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Abstract. Snow water equivalent (SWE) can be measured
using low-cost Global Navigation Satellite System (GNSS)
sensors with one antenna placed below the snowpack and
another one serving as a reference above the snow. The un-
derlying GNSS signal-based algorithm for SWE determina-
tion for dry- and wet-snow conditions processes the carrier
phases and signal strengths and additionally derives liquid
water content (LWC) and snow depth (HS). So far, the algo-
rithm was tested intensively for high-alpine conditions with
distinct seasonal accumulation and ablation phases. In gen-
eral, snow occurrence, snow amount, snow density and LWC
can vary considerably with climatic conditions and eleva-
tion. Regarding alpine regions, lower elevations mean gen-
erally earlier and faster melting, more rain-on-snow events,
and shallower snowpack. Therefore, we assessed the appli-
cability of the GNSS-based SWE measurement at four sta-
tions along a steep elevation gradient (820, 1185, 1510 and
2540 m a.s.l.) in the eastern Swiss Alps during two winter
seasons (2018–2020). Reference data of SWE, LWC and
HS were collected manually and with additional automated
sensors at all locations. The GNSS-derived SWE estimates
agreed very well with manual reference measurements along
the elevation gradient, and the accuracy (RMSE= 34 mm,
RMSRE= 11 %) was similar under wet- and dry-snow con-
ditions, although significant differences in snow density and
meteorological conditions existed between the locations. The
GNSS-derived SWE was more accurate than measured with
other automated SWE sensors. However, with the current

version of the GNSS algorithm, the determination of daily
changes of SWE was found to be less suitable compared to
manual measurements or pluviometer recordings and needs
further refinement. The values of the GNSS-derived LWC
were robust and within the precision of the manual and radar
measurements. The additionally derived HS correlated well
with the validation data. We conclude that SWE can reliably
be determined using low-cost GNSS sensors under a broad
range of climatic conditions, and LWC and HS are valuable
add-ons.

1 Introduction

The water stored in the seasonal snow cover plays a crucial
role in the hydrological cycle in mountain regions and is a
key source of fresh water supply. The snow water equiv-
alent (SWE) expresses the amount of water stored in the
snow, which together with its melt rate influences river runoff
with large effects on agriculture, hydropower production, wa-
ter supply and ecosystems downstream of mountain head-
watersheds and can contribute to floods, slush flows and other
natural hazards. Estimating SWE in high temporal resolution
as well as its spatial distribution is a major task in snow hy-
drology (Dozier et al., 2016; Largeron et al., 2020). On the
other hand, snow affects the climate system due to its high
reflectivity, insulation properties and cooling effects and is,
therefore, an essential climate variable (Bojinski et al., 2014).
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Monitoring the temporal and spatial distribution of the snow
mass is hence essential for assessing the water storage in
snow and subsequent runoff for climatological applications
(e.g., Marty et al., 2017). Moreover, measuring SWE is nec-
essary for the development of building codes and monitoring
current snow loads to guarantee the stability of structures.

Despite the need for monitoring SWE for various appli-
cations, and although different methods exist for estimat-
ing SWE, encompassing in situ measurements, remote sens-
ing and physically based modeling, as well as combina-
tions thereof and assimilation techniques, continuous mea-
surements are often not available or feasible, especially in
complex topography such as mountain areas. For large sub-
arctic areas, the spatial and temporal distribution of SWE un-
der dry-snow and rather shallow snowpack conditions can be
obtained from microwave satellite remote sensing (Larue et
al., 2017; Pulliainen and Hallikainen, 2001; Shi and Dozier,
2000). This has been, however, until now, not sufficiently fea-
sible in highly complex alpine terrain due to either low spa-
tial resolution in particular of passive microwave sensors or
regarding active microwave sensors, due to penetration depth
limits, foreshortening, shadowing and layover effects. How-
ever, recent developments including Sentinel-1 radar obser-
vations seem promising (Lievens et al., 2019, 2021; Marin
et al., 2020; Tsang et al., 2021). In contrast to SWE, snow
depth (HS) can accurately be determined with various meth-
ods even for alpine catchments. This encompasses the appli-
cation of satellite stereo images (Deschamps-Berger et al.,
2020); airborne lidar altimetry approaches (Deems et al.,
2013; Helfricht et al., 2014); photogrammetric reconstruc-
tions, using images taken by drones (Avanzi et al., 2018;
Bühler et al., 2017); or terrestrial lidar surveys (Grünewald et
al., 2010; Prokop et al., 2008). However, for the conversion
of the HS products into SWE, additional density information,
e.g., using modeling approaches (Jonas et al., 2009; Win-
kler et al., 2021) or additional measurements, is still needed
(Dozier et al., 2016), which is not available or easy to ob-
tain at every location. SWE can also be derived by physi-
cally based modeling (e.g., Le Roux et al., 2020; Lehning et
al., 2006). However, the results depend largely on the qual-
ity and availability of meteorological input data and should
be validated against in situ measurements. The best results in
distributed modeling at high resolution (250 m) (Griessinger
et al., 2019) are achieved by assimilating either spaceborne
or in situ observations (Magnusson et al., 2017; Winstral et
al., 2019).

