Articles | Volume 16, issue 2
https://doi.org/10.5194/tc-16-603-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-603-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach
School of Geography and Sustainable Development, University of St Andrews, United Kingdom
Owen King
School of Geography and Sustainable Development, University of St Andrews, United Kingdom
Mingyang Lv
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
Sajid Ghuffar
School of Geography and Sustainable Development, University of St Andrews, United Kingdom
Department of Space Science, Institute of Space Technology, Islamabad, Pakistan
Douglas Benn
School of Geography and Sustainable Development, University of St Andrews, United Kingdom
Duncan Quincey
School of Geography, University of Leeds, United Kingdom
Tobias Bolch
School of Geography and Sustainable Development, University of St Andrews, United Kingdom
Related authors
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Daniel Falaschi, Atanu Bhattacharya, Gregoire Guillet, Lei Huang, Owen King, Kriti Mukherjee, Philipp Rastner, Tandong Yao, and Tobias Bolch
The Cryosphere, 17, 5435–5458, https://doi.org/10.5194/tc-17-5435-2023, https://doi.org/10.5194/tc-17-5435-2023, 2023
Short summary
Short summary
Because glaciers are crucial freshwater sources in the lowlands surrounding High Mountain Asia, constraining short-term glacier mass changes is essential. We investigate the potential of state-of-the-art satellite elevation data to measure glacier mass changes in two selected regions. The results demonstrate the ability of our dataset to characterize glacier changes of different magnitudes, allowing for an increase in the number of inaccessible glaciers that can be readily monitored.
Sajid Ghuffar, Owen King, Grégoire Guillet, Ewelina Rupnik, and Tobias Bolch
The Cryosphere, 17, 1299–1306, https://doi.org/10.5194/tc-17-1299-2023, https://doi.org/10.5194/tc-17-1299-2023, 2023
Short summary
Short summary
The panoramic cameras (PCs) on board Hexagon KH-9 satellite missions from 1971–1984 captured very high-resolution stereo imagery with up to 60 cm spatial resolution. This study explores the potential of this imagery for glacier mapping and change estimation. The high resolution of KH-9PC leads to higher-quality DEMs which better resolve the accumulation region of glaciers in comparison to the KH-9 mapping camera, and KH-9PC imagery can be useful in several Earth observation applications.
Iain Wheel, Douglas I. Benn, Anna J. Crawford, Joe Todd, and Thomas Zwinger
Geosci. Model Dev., 17, 5759–5777, https://doi.org/10.5194/gmd-17-5759-2024, https://doi.org/10.5194/gmd-17-5759-2024, 2024
Short summary
Short summary
Calving, the detachment of large icebergs from glaciers, is one of the largest uncertainties in future sea level rise projections. This process is poorly understood, and there is an absence of detailed models capable of simulating calving. A new 3D calving model has been developed to better understand calving at glaciers where detailed modelling was previously limited. Importantly, the new model is very flexible. By allowing for unrestricted calving geometries, it can be applied at any location.
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2169, https://doi.org/10.5194/egusphere-2024-2169, 2024
Short summary
Short summary
We reconstruct the evolution of terminus position, ice thickness and surface flow velocity of the reference Abramov glacier (Kyrgyzstan) from 1968 to present. We describe a front pulsation in the early 2000s and the multi-annual present-day buildup of a new pulsation. Such dynamic instabilities can challenge the representativity of Abramov as reference glacier. For our work we used satellite‑based optical remote sensing from multiple platforms, including recently declassified archives.
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-255, https://doi.org/10.5194/essd-2024-255, 2024
Preprint under review for ESSD
Short summary
Short summary
This study compiled a near-complete inventory of glacier mass changes across the eastern Tibetan Plateau using topographical maps. This data enhances our understanding of glacier change variability before 2000. When combined with existing research, our dataset provides a nearly five-decade record of mass balance, aiding hydrological simulations and assessments of mountain glacier contributions to sea-level rise.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun
The Cryosphere, 18, 1085–1103, https://doi.org/10.5194/tc-18-1085-2024, https://doi.org/10.5194/tc-18-1085-2024, 2024
Short summary
Short summary
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier, Pakistan. The surface velocity was characterized by a spring speed-up, summer peak, and autumn speed-up. Snow melt has the largest impact on the spring speed-up, summer velocity peak, and the transition from inefficient to efficient drainage. Drainage from supraglacial lakes contributed to the fall speed-up. Increased summer temperatures will intensify the magnitude of meltwater and thus surface velocities.
Daniel Falaschi, Atanu Bhattacharya, Gregoire Guillet, Lei Huang, Owen King, Kriti Mukherjee, Philipp Rastner, Tandong Yao, and Tobias Bolch
The Cryosphere, 17, 5435–5458, https://doi.org/10.5194/tc-17-5435-2023, https://doi.org/10.5194/tc-17-5435-2023, 2023
Short summary
Short summary
Because glaciers are crucial freshwater sources in the lowlands surrounding High Mountain Asia, constraining short-term glacier mass changes is essential. We investigate the potential of state-of-the-art satellite elevation data to measure glacier mass changes in two selected regions. The results demonstrate the ability of our dataset to characterize glacier changes of different magnitudes, allowing for an increase in the number of inaccessible glaciers that can be readily monitored.
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Guanyu Li, Mingyang Lv, Duncan J. Quincey, Liam S. Taylor, Xinwu Li, Shiyong Yan, Yidan Sun, and Huadong Guo
The Cryosphere, 17, 2891–2907, https://doi.org/10.5194/tc-17-2891-2023, https://doi.org/10.5194/tc-17-2891-2023, 2023
Short summary
Short summary
Kyagar Glacier in the Karakoram is well known for its surge history and its frequent blocking of the downstream valley, leading to a series of high-magnitude glacial lake outburst floods. Using it as a test bed, we develop a new approach for quantifying surge behaviour using successive digital elevation models. This method could be applied to other surge studies. Combined with the results from optical satellite images, we also reconstruct the surge process in unprecedented detail.
Sajid Ghuffar, Owen King, Grégoire Guillet, Ewelina Rupnik, and Tobias Bolch
The Cryosphere, 17, 1299–1306, https://doi.org/10.5194/tc-17-1299-2023, https://doi.org/10.5194/tc-17-1299-2023, 2023
Short summary
Short summary
The panoramic cameras (PCs) on board Hexagon KH-9 satellite missions from 1971–1984 captured very high-resolution stereo imagery with up to 60 cm spatial resolution. This study explores the potential of this imagery for glacier mapping and change estimation. The high resolution of KH-9PC leads to higher-quality DEMs which better resolve the accumulation region of glaciers in comparison to the KH-9 mapping camera, and KH-9PC imagery can be useful in several Earth observation applications.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-473, https://doi.org/10.5194/essd-2022-473, 2023
Preprint withdrawn
Short summary
Short summary
In this study, we presented a nearly complete inventory of glacier mass change dataset across the eastern Tibetan Plateau by using topographical maps, which will enhance the knowledge on the heterogeneity of glacier change before 2000. Our dataset, in combination with the published results, provide a nearly five decades mass balance to support hydrological simulation, and to evaluate the contribution of mountain glacier loss to sea level.
Liam S. Taylor, Duncan J. Quincey, and Mark W. Smith
Nat. Hazards Earth Syst. Sci., 23, 329–341, https://doi.org/10.5194/nhess-23-329-2023, https://doi.org/10.5194/nhess-23-329-2023, 2023
Short summary
Short summary
Hazards from glaciers are becoming more likely as the climate warms, which poses a threat to communities living beneath them. We have developed a new camera system which can capture regular, high-quality 3D models to monitor small changes in glaciers which could be indicative of a future hazard. This system is far cheaper than more typical camera sensors yet produces very similar quality data. We suggest that deploying these cameras near glaciers could assist in warning communities of hazards.
Simon K. Allen, Ashim Sattar, Owen King, Guoqing Zhang, Atanu Bhattacharya, Tandong Yao, and Tobias Bolch
Nat. Hazards Earth Syst. Sci., 22, 3765–3785, https://doi.org/10.5194/nhess-22-3765-2022, https://doi.org/10.5194/nhess-22-3765-2022, 2022
Short summary
Short summary
This study demonstrates how the threat of a very large outburst from a future lake can be feasibly assessed alongside that from current lakes to inform disaster risk management within a transboundary basin between Tibet and Nepal. Results show that engineering measures and early warning systems would need to be coupled with effective land use zoning and programmes to strengthen local response capacities in order to effectively reduce the risk associated with current and future outburst events.
