J.: Minimal adjustment of hydrographic
profiles to achieve static stability, J. Atmos. Ocean. Tech., 12,
381–389, https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2, 1995. a
Jenkins, A.: A one-dimensional model of ice shelf-ocean interaction, J. Geophys. Res., 96, 20671–20677, https://doi.org/10.1029/91JC01842, 1991. a
Jenkins, A. and Bombosh, A.: Modeling the effects of frazil ice crystals on the dynamics and thermodynamics of ice shelf water plumes., J. Geophys. Res.-Oceans, 100, 6967–6981, 1995. a
Jordan, J. J., Holland, P. R., Jenkins, A., Piggot, M. D., and Kimura, S.: Modeling ice-ocean interaction in ice-shelf crevasses, J. Geophys. Res.-Oceans, 119, 995–1008, https://doi.org/10.1002/2013JC009208, 2014. a, b, c, d
Khazendar, A. and Jenkins, A.: A model of marine ice formation within Antarctic ice shelf rifts, J. Geophys. Res., 108, 3235, https://doi.org/10.1029/2002JC001673, 2003. a, b, c, d
Large, W., McWilliams, J., and Doney, S.: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization, Rev. Geophys., 32,
363–403, https://doi.org/10.1029/94RG01872, 1994. a
Larour, E., Rignot, E., Poinelli, M., and Scheuchl, B.: Processes controlling the rifting of Larsen C Ice Shelf, Antarctica, prior to the calving of iceberg A68, P. Natl. Acad. Sci. USA, 118, 1–8, https://doi.org/10.1073/pnas.2105080118, 2021. a, b
Lawrence, J. D., Washam, P. M., Stevens, C., Hulbe, C., Horgan, H. J., Dunbar, G., Calkin, T., Stewart, C., Robinson, N., Mullen, A. D., Meister, M. R., Hurwitz, B. C., Quartini, E., Dichek, D. J. G., A., S., and Schmidt, B. E.: Crevasse refreezing and signatures of retreat observed at Kamb Ice Stream grounding zone, Nat. Geosci., 16, 238–243,
https://doi.org/10.1038/s41561-023-01129-y, 2023. a, b
Lewis, E. L. and Perkin, R. G.: Supercooling and Energy Exchange Near the
Arctic Ocean Surface, Geophys. Res. Lett., 88, 7681–7685,
https://doi.org/10.1029/JC088iC12p07681, 1983. a
Lipovsky, B. P.: Ice shelf rift propagation: stability, three-dimensional effects, and the role of marginal weakening, The Cryosphere, 14, 1673–1683, https://doi.org/10.5194/tc-14-1673-2020, 2020. a
Losch, M.: Modeling ice shelf cavities in a z coordinate ocean general circulation model, J. Geophys. Res.-Oceans, 113, C08043, https://doi.org/10.1029/2007JC004368, 2008. a, b
Menemenlis, D., Fukumori, I., and Lee, T.: Atlantic to Mediterranean Sea Level Difference Driven by Winds near Gibraltar Strait, J. Phys. Oceanogr., 37, 359–376, https://doi.org/10.1175/JPO3015.1, 2007. a
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., Broeke, M. R. V. D., Ommen, T. D. V., Wessem, M. V., and Young, D. A.: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020. a
Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M., and Rignot, E.: Origin of Circumpolar Deep Water intruding onto the Amundsen and Bellingshausen Sea continental shelves, Nat. Commun., 9, 3403, https://doi.org/10.1038/s41467-018-05813-1,
2018. a, b
Nakayama, Y., Manucharyan, G., Zhang, H., Dutrieux, P., Torres, H. S., Klein, P., Seroussi, H., Schodlok, M., Rignot, E., and Menemenlis, D.: Pathways of ocean heat towards Pine Island and Thwaites grounding lines, Sci. Rep., 9, 16649, https://doi.org/10.1038/s41598-019-53190-6, 2019. a, b
Nakayama, Y., Cai, C., and Seroussi, H.: Impact of Subglacial Freshwater
Discharge on Pine Island Ice Shelf, Geophys. Res. Lett., 48,
e2021GL093923, https://doi.org/10.1029/2021GL093923, 2021. a, b
Nicholls, K. W., Østerhus, S., Makinson, K., Gammelsrød, T., and Fahrbach, E.: Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review, Rev. Geophys., 47, RG3003, https://doi.org/10.1029/2007RG000250, 2009. a, b