Hence, point measurements of SWE are still essential,
for data assimilation, validation and calibration of models
and remote sensing data. Moreover, long-term time series of
SWE measurements, only a few of which exist, are partic-
ularly valuable for climate change monitoring (Marty et al.,
2017; Mote et al., 2018). Traditionally, SWE is measured by
weighting a given volume of snow (Haberkorn, 2019). At a
limited number of stations worldwide such manual measure-
ments are performed weekly or every 2 weeks. Manual SWE

measurements are, however, non-continuous, time costly, de-
structive and often sparse, especially in remote and moun-
tainous terrain. Common approaches providing continuous
data are gravimetric sensors, sensors based on natural gamma
radiation and cosmic ray sensors (Haberkorn, 2019; Pirazz-
ini et al., 2018). Gravimetric sensors such as snow pillow
and snow scale, which measure SWE by weighing the over-
laying snow cover, are costly, difficult to install and prone
to errors due to bridging effects in the snow cover, non-
natural heat flux and drainage effects (Johnson and Schae-
fer, 2002; Johnson et al., 2015). Passive gamma radiation in-
struments determine SWE from the attenuation of the natu-
ral gamma radiation emitted and traveling through the snow,
but can only measure SWE< 600 mm with reasonable accu-
racy (Haberkorn, 2019). In recent years, cosmic ray sensors
showed good results in deriving SWE from the absorption of
natural fast neutrons in the snow cover and the consequent
attenuation of the neutron count (Gugerli et al., 2019; Schat-
tan et al., 2017, 2019). A comparison of the performance of
different radiation-based field sensors for monitoring SWE
can be found in Royer et al. (2021).

In the last decade, promising approaches emerged that use
L-band microwave signals transmitted from Global Naviga-
tion Satellite System (GNSS) satellites to continuously and
non-destructively derive snow cover properties. On the one
side, HS can be derived with reflectometry techniques using
antennas, which are permanently installed above the ground
(Botteron et al., 2013; Jin and Najibi, 2014; Larson et al.,
2009). However, to obtain SWE, some external information
on snow density is needed. On the other side, recently a
GNSS method to directly derive SWE was developed using
low-cost GNSS sensors installed above and below the snow
cover. SWE is derived by using a combined approach of car-
rier phase measurements and signal strength information, re-
trieving the time delay and attenuation of the GNSS signals
in the snowpack. The development of the current algorithm
with all processing steps described in Koch et al. (2019)
is the result of merging several steps of development. In a
first step, Koch et al. (2014) derived the liquid water content
(LWC) of a snowpack from the attenuation of the GNSS sig-
nals traveling through the snow cover. Combining the GNSS
signal attenuation approach of Koch et al. (2014) with two-
way travel time information derived by an L-band upward-
looking ground-penetrating radar (upGPR), it was possible
to simultaneously derive SWE, HS and LWC for dry- and
wet-snow conditions (Schmid, 2015; Schmid et al., 2015).
However, radar systems are rather expensive, and the data
retrieval still needs manual supervision. In a further step,
Henkel et al. (2018) exploited the GNSS carrier phase mea-
surements for deriving SWE with a low-cost GNSS system
for dry-snow conditions. A similar approach relying on car-
rier phase measurements allowed an hourly SWE estimation
from the GNSS signal (Steiner et al., 2018, 2019a, b). Koch
et al. (2019) generalized the techniques of Koch et al. (2014),
Schmid et al. (2015) and Henkel et al. (2018) for dry- and
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wet-snow conditions by combining GNSS carrier phases and
signal strength, snow permittivity models and a simple snow
densification model to simultaneously derive SWE, HS and
LWC with only one GNSS sensor system.

