Articles | Volume 17, issue 4
https://doi.org/10.5194/tc-17-1623-2023
https://doi.org/10.5194/tc-17-1623-2023
Research article
 | 
13 Apr 2023
Research article |  | 13 Apr 2023

Cosmogenic-nuclide data from Antarctic nunataks can constrain past ice sheet instabilities

Anna Ruth W. Halberstadt, Greg Balco, Hannah Buchband, and Perry Spector

Related authors

Diffusion kinetics of 3He in pyroxene and plagioclase and applications to cosmogenic exposure dating and paleothermometry in mafic rocks
Marie Bergelin, Andrew Gorin, Greg Balco, and William Cassata
EGUsphere, https://doi.org/10.5194/egusphere-2025-928,https://doi.org/10.5194/egusphere-2025-928, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Technical note: 21Ne in the CoQtz-N quartz standard material
Greg Balco
EGUsphere, https://doi.org/10.5194/egusphere-2025-149,https://doi.org/10.5194/egusphere-2025-149, 2025
Short summary
Assessing the suitability of sites near Pine Island Glacier for subglacial bedrock drilling aimed at detecting Holocene retreat–readvance
Joanne S. Johnson, John Woodward, Ian Nesbitt, Kate Winter, Seth Campbell, Keir A. Nichols, Ryan A. Venturelli, Scott Braddock, Brent M. Goehring, Brenda Hall, Dylan H. Rood, and Greg Balco
The Cryosphere, 19, 303–324, https://doi.org/10.5194/tc-19-303-2025,https://doi.org/10.5194/tc-19-303-2025, 2025
Short summary
East Antarctic Ice Sheet variability in the central Transantarctic Mountains since the mid Miocene
Gordon R. M. Bromley, Greg Balco, Margaret S. Jackson, Allie Balter-Kennedy, and Holly Thomas
Clim. Past, 21, 145–160, https://doi.org/10.5194/cp-21-145-2025,https://doi.org/10.5194/cp-21-145-2025, 2025
Short summary
Cosmogenic 21Ne exposure ages on late Pleistocene moraines in Lassen Volcanic National Park, California, USA
Joseph P. Tulenko, Greg Balco, Michael A. Clynne, and L. J. Patrick Muffler
Geochronology, 6, 639–652, https://doi.org/10.5194/gchron-6-639-2024,https://doi.org/10.5194/gchron-6-639-2024, 2024
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
Bathymetry-constrained impact of relative sea-level change on basal melting in Antarctica
Moritz Kreuzer, Torsten Albrecht, Lena Nicola, Ronja Reese, and Ricarda Winkelmann
The Cryosphere, 19, 1181–1203, https://doi.org/10.5194/tc-19-1181-2025,https://doi.org/10.5194/tc-19-1181-2025, 2025
Short summary
Age–depth distribution in western Dronning Maud Land, East Antarctica, and Antarctic-wide comparisons of internal reflection horizons
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
The Cryosphere, 19, 1153–1180, https://doi.org/10.5194/tc-19-1153-2025,https://doi.org/10.5194/tc-19-1153-2025, 2025
Short summary
Assessing the sensitivity of the Vanderford Glacier, East Antarctica, to basal melt and calving
Lawrence A. Bird, Felicity S. McCormack, Johanna Beckmann, Richard S. Jones, and Andrew N. Mackintosh
The Cryosphere, 19, 955–973, https://doi.org/10.5194/tc-19-955-2025,https://doi.org/10.5194/tc-19-955-2025, 2025
Short summary
A history-matching analysis of the Antarctic Ice Sheet since the Last Interglacial – Part 1: Ice sheet evolution
Benoit S. Lecavalier and Lev Tarasov
The Cryosphere, 19, 919–953, https://doi.org/10.5194/tc-19-919-2025,https://doi.org/10.5194/tc-19-919-2025, 2025
Short summary
ISMIP6-based Antarctic projections to 2100: simulations with the BISICLES ice sheet model
James F. O'Neill, Tamsin L. Edwards, Daniel F. Martin, Courtney Shafer, Stephen L. Cornford, Hélène L. Seroussi, Sophie Nowicki, Mira Adhikari, and Lauren J. Gregoire
The Cryosphere, 19, 541–563, https://doi.org/10.5194/tc-19-541-2025,https://doi.org/10.5194/tc-19-541-2025, 2025
Short summary

Cited articles

Balco, G.: The absence of evidence of absence of the East Antarctic Ice Sheet, Geology, 43, 943–944, https://doi.org/10.1130/focus102015.1, 2015. 
Balco, G., Stone, J. O. H., Sliwinski, M. G., and Todd, C.: Features of the glacial history of the Transantarctic Mountains inferred from cosmogenic 26Al, 10Be and 21Ne concentrations in bedrock surfaces, Antarct. Sci., 26, 708–723, https://doi.org/10.1017/S0954102014000261, 2014. 
Balco, G., Buchband, H., and Halberstadt, A. R. W.: 5 million year transient Antarctic ice sheet model run with “desensitized” marine ice margin instabilities, U.S. Antarctic Program Data Center [data set], https://doi.org/10.15784/601601, 2022a. 
Balco, G., Buchband, H., and Halberstadt, A. R. W.: 5 million year transient Antarctic ice sheet model run with “sensitized” marine ice margin instabilities, U.S. Antarctic Program Data Center [data set], https://doi.org/10.15784/601602, 2022b. 
Bart, P. J. and Anderson, J. B.: Relative temporal stability of the Antarctic ice sheets during the late Neogene based on the minimum frequency of outer shelf grounding events, Earth Planet Sci. Lett., 182, 259–272, https://doi.org/10.1016/S0012-821X(00)00257-0, 2000. 
Download
Short summary
This paper explores the use of multimillion-year exposure ages from Antarctic bedrock outcrops to benchmark ice sheet model predictions and thereby infer ice sheet sensitivity to warm climates. We describe a new approach for model–data comparison, highlight an example where observational data are used to distinguish end-member models, and provide guidance for targeted sampling around Antarctica that can improve understanding of ice sheet response to climate warming in the past and future.
Share