Orheim, O., Hagen, J. O., Østerhus, S., and Saetrang, A. C.: Glaciological and oceanographic studies on Fimbulisen during NARE 1989/90, in: Filchner-Ronne Ice Shelf Programme, Rep. 4, edited by: Oerter, H., Alfred-Wegener Inst. for Polar and Mar. Res., Bremerhaven, Germany, 120–129, 1990. a, b, c, d
Orsi, A. H. and Whitworth, T.: Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE), Volume 1: Southern Ocean, edited by: Sparrow, M., Chapman, P., and Gould, J., International WOCE Project Office, Southampton, UK, ISBN 0-904175-49-9, 2004. a
Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice
shelves is accelerating, Science, 348, 327–331,
https://doi.org/10.1126/science.aaa0940, 2015. a, b
Poinelli, M.: MPoinelli/Poinelli2023a_TC: v1 (Version v1), Zenodo [code], https://doi.org/10.5281/zenodo.7905547, 2023. a
Potter, J. R. and Paren, J. G.: Interaction between ice shelf and ocean in George VI Sound, Antarctica, in: Oceanology of the Antarctic Continental Shelf, edited by: Jacobs, S. S., American Geophysical Union (AGU), Washington, D.C., Antarctic Research Series, 43, 35–58, 1985. a
Rignot, E. and Jacobs, S. S.: Rapid Bottom Melting Widespread near Antarctic
Ice Sheet Grounding Lines, Science, 296, 2020–2023,
https://doi.org/10.1126/science.1070942, 2002. a, b
Rignot, E. and MacAyeal, D.: Ice-shelf dynamics near the front of the
Filchner-Ronne Ice Shelf, Antarctica, revealed by SAR interferometry, J. Glaciol., 44, 405–418, https://doi.org/10.3189/S0022143000002732, 1998. a
Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A., and Thomas, R.: Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf, Geophys. Res. Lett., 31, L18401, https://doi.org/10.1029/2004GL020697, 2004. a
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice shelf melting
around Antarctica, Science, 341, 266–270, https://doi.org/10.1126/science.1235798, 2013. a, b
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from 1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019. a
Scambos, T. A., Bohlander, J. A., Shuman, C. A., and Skvarca, P.: Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment,
Antarctica, Geophys. Res. Lett., 31, L18402, https://doi.org/10.1029/2004GL020670, 2004. a
Schmidtko, S., Heywood, K. J., Thompson, A. F., and Aoki, S.: Multidecadal
warming of Antarctic waters, Science, 346, 1227–1231,
https://doi.org/10.1126/science.1256117, 2014. a
Schodlok, M., Menemenlis, D., Rignot, E., and Studinger, M.: Sensitivity of the ice-shelf/ocean system to the sub-ice-shelf cavity shape measured by NASA
icebridge in Pine Island Glacier, West Antarctica, Ann. Glaciol., 53,
156–162, https://doi.org/10.3189/2012AoG60A073, 2012. a, b
Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M., Rignot, E., and Khazendar, A.: Continued retreat of Thwaites Glacier, West
Antarctica, controlled by bed topography and ocean circulation, Geophys. Res. Lett., 44, 6191–6199, https://doi.org/10.1002/2017GL072910, 2017. a, b
Shepherd, A., Wingham, D., and Rignot, E.: Warm ocean is eroding West Antarctic Ice Sheet, Geophys. Res. Lett., 31, L23402, https://doi.org/10.1029/2004GL021284, 2004. a
Thomas, R., Rignot, E., Kanagaratnam, P., Krabill, W., and Casassa, G.:
Force-perturbation analysis of Pine Island Glacier, Antarctica, suggests
cause for recent acceleration, Ann. Glaciol., 39, 133–138,
https://doi.org/10.3189/172756404781814429, 2004. a
Thyng, K., Greene, C., Hetland, R., Zimmerle, H. M., and DiMarco, S.: True
colors of oceanography: Guidelines for effective and accurate colormap
selection, Oceanography, 29, 9–13, https://doi.org/10.5670/oceanog.2016.66, 2016. a
van Caspel, M., Schröder, M., Huhn, O., and Hellmer, H. H.: Precursors of Antarctic Bottom Water formed on the continental shelf off Larsen Ice Shelf,
Deep-Sea Res. Pt. I, 99, 1–9, https://doi.org/10.1016/j.dsr.2015.01.004, 2015.