Christopher D. Stringer, Jonathan L. Carrivick, Duncan J. Quincey, and Daniel Nývlt
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-250, https://doi.org/10.5194/essd-2022-250, 2022
Revised manuscript not accepted
Short summary
Short summary
Glaciers in Antarctica have been decreasing in size at a fast rate, leading to the expansion of proglacial areas, with wide-ranging ecological implications. Several global land-cover maps exist, but they do not include Antarctica. We map land cover types across West Antarctica and the McMurdo Dry Valleys to a high degree of accuracy (77.0 %). We highlight the spatial variation in land cover and emphasise the need for more field data.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022, https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
Short summary
Thwaites Glacier (TG), in West Antarctica, is potentially unstable and may contribute significantly to sea-level rise as global warming continues. Using satellite data, we show that Thwaites Eastern Ice Shelf, the largest remaining floating extension of TG, has started to accelerate as it fragments along a shear zone. Computer modelling does not indicate that fragmentation will lead to imminent glacier collapse, but it is clear that major, rapid, and unpredictable changes are underway.
Benjamin Aubrey Robson, Shelley MacDonell, Álvaro Ayala, Tobias Bolch, Pål Ringkjøb Nielsen, and Sebastián Vivero
The Cryosphere, 16, 647–665, https://doi.org/10.5194/tc-16-647-2022, https://doi.org/10.5194/tc-16-647-2022, 2022
Short summary
Short summary
This work uses satellite and aerial data to study glaciers and rock glacier changes in La Laguna catchment within the semi-arid Andes of Chile, where ice melt is an important factor in river flow. The results show the rate of ice loss of Tapado Glacier has been increasing since the 1950s, which possibly relates to a dryer, warmer climate over the previous decades. Several rock glaciers show high surface velocities and elevation changes between 2012 and 2020, indicating they may be ice-rich.
Jan Bouke Pronk, Tobias Bolch, Owen King, Bert Wouters, and Douglas I. Benn
The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021, https://doi.org/10.5194/tc-15-5577-2021, 2021
Short summary
Short summary
About 10 % of Himalayan glaciers flow directly into lakes. This study finds, using satellite imagery, that such glaciers show higher flow velocities than glaciers without ice–lake contact. In particular near the glacier tongue the impact of a lake on the glacier flow can be dramatic. The development of current and new meltwater bodies will influence the flow of an increasing number of Himalayan glaciers in the future, a scenario not currently considered in regional ice loss projections.
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Susheel Adusumilli, and Anna Crawford
The Cryosphere, 15, 3317–3328, https://doi.org/10.5194/tc-15-3317-2021, https://doi.org/10.5194/tc-15-3317-2021, 2021
Short summary
Short summary
The stability of the West Antarctic ice sheet depends on the behaviour of the fast-flowing glaciers, such as Thwaites, that connect it to the ocean. Here we show that a large ocean-melted cavity beneath Thwaites Glacier has remained stable since it first formed, implying that, in line with current theory, basal melt is now concentrated close to where the ice first goes afloat. We also show that Thwaites Glacier continues to thin and to speed up and that continued retreat is therefore likely.
Andreas Kellerer-Pirklbauer, Michael Avian, Douglas I. Benn, Felix Bernsteiner, Philipp Krisch, and Christian Ziesler
The Cryosphere, 15, 1237–1258, https://doi.org/10.5194/tc-15-1237-2021, https://doi.org/10.5194/tc-15-1237-2021, 2021
Short summary
Short summary
Present climate warming leads to glacier recession and formation of lakes. We studied the nature and rate of lake evolution in the period 1998–2019 at Pasterze Glacier, Austria. We detected for instance several large-scale and rapidly occurring ice-breakup events from below the water level. This process, previously not reported from the European Alps, might play an important role at alpine glaciers in the future as many glaciers are expected to recede into valley basins allowing lake formation.
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Franz Goerlich, Tobias Bolch, and Frank Paul
Earth Syst. Sci. Data, 12, 3161–3176, https://doi.org/10.5194/essd-12-3161-2020, https://doi.org/10.5194/essd-12-3161-2020, 2020
Short summary
Short summary
This work indicates all glaciers in the Pamir that surged between 1988 and 2018 as revealed by different remote sensing data, mainly Landsat imagery. We found ~ 200 surging glaciers for the entire mountain range and detected the minimum and maximum extents of most of them. The smallest surging glacier is ~ 0.3 km2. This inventory is important for further research on the surging behaviour of glaciers and has to be considered when processing glacier changes (mass, area) of the region.
Levan G. Tielidze, Tobias Bolch, Roger D. Wheate, Stanislav S. Kutuzov, Ivan I. Lavrentiev, and Michael Zemp
The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, https://doi.org/10.5194/tc-14-585-2020, 2020
Short summary
Short summary
We present data of supra-glacial debris cover for 659 glaciers across the Greater Caucasus based on satellite images from the years 1986, 2000 and 2014. We combined semi-automated methods for mapping the clean ice with manual digitization of debris-covered glacier parts and calculated supra-glacial debris-covered area as the residual between these two maps. The distribution of the supra-glacial debris cover differs between northern and southern and between western, central and eastern Caucasus.
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Tom Cowton, and Joe Todd
The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019, https://doi.org/10.5194/tc-13-2303-2019, 2019
Short summary
Short summary
Kangerlussuaq Glacier in Greenland retreated significantly in the early 2000s and typified the response of calving glaciers to climate change. Satellite images show that it has recently retreated even further. The current retreat follows the appearance of extremely warm surface waters on the continental shelf during the summer of 2016, which likely entered the fjord and caused the rigid mass of sea ice and icebergs, which normally inhibits calving, to melt and break up.
Nico Mölg, Tobias Bolch, Andrea Walter, and Andreas Vieli
The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019, https://doi.org/10.5194/tc-13-1889-2019, 2019
Short summary
Short summary
Debris can partly protect glaciers from melting. But many debris-covered glaciers change similar to debris-free glaciers. To better understand the debris influence we investigated 150 years of evolution of Zmutt Glacier in Switzerland. We found an increase in debris extent over time and a link to glacier flow velocity changes. We also found an influence of debris on the melt locally, but only a small volume change reduction over the whole glacier, also because of the influence of ice cliffs.
Joe Todd, Poul Christoffersen, Thomas Zwinger, Peter Råback, and Douglas I. Benn
The Cryosphere, 13, 1681–1694, https://doi.org/10.5194/tc-13-1681-2019, https://doi.org/10.5194/tc-13-1681-2019, 2019
Short summary
Short summary
The Greenland Ice Sheet loses 30 %–60 % of its ice due to iceberg calving. Calving processes and their links to climate are not well understood or incorporated into numerical models of glaciers. Here we use a new 3-D calving model to investigate calving at Store Glacier, West Greenland, and test its sensitivity to increased submarine melting and reduced support from ice mélange (sea ice and icebergs). We find Store remains fairly stable despite these changes, but less so in the southern side.
Dorothée Vallot, Sigit Adinugroho, Robin Strand, Penelope How, Rickard Pettersson, Douglas I. Benn, and Nicholas R. J. Hulton
Geosci. Instrum. Method. Data Syst., 8, 113–127, https://doi.org/10.5194/gi-8-113-2019, https://doi.org/10.5194/gi-8-113-2019, 2019
Short summary
Short summary
This paper presents a novel method to quantify the sizes and frequency of calving events from time-lapse camera images. The calving front of a tidewater glacier experiences different episodes of iceberg deliveries that can be captured by a time-lapse camera situated in front of the glacier. An automatic way of detecting calving events is presented here and compared to manually detected events.
Mingyang Lv, Huadong Guo, Xiancai Lu, Guang Liu, Shiyong Yan, Zhixing Ruan, Yixing Ding, and Duncan J. Quincey
The Cryosphere, 13, 219–236, https://doi.org/10.5194/tc-13-219-2019, https://doi.org/10.5194/tc-13-219-2019, 2019
Short summary
Short summary
We highlight 28 glaciers in the Kingata Mountains, among which 17 have changed markedly over the last decade. We identify four advancing and 13 surge-type glaciers. The dynamic evolution of the surges is similar to that of Karakoram, suggesting that both hydrological and thermal controls are important for surge initiation and recession. Topography seems to be a dominant control on non-surge glacier behaviour. Most glaciers experienced a significant and diverse change in their motion patterns.
Evan S. Miles, C. Scott Watson, Fanny Brun, Etienne Berthier, Michel Esteves, Duncan J. Quincey, Katie E. Miles, Bryn Hubbard, and Patrick Wagnon
The Cryosphere, 12, 3891–3905, https://doi.org/10.5194/tc-12-3891-2018, https://doi.org/10.5194/tc-12-3891-2018, 2018
Short summary
Short summary
We use high-resolution satellite imagery and field visits to assess the growth and drainage of a lake on Changri Shar Glacier in the Everest region, and its impact. The lake filled and drained within 3 months, which is a shorter interval than would be detected by standard monitoring protocols, but forced re-routing of major trails in several locations. The water appears to have flowed beneath Changri Shar and Khumbu glaciers in an efficient manner, suggesting pre-existing developed flow paths.