The GNSS algorithm described by Koch et al. (2019)
includes different snow densification assumptions for dry
and wet snow, allowing HS derivation for both conditions.
The two density model assumptions were first developed
for high-alpine seasonal snowpack conditions (Schmid et al.,
2014, Schmid, 2015; Koch et al., 2019), which are character-
ized by distinct seasonal accumulation and ablation phases.
Good accuracy of the GNSS-derived SWE was achieved for
the high-alpine site Weissfluhjoch (2540 m a.s.l) near Davos,
Switzerland, where the algorithm was intensively tested and
validated (Koch et al., 2019). The algorithm was further
tested at sites in Newfoundland and the Canadian subarctic
where the accumulation phase is also clearly separated from
the ablation phase and was integrated in the SnowSense®

GNSS sensor system (Appel et al., 2019).
In low-elevation areas of the Alps, however, the snow

cover is overall shallower, and the density evolution might
differ considerably from the high-alpine site Weissfluhjoch
due to different meteorological conditions. Also, there is of-
ten no clear separation into an accumulation period with dry-
snow conditions and an ablation period with wet-snow condi-
tions. Instead, transitions from wet to dry snow frequently oc-
cur due to positive air temperatures and rain-on-snow events.
Moreover, for shallow snowpacks the daily melt–freeze cy-
cle in the upper layers affects the bulk snow cover properties
more than for a deep snowpack.

Therefore, in this study, we aim to assess the performance
of the GNSS algorithm described by Koch et al. (2019)
for locations with mainly elevation-dependent differences in
SWE and snow depth, frequency of changes between dry-
and wet-snow conditions, densification, and influence of rain
events. To this aim, we installed SnowSense® GNSS stations
and performed validation measurements along a steep eleva-
tion gradient (from 820 to 2540 m a.s.l.) for two winter pe-
riods (2018–2019 and 2019–2020). While our focus is on
the accuracy of the GNSS-derived SWE, we also assessed
the accuracy of water equivalent of daily snowfall, LWC and
HS. Finally, we discuss the advantages and limitations of an
operational use of the GNSS system for SWE derivation in
general and point out potential future development steps.

2 GNSS measuring principles

The target value of the GNSS approach is SWE, whereas HS
and LWC are rather considered by-products. The GNSS al-
gorithm applied for this study is based on differential GNSS
measurements using microwave L1-band signals with a cen-
tral frequency of 1.57542 GHz (wavelength ca. 19 cm) en-
compassing signals of the U.S. Global Positioning System
(GPS) and the European Galileo system. Each GNSS-based

SWE sensor consists of two GNSS receivers and antennas.
One of the antennas is placed on the bare ground and gets
subsequently covered by snow. The second antenna acts as a
reference and is placed above the snow cover (Fig. 1), e.g.,
on the top of a pole. Snow on the ground has a clear im-
pact on the GNSS carrier phase measurements received at
the buried antenna and in case of wet snow, also on signal
strength since signal attenuation increases with increasing
LWC. Atmospheric delays from the ionosphere and tropo-
sphere as well as satellite position, clock offset, phase and
code bias errors affect the measurements of both the upper
and lower antennas. The differential processing of the GNSS
signals (using double-difference measurements) eliminates
these errors and keeps only the snow information, the rela-
tive position between the two antennas (also called baseline
vector), the double-differenced carrier phase integer ambigu-
ities, and the double-difference measurement noise and mul-
tipath propagation (Henkel et al., 2018). In case of no snow,
the relative position is determined with standard RTK posi-
tioning with millimeter-level accuracy. The relative position
is then considered as a known parameter and no longer needs
to be estimated during the winter season.

Under dry-snow conditions, the SWE information is in-
cluded directly in the differential carrier phase measure-
ments. More specifically, the differential carrier phase mea-
surements are a linear function of SWE and the carrier phase
integer ambiguities. The mapping between SWE and the dif-
ferential carrier phase measurements depends on the eleva-
tion of the refracted satellite signals and the speed of signal
propagation in dry snow, which depends on snow density; we
used a mean value vs,dry = 2.3× 108 m s−1 as suggested by
Schmid et al. (2014). The mapping between the carrier phase
integer ambiguities and the differential carrier phase mea-
surements depends only on the signal wavelength (19 cm in
L1 band) and is straightforward.

