Articles | Volume 17, issue 4
https://doi.org/10.5194/tc-17-1735-2023
https://doi.org/10.5194/tc-17-1735-2023
Research article
 | 
25 Apr 2023
Research article |  | 25 Apr 2023

Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020

Sukun Cheng, Yumeng Chen, Ali Aydoğdu, Laurent Bertino, Alberto Carrassi, Pierre Rampal, and Christopher K. R. T. Jones

Related authors

Arctic sea ice predictability on daily-to-weekly timescales: sensitivity to initial positional errors under different rheology formulations
Lohenn Fiol, Stephanie Leroux, Pierre Rampal, and Jean-Michel Brankart
EGUsphere, https://doi.org/10.5194/egusphere-2025-6379,https://doi.org/10.5194/egusphere-2025-6379, 2026
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Implementation and evaluation of sea level operators in OceanVar2.0: an open-source oceanographic three-dimensional variational data assimilation system
Paolo Oddo, Mario Adani, Francesco Carere, Andrea Cipollone, Anna Chiara Goglio, Eric Jansen, Ali Aydogdu, Francesca Mele, Italo Epicoco, Jenny Pistoia, Emanuela Clementi, Nadia Pinardi, and Simona Masina
Geosci. Model Dev., 19, 423–445, https://doi.org/10.5194/gmd-19-423-2026,https://doi.org/10.5194/gmd-19-423-2026, 2026
Short summary
Hybrid machine learning data assimilation for marine biogeochemistry
Ieuan Higgs, Ross Bannister, Jozef Skákala, Alberto Carrassi, and Stefano Ciavatta
Biogeosciences, 23, 315–344, https://doi.org/10.5194/bg-23-315-2026,https://doi.org/10.5194/bg-23-315-2026, 2026
Short summary
Four-dimensional variational data assimilation with a sea-ice thickness emulator
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Julien Brajard, and Laurent Bertino
The Cryosphere, 19, 5613–5637, https://doi.org/10.5194/tc-19-5613-2025,https://doi.org/10.5194/tc-19-5613-2025, 2025
Short summary
A Python interface to the Fortran-based Parallel Data Assimilation Framework: pyPDAF v1.0.2
Yumeng Chen, Lars Nerger, and Amos S. Lawless
Geosci. Model Dev., 18, 8235–8252, https://doi.org/10.5194/gmd-18-8235-2025,https://doi.org/10.5194/gmd-18-8235-2025, 2025
Short summary

Cited articles

Alam, J. M. and Lin, J. C.: Toward a Fully Lagrangian Atmospheric Modeling System, Mon. Weather Rev., 136, 4653–4667, https://doi.org/10.1175/2008MWR2515.1, 2008. a
Allard, R. A., Farrell, S. L., Hebert, D. A., Johnston, W. F., Li, L., Kurtz, N. T., Phelps, M. W., Posey, P. G., Tilling, R., Ridout, A., and Wallcraft, A. J.: Utilizing CryoSat-2 sea ice thickness to initialize a coupled ice-ocean modeling system, Adv. Space Res., 62, 1265–1280, https://doi.org/10.1016/j.asr.2017.12.030, 2018. a
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The data assimilation research testbed: A community facility, B. Am. Meteorol. Soc., 90, 1283–1296, 2009. a
Anderson, J. L.: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter, Physica D, 230, 99–111, 2007. a
Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, 1999. a
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
This work studies a novel application of combining a Lagrangian sea ice model, neXtSIM, and data assimilation. It uses a deterministic ensemble Kalman filter to incorporate satellite-observed ice concentration and thickness in simulations. The neXtSIM Lagrangian nature is handled using a remapping strategy on a common homogeneous mesh. The ensemble is formed by perturbing air–ocean boundary conditions and ice cohesion. Thanks to data assimilation, winter Arctic sea ice forecasting is enhanced.
Share