Nico Mölg, Tobias Bolch, Philipp Rastner, Tazio Strozzi, and Frank Paul
Earth Syst. Sci. Data, 10, 1807–1827, https://doi.org/10.5194/essd-10-1807-2018, https://doi.org/10.5194/essd-10-1807-2018, 2018
Short summary
Short summary
Knowledge about the size and location of glaciers is essential to understand impacts of climatic changes on the natural environment. Therefore, we have produced an inventory of all glaciers in some of the largest glacierized mountain regions worldwide. Many large glaciers are covered by a rock (debris) layer, which also changes their reaction to climatic changes. Thus, we have also mapped this debris layer for all glaciers. We have mapped almost 28000 glaciers covering ~35000 km2.
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
Dorothée Vallot, Jan Åström, Thomas Zwinger, Rickard Pettersson, Alistair Everett, Douglas I. Benn, Adrian Luckman, Ward J. J. van Pelt, Faezeh Nick, and Jack Kohler
The Cryosphere, 12, 609–625, https://doi.org/10.5194/tc-12-609-2018, https://doi.org/10.5194/tc-12-609-2018, 2018
Short summary
Short summary
This paper presents a new perspective on the role of ice dynamics and ocean interaction in glacier calving processes applied to Kronebreen, a tidewater glacier in Svalbard. A global modelling approach includes ice flow modelling, undercutting estimation by a combination of glacier energy balance and plume modelling as well as calving by a discrete particle model. We show that modelling undercutting is necessary and calving is influenced by basal friction velocity and geometry.
Ann V. Rowan, Lindsey Nicholson, Emily Collier, Duncan J. Quincey, Morgan J. Gibson, Patrick Wagnon, David R. Rounce, Sarah S. Thompson, Owen King, C. Scott Watson, Tristram D. L. Irvine-Fynn, and Neil F. Glasser
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-239, https://doi.org/10.5194/tc-2017-239, 2017
Revised manuscript not accepted
Short summary
Short summary
Many glaciers in the Himalaya are covered with thick layers of rock debris that acts as an insulating blanket and so reduces melting of the underlying ice. Little is known about how melt beneath supraglacial debris varies across glaciers and through the monsoon season. We measured debris temperatures across three glaciers and several years to investigate seasonal trends, and found that sub-debris ice melt can be predicted using a temperature–depth relationship with surface temperature data.
Penelope How, Douglas I. Benn, Nicholas R. J. Hulton, Bryn Hubbard, Adrian Luckman, Heïdi Sevestre, Ward J. J. van Pelt, Katrin Lindbäck, Jack Kohler, and Wim Boot
The Cryosphere, 11, 2691–2710, https://doi.org/10.5194/tc-11-2691-2017, https://doi.org/10.5194/tc-11-2691-2017, 2017
Short summary
Short summary
This study provides valuable insight into subglacial hydrology and dynamics at tidewater glaciers, which remains a poorly understood area of glaciology. It is a unique study because of the wealth of information provided by simultaneous observations of glacier hydrology at Kronebreen, a tidewater glacier in Svalbard. All these elements build a strong conceptual picture of the glacier's hydrological regime over the 2014 melt season.
Katie E. Miles, Bryn Hubbard, Tristam D. L. Irvine-Fynn, Evan S. Miles, Duncan J. Quincey, and Ann V. Rowan
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-210, https://doi.org/10.5194/tc-2017-210, 2017
Preprint withdrawn
Short summary
Short summary
The production and routing of meltwater through glaciers is important because that water influences glacier sliding, and represents a resource in some instances and a hazard in others. Despite this importance, very little is known about the hydrology of debris-covered glaciers, which are commonly located at high altitudes. Here, we present a review of the hydrology of debris-covered glaciers, summarizing the current state of knowledge and identify potential future research priorities.
Douglas I. Benn, Sarah Thompson, Jason Gulley, Jordan Mertes, Adrian Luckman, and Lindsey Nicholson
The Cryosphere, 11, 2247–2264, https://doi.org/10.5194/tc-11-2247-2017, https://doi.org/10.5194/tc-11-2247-2017, 2017
Short summary
Short summary
This paper provides the first complete view of the drainage system of a large Himalayan glacier, based on ice-cave exploration and satellite image analysis. Drainage tunnels inside glaciers have a major impact on melting rates, by providing lines of weakness inside the ice and potential pathways for melt-water, and play a key role in the response of debris-covered glaciers to sustained periods of negative mass balance.
Tobias Bolch, Tino Pieczonka, Kriti Mukherjee, and Joseph Shea
The Cryosphere, 11, 531–539, https://doi.org/10.5194/tc-11-531-2017, https://doi.org/10.5194/tc-11-531-2017, 2017
Short summary
Short summary
Previous geodetic estimates of glacier mass changes in the Karakoram have revealed balanced budgets or a possible slight mass gain since the year ∼ 2000. We used old US reconnaissance imagery and could show that glaciers in the Hunza River basin (Central Karakoram) experienced on average no significant mass changes also since the 1970s. Likewise the glaciers had heterogeneous behaviour with frequent surge activities during the last 40 years.
Owen King, Duncan J. Quincey, Jonathan L. Carrivick, and Ann V. Rowan
The Cryosphere, 11, 407–426, https://doi.org/10.5194/tc-11-407-2017, https://doi.org/10.5194/tc-11-407-2017, 2017
Short summary
Short summary
We used multiple digital elevation models to quantify melt on 32 glaciers in the Everest region of the Himalayas. We examined whether patterns of melt differed depending on whether the glacier terminated on land or in water. We found that glaciers terminating in large lakes had the highest melt rates, but that those terminating in small lakes had comparable melt rates to those terminating on land. We carried out this research because Himalayan people are highly dependent on glacier meltwater.
Silvan Ragettli, Tobias Bolch, and Francesca Pellicciotti
The Cryosphere, 10, 2075–2097, https://doi.org/10.5194/tc-10-2075-2016, https://doi.org/10.5194/tc-10-2075-2016, 2016
Short summary
Short summary
This study presents a multi-temporal dataset of geodetically derived elevation changes on debris-free and debris-covered glaciers in the Langtang valley, Nepalese Himalaya. Overall, we observe accelerated glacier wastage, but highly heterogeneous spatial patterns and temporal trends across glaciers. Accelerations in thinning correlate with the presence of supraglacial cliffs and lakes, whereas thinning rates remained constant or declined on stagnating debris-covered glacier areas.
Michel Wortmann, Tobias Bolch, Valentina Krysanova, and Su Buda
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-272, https://doi.org/10.5194/hess-2016-272, 2016
Revised manuscript not accepted
S. J. Cook and D. J. Quincey
Earth Surf. Dynam., 3, 559–575, https://doi.org/10.5194/esurf-3-559-2015, https://doi.org/10.5194/esurf-3-559-2015, 2015
Short summary
Short summary
We compiled data on Alpine glacial lake morphometry to test empirical relationships that are used to estimate lake volume for the modelling of glacial lake outburst floods. We find wide scatter in the relationship between lake area and depth, and between area and volume, and identify contexts where existing empirical relationships are poor volume predictors. We generate a data-driven conceptual model of how lake volume should be expected to scale with area for a range of glacial lake contexts.
D. R. Rounce, D. J. Quincey, and D. C. McKinney
The Cryosphere, 9, 2295–2310, https://doi.org/10.5194/tc-9-2295-2015, https://doi.org/10.5194/tc-9-2295-2015, 2015
Short summary
Short summary
A debris-covered glacier energy balance was used to model debris temperatures and sub-debris ablation rates on Imja-Lhotse Shar Glacier during the 2014 melt season. Field measurements were used to assess model performance. A novel method was also developed using Structure from Motion to estimate the surface roughness. Lastly, the effects of temporal resolution, i.e., 6h and daily time steps, and various methods for estimating the latent heat flux were also investigated.
N. Holzer, S. Vijay, T. Yao, B. Xu, M. Buchroithner, and T. Bolch
The Cryosphere, 9, 2071–2088, https://doi.org/10.5194/tc-9-2071-2015, https://doi.org/10.5194/tc-9-2071-2015, 2015
Short summary
Short summary
Investigations of glacier mass-balance and area changes at Muztagh Ata (eastern Pamir) are based on Hexagon KH-9 (1973), ALOS-PRISM (2009), Pléiades (2013) and Landsat 7 ETM+/SRTM-3 (2000). Surface velocities of Kekesayi Glacier are derived by TerraSAR-X (2011) amplitude tracking. Glacier variations differ spatially and temporally, but on average not significantly for the entire massif. Stagnant Kekesayi and other debris-covered glaciers indicate no visual length changes, but clear down-wasting.