a
Vankova, I. and Holland, D. M.: A Model of Icebergs and Sea Ice in a Joint
Continuum Framework, J. Geophys. Res.-Oceans, 122, 9110–9125,
https://doi.org/10.1002/2017JC013012, 2017. a
Vreugdenhil, C. A. and Taylor, J. R.: Stratification Effects in the Turbulent Boundary Layer beneath a Melting Ice Shelf: Insights from Resolved Large-Eddy Simulations, J. Phys. Oceanogr., 49, 1905–1925,
https://doi.org/10.1175/JPO-D-18-0252.1, 2019. a
Wåhlin, A. K., Steiger, N., Darelius, E., Assmann, K. M., Glessmer, M. S., Ha, H. K., Herraiz-Borreguero, L., Heuzé, C., Jenkins, A., Kim, T. W., Mazur,
A. K., Sommeria, J., and Viboud, S.: Ice front blocking of ocean heat
transport to an Antarctic ice shelf, Nature, 578, 568–571,
https://doi.org/10.1038/s41586-020-2014-5, 2020. a
Walker, C. C., Bassis, J. N., Fricker, H. A., and Czerwinski, R. J.:
Observations of interannual and spatial variability in rift propagation in
the Amery Ice Shelf, Antarctica, 2002–14, J. Glaciol., 61, 243–252,
https://doi.org/10.3189/2015JoG14J151, 2015. a, b
Wei, W., Blankenship, D. D., Greenbaum, J. S., Gourmelen, N., Dow, C. F., Richter, T. G., Greene, C. A., Young, D. A., Lee, S., Kim, T.-W., Lee, W. S., and Assmann, K. M.: Getz Ice Shelf melt enhanced by freshwater discharge from beneath the West Antarctic Ice Sheet, The Cryosphere, 14, 1399–1408, https://doi.org/10.5194/tc-14-1399-2020, 2020. a, b
Xu, Y., Rignot, E., Menemenlis, C., and Koppes, M.: Numerical experiments on
subaqueous melting of Greenland tidewater glaciers in response to ocean
warming and enhanced subglacial discharge, Ann. Glaciol., 53, 229–234,
https://doi.org/10.3189/2012AoG60A139, 2012. a, b, c
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(11167 KB) - Full-text XML
- Corrigendum
-
Supplement
(18451 KB) - BibTeX
- EndNote
Short summary
Rifts are fractures on ice shelves that connect the ice on top to the ocean below. The impact of rifts on ocean circulation below Antarctic ice shelves has been largely unexplored as ocean models are commonly run at resolutions that are too coarse to resolve the presence of rifts. Our model simulations show that a kilometer-wide rift near the ice-shelf front modulates heat intrusion beneath the ice and inhibits basal melt. These processes are therefore worthy of further investigation.
Rifts are fractures on ice shelves that connect the ice on top to the ocean below. The impact of...