Articles | Volume 16, issue 2
The Cryosphere, 16, 603–623, 2022
https://doi.org/10.5194/tc-16-603-2022
The Cryosphere, 16, 603–623, 2022
https://doi.org/10.5194/tc-16-603-2022
Research article
 | Highlight paper
18 Feb 2022
Research article  | Highlight paper | 18 Feb 2022

A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach

Gregoire Guillet et al.

Related authors

Rapid fragmentation of Thwaites Eastern Ice Shelf
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022,https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
Glacier and rock glacier changes since the 1950s in the La Laguna catchment, Chile
Benjamin Aubrey Robson, Shelley MacDonell, Álvaro Ayala, Tobias Bolch, Pål Ringkjøb Nielsen, and Sebastián Vivero
The Cryosphere, 16, 647–665, https://doi.org/10.5194/tc-16-647-2022,https://doi.org/10.5194/tc-16-647-2022, 2022
Short summary
Incorporating kinematic attributes into rock glacier inventories exploiting InSAR data: preliminary results in eleven regions worldwide
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne Hvidtfeldt Christiansen, Margaret Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne Staalesen Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-342,https://doi.org/10.5194/tc-2021-342, 2022
Revised manuscript accepted for TC
Short summary
Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region
Jan Bouke Pronk, Tobias Bolch, Owen King, Bert Wouters, and Douglas I. Benn
The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021,https://doi.org/10.5194/tc-15-5577-2021, 2021
Short summary
Brief communication: Thwaites Glacier cavity evolution
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Susheel Adusumilli, and Anna Crawford
The Cryosphere, 15, 3317–3328, https://doi.org/10.5194/tc-15-3317-2021,https://doi.org/10.5194/tc-15-3317-2021, 2021
Short summary

Related subject area

Discipline: Glaciers | Subject: Glaciers
Brief communication: Estimating the ice thickness of the Müller Ice Cap to support selection of a drill site
Ann-Sofie Priergaard Zinck and Aslak Grinsted
The Cryosphere, 16, 1399–1407, https://doi.org/10.5194/tc-16-1399-2022,https://doi.org/10.5194/tc-16-1399-2022, 2022
Short summary
Glacier geometry and flow speed determine how Arctic marine-terminating glaciers respond to lubricated beds
Whyjay Zheng
The Cryosphere, 16, 1431–1445, https://doi.org/10.5194/tc-16-1431-2022,https://doi.org/10.5194/tc-16-1431-2022, 2022
Short summary
Towards ice-thickness inversion: an evaluation of global digital elevation models (DEMs) in the glacierized Tibetan Plateau
Wenfeng Chen, Tandong Yao, Guoqing Zhang, Fei Li, Guoxiong Zheng, Yushan Zhou, and Fenglin Xu
The Cryosphere, 16, 197–218, https://doi.org/10.5194/tc-16-197-2022,https://doi.org/10.5194/tc-16-197-2022, 2022
Short summary
Record summer rains in 2019 led to massive loss of surface and cave ice in SE Europe
Aurel Perşoiu, Nenad Buzjak, Alexandru Onaca, Christos Pennos, Yorgos Sotiriadis, Monica Ionita, Stavros Zachariadis, Michael Styllas, Jure Kosutnik, Alexandru Hegyi, and Valerija Butorac
The Cryosphere, 15, 2383–2399, https://doi.org/10.5194/tc-15-2383-2021,https://doi.org/10.5194/tc-15-2383-2021, 2021
Short summary
Evolution of the firn pack of Kaskawulsh Glacier, Yukon: meltwater effects, densification, and the development of a perennial firn aquifer
Naomi E. Ochwat, Shawn J. Marshall, Brian J. Moorman, Alison S. Criscitiello, and Luke Copland
The Cryosphere, 15, 2021–2040, https://doi.org/10.5194/tc-15-2021-2021,https://doi.org/10.5194/tc-15-2021-2021, 2021
Short summary

Cited articles

Aðalgeirsdóttir, G., Björnsson, H., Pálsson, F., and Magnússon, E.: Analyses of a Surging Outlet Glacier of Vatnajökull Ice Cap, Iceland, Ann. Glaciol., 42, 23–28, https://doi.org/10.3189/172756405781812934, 2005. a
Åström, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O'Neel, S., Bartholomaus, T. C., Liu, Y., Riikilä, T. I., Zwinger, T., Timonen, J., and Moore, J. C.: Termini of Calving Glaciers as Self-Organized Critical Systems, Nat. Geosci., 7, 874–878, https://doi.org/10.1038/ngeo2290, 2014. a
Bak, P. and Chen, K.: Self-Organized Criticality, Scientific American, 264, 46–53, 1991. a
Barrand, N. E. and Murray, T.: Multivariate Controls on the Incidence of Glacier Surging in the Karakoram Himalaya, Arct. Antarct. Alp. Res., 38, 489–498, https://doi.org/10.1657/1523-0430(2006)38[489:MCOTIO]2.0.CO;2, 2006. a, b
Bauke, H.: Parameter Estimation for Power-Law Distributions by Maximum Likelihood Methods, Eur. Phys. J. B, 58, 167–173, https://doi.org/10.1140/epjb/e2007-00219-y, 2007. a
Download
Short summary
Surging glaciers show cyclical changes in flow behavior – between slow and fast flow – and can have drastic impacts on settlements in their vicinity. One of the clusters of surging glaciers worldwide is High Mountain Asia (HMA). We present an inventory of surging glaciers in HMA, identified from satellite imagery. We show that the number of surging glaciers was underestimated and that they represent 20 % of the area covered by glaciers in HMA, before discussing new physics for glacier surges.