D. H. Shangguan, T. Bolch, Y. J. Ding, M. Kröhnert, T. Pieczonka, H. U. Wetzel, and S. Y. Liu
The Cryosphere, 9, 703–717, https://doi.org/10.5194/tc-9-703-2015, https://doi.org/10.5194/tc-9-703-2015, 2015
Short summary
Short summary
Glacier velocity, glacier area, surface elevation and mass changes of the Southern and Northern Inylchek Glacier were investigated by using multi-temporal space-borne data sets. The mass balance of both SIG and NIG was negative(-0.43 ± 0.10 m w.e. a-1 and -0.25 ± 0.10 m w.e. a-1) from ~1975 to 2007. The thinning at the lake dam was higher, likely caused by calving into Lake Merzbacher. Thus, glacier thinning and glacier flow are significantly influenced by the lake.
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
Short summary
Existing methods (area–volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan–Karakoram glaciers. Resulting volumes range from 2955–4737km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.
S. Hasson, V. Lucarini, M. R. Khan, M. Petitta, T. Bolch, and G. Gioli
Hydrol. Earth Syst. Sci., 18, 4077–4100, https://doi.org/10.5194/hess-18-4077-2014, https://doi.org/10.5194/hess-18-4077-2014, 2014
S. Thakuri, F. Salerno, C. Smiraglia, T. Bolch, C. D'Agata, G. Viviano, and G. Tartari
The Cryosphere, 8, 1297–1315, https://doi.org/10.5194/tc-8-1297-2014, https://doi.org/10.5194/tc-8-1297-2014, 2014
D. J. Quincey and A. Luckman
The Cryosphere, 8, 571–574, https://doi.org/10.5194/tc-8-571-2014, https://doi.org/10.5194/tc-8-571-2014, 2014
A. A. W. Fitzpatrick, A. L. Hubbard, J. E. Box, D. J. Quincey, D. van As, A. P. B. Mikkelsen, S. H. Doyle, C. F. Dow, B. Hasholt, and G. A. Jones
The Cryosphere, 8, 107–121, https://doi.org/10.5194/tc-8-107-2014, https://doi.org/10.5194/tc-8-107-2014, 2014
J. A. Åström, T. I. Riikilä, T. Tallinen, T. Zwinger, D. Benn, J. C. Moore, and J. Timonen
The Cryosphere, 7, 1591–1602, https://doi.org/10.5194/tc-7-1591-2013, https://doi.org/10.5194/tc-7-1591-2013, 2013
R. Bhambri, T. Bolch, P. Kawishwar, D. P. Dobhal, D. Srivastava, and B. Pratap
The Cryosphere, 7, 1385–1398, https://doi.org/10.5194/tc-7-1385-2013, https://doi.org/10.5194/tc-7-1385-2013, 2013
T. O. Holt, N. F. Glasser, D. J. Quincey, and M. R. Siegfried
The Cryosphere, 7, 797–816, https://doi.org/10.5194/tc-7-797-2013, https://doi.org/10.5194/tc-7-797-2013, 2013
P. Rastner, T. Bolch, N. Mölg, H. Machguth, R. Le Bris, and F. Paul
The Cryosphere, 6, 1483–1495, https://doi.org/10.5194/tc-6-1483-2012, https://doi.org/10.5194/tc-6-1483-2012, 2012
Related subject area
Discipline: Glaciers | Subject: Glaciers
Twenty-first century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations
Linking Glacier Retreat with Climate Change on the Tibetan Plateau through Satellite Remote Sensing
A quasi-one-dimensional ice mélange flow model based on continuum descriptions of granular materials
Modelling the historical and future evolution of six ice masses in the Tien Shan, Central Asia, using a 3D ice-flow model
Thinning and surface mass balance patterns of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau
Everest South Col Glacier did not thin during the period 1984–2017
Meltwater runoff and glacier mass balance in the high Arctic: 1991–2022 simulations for Svalbard
Impact of tides on calving patterns at Kronebreen, Svalbard – insights from three-dimensional ice dynamical modelling
Brief communication: Glacier mapping and change estimation using very high-resolution declassified Hexagon KH-9 panoramic stereo imagery (1971–1984)
Brief communication: Estimating the ice thickness of the Müller Ice Cap to support selection of a drill site
Glacier geometry and flow speed determine how Arctic marine-terminating glaciers respond to lubricated beds
Towards ice-thickness inversion: an evaluation of global digital elevation models (DEMs) in the glacierized Tibetan Plateau
Record summer rains in 2019 led to massive loss of surface and cave ice in SE Europe
Evolution of the firn pack of Kaskawulsh Glacier, Yukon: meltwater effects, densification, and the development of a perennial firn aquifer
Full crystallographic orientation (c and a axes) of warm, coarse-grained ice in a shear-dominated setting: a case study, Storglaciären, Sweden
Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements
Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia
Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024, https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
Short summary
Glaciers are major contributors to sea-level rise and act as key water resources. Here, we model the global evolution of glaciers under the latest generation of climate scenarios. We show that the type of observations used for model calibration can strongly affect the projections at the local scale. Our newly projected 21st century global mass loss is higher than the current community estimate as reported in the latest Intergovernmental Panel on Climate Change (IPCC) report.
Fumeng Zhao, Wenping Gong, Silvia Bianchini, and Zhongkang Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1083, https://doi.org/10.5194/egusphere-2024-1083, 2024
Short summary
Short summary
Glacier retreat patterns and climatic drivers on the Tibetan Plateau are uncertain at finer resolutions. This study introduces a new glacier mapping method covering 1988 to 2022, with downscaled air temperature and precipitation data. It quantifies the impacts of annual and seasonal temperature and precipitation on retreat. Results show rapid and varied retreat, with annual temperature influencing retreat in the west and spring precipitation in the northwest.
Jason M. Amundson, Alexander A. Robel, Justin C. Burton, and Kavinda Nissanka
EGUsphere, https://doi.org/10.5194/egusphere-2024-297, https://doi.org/10.5194/egusphere-2024-297, 2024
Short summary
Short summary
Some fjords contain dense packs of icebergs referred to as ice mélange. Ice mélange can affect the stability of marine-terminating glaciers by resisting the calving of new icebergs and by modifying fjord currents and water properties. We have developed the first numerical model of ice mélange that captures its granular nature and that is suitable for long time-scale simulations. The model is capable of explaining why some glaciers are more strongly influenced by ice mélange than others.
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 17, 4463–4485, https://doi.org/10.5194/tc-17-4463-2023, https://doi.org/10.5194/tc-17-4463-2023, 2023
Short summary
Short summary
We modelled the historical and future evolution of six ice masses in the Tien Shan, Central Asia, with a 3D ice-flow model under the newest climate scenarios. We show that in all scenarios the ice masses retreat significantly but with large differences. It is highlighted that, because the main precipitation occurs in spring and summer, the ice masses respond to climate change with an accelerating retreat. In all scenarios, the total runoff peaks before 2050, with a (drastic) decrease afterwards.
Chuanxi Zhao, Wei Yang, Evan Miles, Matthew Westoby, Marin Kneib, Yongjie Wang, Zhen He, and Francesca Pellicciotti
The Cryosphere, 17, 3895–3913, https://doi.org/10.5194/tc-17-3895-2023, https://doi.org/10.5194/tc-17-3895-2023, 2023
Short summary
Short summary
This paper quantifies the thinning and surface mass balance of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau during different seasons, based on high spatio-temporal resolution UAV-derived (unpiloted aerial
vehicle) data and in situ observations. Through a comparison approach and high-precision results, we identify that the glacier dynamic and debris thickness are strongly related to the future fate of the debris-covered glaciers in this region.
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Erin Emily Thomas, and Sebastian Westermann
The Cryosphere, 17, 2941–2963, https://doi.org/10.5194/tc-17-2941-2023, https://doi.org/10.5194/tc-17-2941-2023, 2023
Short summary
Short summary
Here, we present high-resolution simulations of glacier mass balance (the gain and loss of ice over a year) and runoff on Svalbard from 1991–2022, one of the fastest warming regions in the Arctic. The simulations are created using the CryoGrid community model. We find a small overall loss of mass over the simulation period of −0.08 m yr−1 but with no statistically significant trend. The average runoff was found to be 41 Gt yr−1, with a significant increasing trend of 6.3 Gt per decade.
