Articles | Volume 16, issue 2
The Cryosphere, 16, 505–531, 2022
The Cryosphere, 16, 505–531, 2022
Research article
11 Feb 2022
Research article | 11 Feb 2022

GNSS signal-based snow water equivalent determination for different snowpack conditions along a steep elevation gradient

Achille Capelli et al.

Related authors

Micromechanical modeling of snow failure
Grégoire Bobillier, Bastian Bergfeld, Achille Capelli, Jürg Dual, Johan Gaume, Alec van Herwijnen, and Jürg Schweizer
The Cryosphere, 14, 39–49,,, 2020

Related subject area

Discipline: Snow | Subject: Instrumentation
Comparison of manual snow water equivalent (SWE) measurements: seeking the reference for a true SWE value in a boreal biome
Maxime Beaudoin-Galaise and Sylvain Jutras
The Cryosphere, 16, 3199–3214,,, 2022
Short summary
Brief communication: Application of a muonic cosmic ray snow gauge to monitor the snow water equivalent on alpine glaciers
Rebecca Gugerli, Darin Desilets, and Nadine Salzmann
The Cryosphere, 16, 799–806,,, 2022
Short summary
Snow water equivalent measurement in the Arctic based on cosmic ray neutron attenuation
Anton Jitnikovitch, Philip Marsh, Branden Walker, and Darin Desilets
The Cryosphere, 15, 5227–5239,,, 2021
Short summary
Review article: Performance assessment of radiation-based field sensors for monitoring the water equivalent of snow cover (SWE)
Alain Royer, Alexandre Roy, Sylvain Jutras, and Alexandre Langlois
The Cryosphere, 15, 5079–5098,,, 2021
Short summary
Spectral albedo measurements over snow-covered slopes: theory and slope effect corrections
Ghislain Picard, Marie Dumont, Maxim Lamare, François Tuzet, Fanny Larue, Roberta Pirazzini, and Laurent Arnaud
The Cryosphere, 14, 1497–1517,,, 2020
Short summary

Cited articles

Appel, F., Koch, F., Rösel, A., Klug, P., Henkel, P., Lamm, M., Mauser, W., and Bach, H.: Advances in snow hydrology using a combined approach of GNSS in situ stations, hydrological modelling and Earth observation: a case study in Canada, Geosciences, 9, 44,, 2019. 
Avanzi, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Pagliari, D., Passoni, D., Pinto, L., Piras, M., and Rossi, L.: Centimetric accuracy in snow depth using unmanned aerial system photogrammetry and a MultiStation, Remote Sensing, 10, 765,, 2018. 
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and Zemp, M.: The concept of essential climate variables in support of climate research, applications, and policy, B. Am. Meteorol. Soc., 95, 1431–1443,, 2014. 
Boniface, K., Braun, J. J., McCreight, J. L., and Nievinski, F. G.: Comparison of snow data assimilation system with GPS reflectometry snow depth in the Western United States, Hydrol. Process., 29, 2425–2437,, 2015. 
Botteron, C., Dawes, N., Leclere, J., Skaloud, J., Weijs, S. V., and Farine, P. A.: Soil moisture & snow properties determination with GNSS in Alpine environments: Challenges, status, and perspectives, Remote Sensing, 5, 3516–3543,, 2013. 
Short summary
Snow occurrence, snow amount, snow density and liquid water content (LWC) can vary considerably with climatic conditions and elevation. We show that low-cost Global Navigation Satellite System (GNSS) sensors as GPS can be used for reliably measuring the amount of water stored in the snowpack or snow water equivalent (SWE), snow depth and the LWC under a broad range of climatic conditions met at different elevations in the Swiss Alps.