Felicity A. Holmes, Eef van Dongen, Riko Noormets, Michał Pętlicki, and Nina Kirchner
The Cryosphere, 17, 1853–1872, https://doi.org/10.5194/tc-17-1853-2023, https://doi.org/10.5194/tc-17-1853-2023, 2023
Short summary
Short summary
Glaciers which end in bodies of water can lose mass through melting below the waterline, as well as by the breaking off of icebergs. We use a numerical model to simulate the breaking off of icebergs at Kronebreen, a glacier in Svalbard, and find that both melting below the waterline and tides are important for iceberg production. In addition, we compare the modelled glacier front to observations and show that melting below the waterline can lead to undercuts of up to around 25 m.
Sajid Ghuffar, Owen King, Grégoire Guillet, Ewelina Rupnik, and Tobias Bolch
The Cryosphere, 17, 1299–1306, https://doi.org/10.5194/tc-17-1299-2023, https://doi.org/10.5194/tc-17-1299-2023, 2023
Short summary
Short summary
The panoramic cameras (PCs) on board Hexagon KH-9 satellite missions from 1971–1984 captured very high-resolution stereo imagery with up to 60 cm spatial resolution. This study explores the potential of this imagery for glacier mapping and change estimation. The high resolution of KH-9PC leads to higher-quality DEMs which better resolve the accumulation region of glaciers in comparison to the KH-9 mapping camera, and KH-9PC imagery can be useful in several Earth observation applications.
Ann-Sofie Priergaard Zinck and Aslak Grinsted
The Cryosphere, 16, 1399–1407, https://doi.org/10.5194/tc-16-1399-2022, https://doi.org/10.5194/tc-16-1399-2022, 2022
Short summary
Short summary
The Müller Ice Cap will soon set the scene for a new drilling project. To obtain an ice core with stratified layers and a good time resolution, thickness estimates are necessary for the planning. Here we present a new and fast method of estimating ice thicknesses from sparse data and compare it to an existing ice flow model. We find that the new semi-empirical method is insensitive to mass balance, is computationally fast, and provides good fits when compared to radar measurements.
Whyjay Zheng
The Cryosphere, 16, 1431–1445, https://doi.org/10.5194/tc-16-1431-2022, https://doi.org/10.5194/tc-16-1431-2022, 2022
Short summary
Short summary
A glacier can speed up when surface water reaches the glacier's bottom via crevasses and reduces sliding friction. This paper builds up a physical model and finds that thick and fast-flowing glaciers are sensitive to this friction disruption. The data from Greenland and Austfonna (Svalbard) glaciers over 20 years support the model prediction. To estimate the projected sea-level rise better, these sensitive glaciers should be frequently monitored for potential future instabilities.
Wenfeng Chen, Tandong Yao, Guoqing Zhang, Fei Li, Guoxiong Zheng, Yushan Zhou, and Fenglin Xu
The Cryosphere, 16, 197–218, https://doi.org/10.5194/tc-16-197-2022, https://doi.org/10.5194/tc-16-197-2022, 2022
Short summary
Short summary
A digital elevation model (DEM) is a prerequisite for estimating regional glacier thickness. Our study first compared six widely used global DEMs over the glacierized Tibetan Plateau by using ICESat-2 (Ice, Cloud and land Elevation Satellite) laser altimetry data. Our results show that NASADEM had the best accuracy. We conclude that NASADEM would be the best choice for ice-thickness estimation over the Tibetan Plateau through an intercomparison of four ice-thickness inversion models.
Aurel Perşoiu, Nenad Buzjak, Alexandru Onaca, Christos Pennos, Yorgos Sotiriadis, Monica Ionita, Stavros Zachariadis, Michael Styllas, Jure Kosutnik, Alexandru Hegyi, and Valerija Butorac
The Cryosphere, 15, 2383–2399, https://doi.org/10.5194/tc-15-2383-2021, https://doi.org/10.5194/tc-15-2383-2021, 2021
Short summary
Short summary
Extreme precipitation events in summer 2019 led to catastrophic loss of cave and surface ice in SE Europe at levels unprecedented during the last century. The projected continuous warming and increase in precipitation extremes could pose an additional threat to glaciers in southern Europe, resulting in a potentially ice-free SE Europe by the middle of the next decade (2035 CE).
Naomi E. Ochwat, Shawn J. Marshall, Brian J. Moorman, Alison S. Criscitiello, and Luke Copland
The Cryosphere, 15, 2021–2040, https://doi.org/10.5194/tc-15-2021-2021, https://doi.org/10.5194/tc-15-2021-2021, 2021
Short summary
Short summary
In May 2018 we drilled into Kaskawulsh Glacier to study how it is being affected by climate warming and used models to investigate the evolution of the firn since the 1960s. We found that the accumulation zone has experienced increased melting that has refrozen as ice layers and has formed a perennial firn aquifer. These results better inform climate-induced changes on northern glaciers and variables to take into account when estimating glacier mass change using remote-sensing methods.
Morgan E. Monz, Peter J. Hudleston, David J. Prior, Zachary Michels, Sheng Fan, Marianne Negrini, Pat J. Langhorne, and Chao Qi
The Cryosphere, 15, 303–324, https://doi.org/10.5194/tc-15-303-2021, https://doi.org/10.5194/tc-15-303-2021, 2021
Short summary
Short summary
We present full crystallographic orientations of warm, coarse-grained ice deformed in a shear setting, enabling better characterization of how crystals in glacial ice preferentially align as ice flows. A commonly noted c-axis pattern, with several favored orientations, may result from bias due to overcounting large crystals with complex 3D shapes. A new sample preparation method effectively increases the sample size and reduces bias, resulting in a simpler pattern consistent with the ice flow.
Andreas Köhler, Michał Pętlicki, Pierre-Marie Lefeuvre, Giuseppa Buscaino, Christopher Nuth, and Christian Weidle
The Cryosphere, 13, 3117–3137, https://doi.org/10.5194/tc-13-3117-2019, https://doi.org/10.5194/tc-13-3117-2019, 2019
Short summary
Short summary
Ice loss at the front of glaciers can be observed with high temporal resolution using seismometers. We combine seismic and underwater sound measurements of iceberg calving at Kronebreen, a glacier in Svalbard, with laser scanning of the glacier front. We develop a method to determine calving ice loss directly from seismic and underwater calving signals. This allowed us to quantify the contribution of calving to the total ice loss at the glacier front, which also includes underwater melting.
Akiko Sakai
The Cryosphere, 13, 2043–2049, https://doi.org/10.5194/tc-13-2043-2019, https://doi.org/10.5194/tc-13-2043-2019, 2019
Short summary
Short summary
The Glacier Area Mapping for Discharge from the Asian Mountains (GAMDAM) glacier inventory was updated to revise the underestimated glacier area in the first version. The total number and area of glaciers are 134 770 and 100 693 ± 11 790 km2 from 453 Landsat images, which were carefully selected for the period from 1990 to 2010, to avoid mountain shadow, cloud cover, and seasonal snow cover.
Fanny Brun, Patrick Wagnon, Etienne Berthier, Joseph M. Shea, Walter W. Immerzeel, Philip D. A. Kraaijenbrink, Christian Vincent, Camille Reverchon, Dibas Shrestha, and Yves Arnaud
The Cryosphere, 12, 3439–3457, https://doi.org/10.5194/tc-12-3439-2018, https://doi.org/10.5194/tc-12-3439-2018, 2018
Short summary
Short summary
On debris-covered glaciers, steep ice cliffs experience dramatically enhanced melt compared with the surrounding debris-covered ice. Using field measurements, UAV data and submetre satellite imagery, we estimate the cliff contribution to 2 years of ablation on a debris-covered tongue in Nepal, carefully taking into account ice dynamics. While they occupy only 7 to 8 % of the tongue surface, ice cliffs contributed to 23 to 24 % of the total tongue ablation.
Cited articles
Aðalgeirsdóttir, G., Björnsson, H., Pálsson, F., and
Magnússon, E.: Analyses of a Surging Outlet Glacier of Vatnajökull
Ice Cap, Iceland, Ann. Glaciol., 42, 23–28,
https://doi.org/10.3189/172756405781812934, 2005. a
Åström, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O'Neel, S.,
Bartholomaus, T. C., Liu, Y., Riikilä, T. I., Zwinger, T., Timonen, J.,
and Moore, J. C.: Termini of Calving Glaciers as Self-Organized Critical
Systems, Nat. Geosci., 7, 874–878, https://doi.org/10.1038/ngeo2290, 2014. a
Bak, P. and Chen, K.: Self-Organized Criticality, Scientific American, 264, 46–53, 1991. a
Barrand, N. E. and Murray, T.: Multivariate Controls on the Incidence
of Glacier Surging in the Karakoram Himalaya, Arct. Antarct.
Alp. Res., 38, 489–498,
https://doi.org/10.1657/1523-0430(2006)38[489:MCOTIO]2.0.CO;2, 2006. a, b
Bauke, H.: Parameter Estimation for Power-Law Distributions by Maximum
Likelihood Methods, Eur. Phys. J. B, 58, 167–173,
https://doi.org/10.1140/epjb/e2007-00219-y, 2007. a
Bazai, N. A., Cui, P., Carling, P. A., Wang, H., Hassan, J., Liu, D., Zhang,
G., and Jin, W.: Increasing Glacial Lake Outburst Flood Hazard in Response to
Surge Glaciers in the Karakoram, Earth-Sci. Rev., 212, 103432,
https://doi.org/10.1016/j.earscirev.2020.103432, 2021. a
Belo, M., Mayer, C., Smiraglia, C., and Tamburini, A.: The Recent Evolution of
Liligo Glacier, Karakoram, Pakistan,and Its Present Quiescent
Phase, Ann. Glaciol., 48, 171–176, https://doi.org/10.3189/172756408784700662,
2008. a
Berthier, E. and Brun, F.: Karakoram Geodetic Glacier Mass Balances between
2008 and 2016: Persistence of the Anomaly and Influence of a Large Rock
Avalanche on Siachen Glacier, J. Glaciol., 65, 494–507,
https://doi.org/10.1017/jog.2019.32, 2019. a, b
Bhambri, R., Hewitt, K., Kawishwar, P., Kumar, A., Verma, A., Snehmani,
Tiwari, S., and Misra, A.: Ice-Dams, Outburst Floods, and Movement
Heterogeneity of Glaciers, Karakoram, Global Planet. Change, 180,
100–116, https://doi.org/10.1016/j.gloplacha.2019.05.004, 2019. a, b
Bhambri, R., Watson, C. S., Hewitt, K., Haritashya, U. K., Kargel, J. S.,
Pratap Shahi, A., Chand, P., Kumar, A., Verma, A., and Govil, H.: The
Hazardous 2017–2019 Surge and River Damming by Shispare
Glacier, Karakoram, Sci. Rep.-UK, 10, 4685,
https://doi.org/10.1038/s41598-020-61277-8, 2020. a, b
Bhattacharya, A., Bolch, T., Mukherjee, K., King, O., Menounos, B., Kapitsa,
V., Neckel, N., Yang, W., and Yao, T.: High Mountain Asian Glacier
Response to Climate Revealed by Multi-Temporal Satellite Observations since
the 1960s, Nat. Commun., 12, 4133, https://doi.org/10.1038/s41467-021-24180-y,
2021. a, b, c, d, e
Bolch, T., Pieczonka, T., Mukherjee, K., and Shea, J.: Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s, The Cryosphere, 11, 531–539, https://doi.org/10.5194/tc-11-531-2017, 2017. a, b, c
Bolch, T., Shea, J. M., Liu, S., Azam, F. M., Gao, Y., Gruber, S., Immerzeel,
W. W., Kulkarni, A., Li, H., Tahir, A. A., Zhang, G., and Zhang, Y.: Status
and Change of the Cryosphere in the Extended Hindu Kush Himalaya
Region, in: The Hindu Kush Himalaya Assessment: Mountains,
Climate Change, Sustainability and People, edited by: Wester, P.,
Mishra, A., Mukherji, A., and Shrestha, A. B., Springer
International Publishing, Cham, 209–255, https://doi.org/10.1007/978-3-319-92288-1_7, 2019. a, b, c, d
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A
Spatially Resolved Estimate of High Mountain Asia Glacier Mass Balances
from 2000 to 2016, Nat. Geosci., 10, 668–673, https://doi.org/10.1038/ngeo2999,
2017. a, b, c
Chudley, T. R. and Willis, I. C.: Glacier Surges in the North-West West
Kunlun Shan Inferred from 1972 to 2017 Landsat Imagery, J. Glaciol., 65, 1–12, https://doi.org/10.1017/jog.2018.94, 2019. a
Clarke, G. K. C.: Length, Width and Slope Influences on Glacier Surging,
J. Glaciol., 37, 236–246, https://doi.org/10.3189/S0022143000007255, 1991. a
Clarke, G. K. C., Schmok, J. P., Ommanney, C. S. L., and Collins, S. G.:
Characteristics of Surge-Type Glaciers, J. Geophys. Res.-Sol. Ea., 91, 7165–7180, https://doi.org/10.1029/JB091iB07p07165, 1986. a
Clauset, A., Shalizi, C. R., and Newman, M. E. J.: Power-Law Distributions
in Empirical Data, SIAM Review, 51, 661–703, https://doi.org/10.1137/070710111,
2009. a
Copland, L., Sharp, M. J., and Dowdeswell, J. A.: The Distribution and Flow
Characteristics of Surge-Type Glaciers in the Canadian High Arctic,
Ann. Glaciol., 36, 73–81, https://doi.org/10.3189/172756403781816301, 2003. a
Copland, L., Sylvestre, T., Bishop, M. P., Shroder, J. F., Seong, Y. B., Owen,
L. A., Bush, A., and Kamp, U.: Expanded and Recently Increased Glacier
Surging in the Karakoram, Arct. Antarct. Alp. Res., 43,
503–516, https://doi.org/10.1657/1938-4246-43.4.503, 2011. a, b
Corral, Á. and González, Á.: Power Law Size Distributions in
Geoscience Revisited, Earth Space Sci., 6, 673–697,
https://doi.org/10.1029/2018EA000479, 2019. a, b
Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers,
Academic Press, 4th edn., 704 pp., ISBN 008091912X, 9780080919126, 2010. a
Dehecq, A., Gourmelen, N., Gardner, A. S., Brun, F., Goldberg, D., Nienow,
P. W., Berthier, E., Vincent, C., Wagnon, P., and Trouvé, E.:
Twenty-First Century Glacier Slowdown Driven by Mass Loss in High Mountain
Asia, Nat. Geosci., 12, 22–27, https://doi.org/10.1038/s41561-018-0271-9, 2019. a, b
Ding, M., Huai, B., Sun, W., Wang, Y., Zhang, D., Guo, X., and Zhang, T.:
Surge-Type Glaciers in Karakoram Mountain and Possible Catastrophes
alongside a Portion of the Karakoram Highway, Nat. Hazards, 90,
1017–1020, https://doi.org/10.1007/s11069-017-3063-4, 2018. a, b
Dolgoushin, L. and Osipova, G.: Glacier Surges and the Problem of Their
Forecasting, IAHS Publ, 104, 292–304, 1975. a
Dowdeswell, J. A. and Williams, M.: Surge-Type Glaciers in the Russian High
Arctic Identified from Digital Satellite Imagery, J. Glaciol.,
43, 489–494, https://doi.org/10.3189/S0022143000035097, 1997. a
Dowdeswell, J. A., Hamilton, G. S., and Hagen, J. O.: The Duration of the
Active Phase on Surge-Type Glaciers: Contrasts between Svalbard and Other
Regions, J. Glaciol., 37, 388–400,
https://doi.org/10.3189/S0022143000005827, 1991. a
Gao, Y., Liu, S., Qi, M., Xie, F., Wu, K., and Zhu, Y.: Glacier-Related
Hazards Along the International Karakoram Highway: Status and
Future Perspectives, Front. Earth Sci., 9,
https://doi.org/10.3389/feart.2021.611501, 2021. a
Gardelle, J., Berthier, E., Arnaud, Y., and Kääb, A.: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011, The Cryosphere, 7, 1263–1286, https://doi.org/10.5194/tc-7-1263-2013, 2013. a, b
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018. a
Gardner, A. S., Fahnestock, M., and Scambos, T. A.: ITS_LIVE Regional
Glacier and Ice Sheet Surface Velocities, Data archived at National Snow and
Ice Data Center, https://nsidc.org/apps/itslive/ (last access: 31 August 2021), 2019. a
Gardner, J. S. and Hewitt, K.: A Surge of Bualtar Glacier, Karakoram
Range, Pakistan: A Possible Landslide Trigger, J. Glaciol., 36, 159–162, https://doi.org/10.3189/S0022143000009394, 1990. a
Grant, K. L., Stokes, C. R., and Evans, I. S.: Identification and
Characteristics of Surge-Type Glaciers on Novaya Zemlya, Russian
Arctic, J. Glaciol., 55, 960–972,
https://doi.org/10.3189/002214309790794940, 2009. a, b, c
Guillet, G., King, O., Lv, M., Ghuffar, S., Quincey, D., Benn, D., and Bolch, T.: A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from
a multi-factor remote sensing approach (Version v1), Zenodo [data set], https://doi.org/10.5281/zenodo.5524861, 2021. a
Hamilton, G. S.: Investigation of Surge-Type Glaciers in Svalbard,
Thesis, University of Cambridge, https://doi.org/10.17863/CAM.27506, 1992. a
Hamilton, G. S. and Dowdeswell, J. A.: Controls on Glacier Surging in
Svalbard, J. Glaciol., 42, 157–168,
https://doi.org/10.3189/S0022143000030616, 1996. a, b
Herzfeld, C. U. and Zahner, O.: A Connectionist-Geostatistical Approach
to Automated Image Classification, Applied to the Analysis of Crevasse
Patterns in Surging Ice, Comput. Geosci., 27, 499–512,
https://doi.org/10.1016/S0098-3004(00)00089-3, 2001. a
Herzfeld, U. C., Clarke, G. K. C., Mayer, H., and Greve, R.: Derivation of
Deformation Characteristics in Fast-Moving Glaciers, Comput.
Geosci., 30, 291–302, https://doi.org/10.1016/j.cageo.2003.10.012, 2004. a
Hewitt, K.: Glacier Surges in the Karakoram Himalaya (Central Asia),
Can. J. Earth Sci., 6, 1009–1018, https://doi.org/10.1139/e69-106,
1969. a
Hewitt, K.: Tributary Glacier Surges: An Exceptional Concentration at Panmah
Glacier, Karakoram Himalaya, J. Glaciol., 53, 181–188,
https://doi.org/10.3189/172756507782202829, 2007. a
Hewitt, K. and Liu, J.: Ice-Dammed Lakes and Outburst Floods,
Karakoram Himalaya: Historical Perspectives on Emerging Threats,
Phys. Geogr., 31, 528–551, https://doi.org/10.2747/0272-3646.31.6.528, 2010. a
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:
Accelerated Global Glacier Mass Loss in the Early Twenty-First Century,
Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021. a, b, c, d, e, f, g, h, i, j
Imran, M. and Ahmad, U.: Geospatially Analysing the Dynamics of the Khurdopin
Glacier Surge Using Multispectral and Temporal Remote Sensing and Ground
Observations, Nat. Hazards, 108, 847–866,
https://doi.org/10.1007/s11069-021-04708-7, 2021. a
Jennings, S. J. A. and Hambrey, M. J.: Structures and Deformation in
Glaciers and Ice Sheets, Rev. Geophys., 59, e2021RG000743,
https://doi.org/10.1029/2021RG000743, 2021. a
Jiskoot, H.: Glacier Surging, in: Encyclopedia of Snow, Ice and
Glaciers, pp. 415–428, Springer Dordrecht, 2011. a
Jiskoot, H., Boyle, P., and Murray, T.: The Incidence of Glacier Surging in
Svalbard: Evidence from Multivariate Statistics, Comput.
Geosci., 24, 387–399, https://doi.org/10.1016/S0098-3004(98)00033-8, 1998. a, b
Jiskoot, H., Murray, T., and Boyle, P.: Controls on the Distribution of
Surge-Type Glaciers in Svalbard, J. Glaciol., 46, 412–422,
https://doi.org/10.3189/172756500781833115, 2000. a
Jiskoot, H., Pedersen, A. K., and Murray, T.: Multi-Model Photogrammetric
Analysis of the 1990s Surge of Sortebræ, East Greenland, J.
Glaciol., 47, 677–687, https://doi.org/10.3189/172756501781831846, 2001. a
Jiskoot, H., Murray, T., and Luckman, A.: Surge Potential and Drainage-Basin
Characteristics in East Greenland, Ann. Glaciol., 36, 142–148,
https://doi.org/10.3189/172756403781816220, 2003. a
Kääb, A., Jacquemart, M., Gilbert, A., Leinss, S., Girod, L., Huggel, C., Falaschi, D., Ugalde, F., Petrakov, D., Chernomorets, S., Dokukin, M., Paul, F., Gascoin, S., Berthier, E., and Kargel, J. S.: Sudden large-volume detachments of low-angle mountain glaciers – more frequent than thought?, The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, 2021. a
Kavanaugh, J. L.: Exploring Glacier Dynamics with Subglacial Water Pressure
Pulses: Evidence for Self-Organized Criticality?, J. Geophys.
Res.-Earth Surf., 114, F01021, https://doi.org/10.1029/2008JF001036, 2009. a
King, O., Bhattacharya, A., Ghuffar, S., Tait, A., Guilford, S., Elmore, A. C.,
and Bolch, T.: Six Decades of Glacier Mass Changes around Mt.
Everest Are Revealed by Historical and Contemporary Images, One
Earth, 3, 608–620, https://doi.org/10.1016/j.oneear.2020.10.019, 2020. a
Kochtitzky, W., Jiskoot, H., Copland, L., Enderlin, E., Mcnabb, R., Kreutz, K.,
and Main, B.: Terminus Advance, Kinematics and Mass Redistribution during
Eight Surges of Donjek Glacier, St. Elias Range, Canada, 1935
to 2016, J. Glaciol., 65, 565–579, https://doi.org/10.1017/jog.2019.34,
2019. a, b
Kotlyakov, V. M., Osipova, G. B., and Tsvetkov, D. G.: Fluctuations of Unstable
Mountain Glaciers: Scale and Character, Ann. Glaciol., 24, 338–343,
https://doi.org/10.3189/S0260305500012416, 1997. a
Kotlyakov, V. M., Osipova, G. B., and Tsvetkov, D. G.: Monitoring Surging
Glaciers of the Pamirs, Central Asia, from Space, Ann. Glaciol., 48, 125–134, https://doi.org/10.3189/172756408784700608, 2008. a, b, c, d
Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., and Immerzeel, W. W.:
Impact of a Global Temperature Rise of 1.5 Degrees Celsius on Asia's
Glaciers, Nature, 549, 257–260, https://doi.org/10.1038/nature23878, 2017. a
Lalande, M., Ménégoz, M., Krinner, G., Naegeli, K., and Wunderle, S.: Climate change in the High Mountain Asia in CMIP6, Earth Syst. Dynam., 12, 1061–1098, https://doi.org/10.5194/esd-12-1061-2021, 2021. a
Li, Y.-J., Ding, Y.-J., Shangguan, D.-H., and Wang, R.-J.: Regional Differences
in Global Glacier Retreat from 1980 to 2015, Adv. Clim. Change
Res., 10, 203–213, https://doi.org/10.1016/j.accre.2020.03.003, 2019. a
Lovell, A. M., Carr, J. R., and Stokes, C. R.: Topographic Controls on the
Surging Behaviour of Sabche Glacier, Nepal (1967 to 2017), Remote
Sens. Environ., 210, 434–443, https://doi.org/10.1016/j.rse.2018.03.036, 2018. a
Lv, M., Guo, H., Lu, X., Liu, G., Yan, S., Ruan, Z., Ding, Y., and Quincey, D. J.: Characterizing the behaviour of surge- and non-surge-type glaciers in the Kingata Mountains, eastern Pamir, from 1999 to 2016, The Cryosphere, 13, 219–236, https://doi.org/10.5194/tc-13-219-2019, 2019. a, b
Lv, M., Guo, H., Yan, J., Wu, K., Liu, G., Lu, X., Ruan, Z., and Yan, S.:
Distinguishing Glaciers between Surging and Advancing by Remote
Sensing: A Case Study in the Eastern Karakoram, Remote Sens., 12,
2297, https://doi.org/10.3390/rs12142297, 2020. a
Mansell, D., Luckman, A., and Murray, T.: Dynamics of Tidewater Surge-Type
Glaciers in Northwest Svalbard, J. Glaciol., 58, 110–118,
https://doi.org/10.3189/2012JoG11J058, 2012. a
Meier, M. F. and Post, A.: What Are Glacier Surges?, Can. J. Earth
Sci., 6, 807–817, https://doi.org/10.1139/e69-081, 1969. a, b
Mouginot, J. and Rignot, E.: Ice Motion of the Patagonian Icefields of
South America: 1984–2014, Geophys. Res. Lett., 42,
1441–1449, https://doi.org/10.1002/2014GL062661, 2015. a
Mount Cryo: Data, Mount Cryo [data], https://www.mountcryo.org/datasets/, last access: 11 February 2022. a
Muhammad, S. and Tian, L.: Mass Balance and a Glacier Surge of Guliya Ice
Cap in the Western Kunlun Shan between 2005 and 2015, Remote Sens.
Environ., 244, 111832, https://doi.org/10.1016/j.rse.2020.111832, 2020. a
Muhammad, S., Li, J., Steiner, J. F., Shrestha, F., Shah, G. M., Berthier, E.,
Guo, L., Wu, L.-X., and Tian, L.: A Holistic View of Shisper Glacier
Surge and Outburst Floods: From Physical Processes to Downstream Impacts,
Geomatics, Nat. Hazards Risk, 12, 2755–2775,
https://doi.org/10.1080/19475705.2021.1975833, 2021. a
Murray, T., Strozzi, T., Luckman, A., Jiskoot, H., and Christakos, P.: Is There
a Single Surge Mechanism? Contrasts in Dynamics between Glacier Surges in
Svalbard and Other Regions, J. Geophys. Res.-Sol. Ea.,
108, 2237, https://doi.org/10.1029/2002JB001906, 2003. a, b
Osmonov, A., Bolch, T., Xi, C., Kurban, A., and Guo, W.: Glacier
Characteristics and Changes in the Sary-Jaz River Basin (Central Tien
Shan, Kyrgyzstan) – 1990–2010, Remote Sens.
Lett., 4, 725–734, https://doi.org/10.1080/2150704X.2013.789146, 2013. a
Park, W. and Kim, Y.: Goodness-of-Fit Tests for the Power-Law Process, IEEE
T. Reliab., 41, 107–111, https://doi.org/10.1109/24.126680, 1992. a
Paul, F.: A 60-Year Chronology of Glacier Surges in the Central Karakoram
from the Analysis of Satellite Image Time-Series, Geomorphology, 352,
106993, https://doi.org/10.1016/j.geomorph.2019.106993, 2020. a
Paul, F., Strozzi, T., Schellenberger, T., and Kääb, A.: The 2015
Surge of Hispar Glacier in the Karakoram, Remote Sens., 9, 888,
https://doi.org/10.3390/rs9090888, 2017. a, b
Pawitan, Y.: In All Likelihood: Statistical Modelling and Inference
Using Likelihood, OUP Oxford, 528 pp., ISBN 0198507658, 9780198507659, 2001. a
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner,
A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S.,
Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B. H.,
Rich, J., Sharp, M. J., and Consortium, T. R.: The Randolph Glacier
Inventory: A Globally Complete Inventory of Glaciers, J. Glaciol., 60, 537–552, https://doi.org/10.3189/2014JoG13J176, 2014. a
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.:
Numerical Recipes 3rd Edition: The Art of Scientific
Computing, Cambridge University Press, 1235 pp., ISBN 0521880688, 9780521880688, 2007. a
Pritchard, H., Murray, T., Luckman, A., Strozzi, T., and Barr, S.: Glacier
Surge Dynamics of Sortebræ, East Greenland, from Synthetic Aperture
Radar Feature Tracking, J. Geophys. Res.-Earth Surface, 110, F03005,
https://doi.org/10.1029/2004JF000233, 2005. a
Pronk, J. B., Bolch, T., King, O., Wouters, B., and Benn, D. I.: Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region, The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021, 2021. a
Quincey, D. J., Braun, M., Glasser, N. F., Bishop, M. P., Hewitt, K., and
Luckman, A.: Karakoram Glacier Surge Dynamics, Geophys. Res. Lett.,
38, L18504, https://doi.org/10.1029/2011GL049004, 2011. a, b, c
Quincey, D. J., Glasser, N. F., Cook, S. J., and Luckman, A.: Heterogeneity in
Karakoram Glacier Surges, J. Geophys. Res.-Earth Surf.,
120, 1288–1300, https://doi.org/10.1002/2015JF003515, 2015. a, b, c, d
Raymond, C. F.: How Do Glaciers Surge? A Review, J. Geophys. Res.-Sol. Ea., 92, 9121–9134, https://doi.org/10.1029/JB092iB09p09121, 1987. a
Round, V., Leinss, S., Huss, M., Haemmig, C., and Hajnsek, I.: Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram, The Cryosphere, 11, 723–739, https://doi.org/10.5194/tc-11-723-2017, 2017. a
Sachs, M. K., Yoder, M. R., Turcotte, D. L., Rundle, J. B., and Malamud, B. D.:
Black Swans, Power Laws, and Dragon-Kings: Earthquakes, Volcanic
Eruptions, Landslides, Wildfires, Floods, and SOC Models, Eur.
Phys. J. Special Topics, 205, 167–182,
https://doi.org/10.1140/epjst/e2012-01569-3, 2012. a
Shangguan, D., Liu, S., Ding, Y., Guo, W., Xu, B., Xu, J., and Jiang, Z.:
Characterizing the May 2015 Karayaylak Glacier Surge in the Eastern
Pamir Plateau Using Remote Sensing, J. Glaciol., 62, 944–953,
https://doi.org/10.1017/jog.2016.81, 2016. a, b
Sharp, M.: Surging Glaciers: Behaviour and Mechanisms, Prog. Phys.
Geogr.-Earth and Environment, 12, 349–370,
https://doi.org/10.1177/030913338801200302, 1988. a
Steiner, J. F., Kraaijenbrink, P. D. A., Jiduc, S. G., and Immerzeel, W. W.: Brief communication: The Khurdopin glacier surge revisited – extreme flow velocities and formation of a dammed lake in 2017, The Cryosphere, 12, 95–101, https://doi.org/10.5194/tc-12-95-2018, 2018. a, b, c
Sund, M., Eiken, T., Hagen, J. O., and Kääb, A.: Svalbard Surge
Dynamics Derived from Geometric Changes, Ann. Glaciol., 50, 50–60,
https://doi.org/10.3189/172756409789624265, 2009. a, b
Thøgersen, K., Gilbert, A., Schuler, T. V., and Malthe-Sørenssen, A.:
Rate-and-State Friction Explains Glacier Surge Propagation, Nat.
Commun., 10, 2823, https://doi.org/10.1038/s41467-019-10506-4, 2019. a
Truffer, M., Kääb, A., Harrison, W. D., Osipova, G. B., Nosenko, G. A.,
Espizua, L., Gilbert, A., Fischer, L., Huggel, C., Craw Burns, P. A., and
Lai, A. W.: Chapter 13 - Glacier Surges, in: Snow and Ice-Related
Hazards, Risks, and Disasters (Second Edition), edited by:
Haeberli, W. and Whiteman, C., Elsevier, 417–466,
https://doi.org/10.1016/B978-0-12-817129-5.00003-2, 2021. a, b
Turcotte, D. L.: Fractals in Geology and Geophysics, in: Fractals in
Geophysics, edited by: Scholz, C. H. and Mandelbrot, B. B., Pure and
Applied Geophysics, Birkhäuser, Basel, 171–196,
https://doi.org/10.1007/978-3-0348-6389-6_10, 1989. a
Wendt, A., Mayer, C., Lambrecht, A., and Floricioiu, D.: A Glacier Surge of
Bivachny Glacier, Pamir Mountains, Observed by a Time Series
of High-Resolution Digital Elevation Models and Glacier Velocities, Remote Sens., 9, 388, https://doi.org/10.3390/rs9040388, 2017. a
Xu, J., Shangguan, D., and Wang, J.: Recent Surging Event of a Glacier on
Geladandong Peak on the Central Tibetan Plateau, J. Glaciol., 67, 1–7, https://doi.org/10.1017/jog.2021.86, 2021. a
Yasuda, T. and Furuya, M.: Glacier Surge in West Kunlun Shan, NW Tibet
Detected by Synthetic Aperture Radar, in: Conference Proceedings of
2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR),
pp. 61–62, 2013. a
Yasuda, T. and Furuya, M.: Dynamics of Surge-Type Glaciers in West Kunlun
Shan, Northwestern Tibet, J. Geophys. Res.-Earth
Surf., 120, 2393–2405, https://doi.org/10.1002/2015JF003511, 2015. a, b, c, d
Zhou, S., Yao, X., Zhang, D., Zhang, Y., Liu, S., and Min, Y.: Remote Sensing
Monitoring of Advancing and Surging Glaciers in the Tien Shan,
1990–2019, Remote Sens., 13, 1973, https://doi.org/10.3390/rs13101973,
2021. a
Zhu, Q., Ke, C.-Q., and Li, H.: Monitoring Glacier Surges in the Kongur
Tagh Area of the Tibetan Plateau Using Sentinel-1 SAR Data,
Geomorphology, 390, 107869, https://doi.org/10.1016/j.geomorph.2021.107869, 2021. a, b, c
Short summary
Surging glaciers show cyclical changes in flow behavior – between slow and fast flow – and can have drastic impacts on settlements in their vicinity.
One of the clusters of surging glaciers worldwide is High Mountain Asia (HMA).
We present an inventory of surging glaciers in HMA, identified from satellite imagery. We show that the number of surging glaciers was underestimated and that they represent 20 % of the area covered by glaciers in HMA, before discussing new physics for glacier surges.
Surging glaciers show cyclical changes in flow behavior – between slow and fast flow – and can...