For the derivation of SWE under wet-snow conditions, the
carrier phase processing is similar. However, as the speed of
signals in wet snow vs,wet depends on LWC, signal strength
information has to also be considered. According to Koch et
al. (2014), LWC can be derived by GNSS signal strength, HS
and permittivity models for wet snow. For the latter, we ap-
plied for the real part the dielectric three-phase mixing model
after Roth et al. (1990) and for the imaginary part the semi-
empirical equation after Tiuri et al. (1984). Therefore, in the
case of wet snow, a combined approach of using time delay,
signal strength and an information on HS is necessary to de-
rive SWE, which is explained in detail in Koch et al. (2019).

In the entire combined approach, HS is considered a
supporting value, and its calculation is based on simple
snow densification models, which differ for dry and wet
snow. In the case of dry-snow conditions, HS is calculated
based on the GNSS-derived SWE of the current time step
as well as the SWE evolution of all previous time steps
with continuous snow cover on the ground by assuming
that densification follows an exponential behavior with time
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Figure 1. (a) Schematic representing the GNSS sensor setup and the measuring principles. The bottom graphics illustrate the phase delay
and attenuation of the GNSS signal in snow. (b) Measuring station at site Laret with GNSS sensor setup as well as automated HS and SWE
sensors for validation. The pressure sensor “snow scale” is partially visible in the lower right corner.

(Koch et al., 2019). For dry-snow conditions, each layer
has a specific density ρs,dry,t at a certain time step t , and
the layer densifies over 30 d with an exponential densifica-
tion rate of 1/6 d−1 up to a set maximum dry-snow den-
sity ρs,dry,max = 357 kg m−3 as proposed for the site Weiss-
fluhjoch by Schmid et al. (2015). If SWE increases from the
previous time step of measurements, a new snow layer with
an initial density ρs,0 = 100 kg m−3 is added to the model
and densifies over time.

For wet-snow conditions, we used the bulk densification
approach described in Schmid et al. (2015), which largely
depends on the LWC. The input variables for this approach
are LWC and SWE derived for the current time step, and as a
starting value for the density the defined maximum dry-snow
density ρs,max is used. The upper bound of snow densification
is set to ρs,wet,max = 600 kg m−3. HS is then derived for both
wet- and dry-snow conditions with HS= SWE

ρs
, with ρs being

the bulk snow density of either dry or wet snow. So far, the
implemented dry- and wet-snow density model assumptions
worked well for the high-alpine seasonal snowpack evolution
with distinct accumulation and ablation phases.

The main processing steps for the derivation of SWE,
LWC and HS from the GNSS signals under either dry- or
wet-snow conditions are summarized schematically in Fig. 2.
First, a distinction between dry- and wet-snow conditions is
made based on a GNSS signal strength threshold. The pro-
cessing in case of dry snow is straightforward, and in ad-
dition to SWE, an estimate of HS is given by applying the
integrated dry-snow densification model. In contrast to dry
snow, the processing of wet snow is more complex. SWE,

HS, LWC, snow density and signal speed vs are derived in
multiple iterative steps from phase delay and signal attenua-
tion starting and using the snow density and signal speed of
the previous time step (e.g., previous day) as initial values.
For more details on the dry- and wet-snow GNSS algorithm,
see Henkel et al. (2018) and Koch et al. (2019).

3 Study sites and data

The four sites selected for the study were the stations Küb-
lis, Klosters, Laret and Weissfluhjoch, situated in close
geographical vicinity (within a radius of 6 km) and covering
a steep elevation gradient ranging from 820 to 2540 m a.s.l.
in the region of Davos (eastern Swiss Alps). Table 1 provides
a summary of the station characteristics. The snow cover at
the study sites can be considered representative for the re-
spective elevation in this area. Data were collected during
the 2018–2019 and 2019–2020 winter seasons.

The high-alpine site Weissfluhjoch is located on a flat part
of a valley at 2540 m a.s.l., which is well protected from
strong wind and has a permanent snow cover for about two-
thirds of the year. The site is equipped with automated snow
and meteorological sensors (Marty and Meister, 2012). A
snow scale and a snow pillow continuously record SWE, and
an ultrasonic sensor records snow depth. In addition, daily at
08:00 LT, an observer measures snow depth, height of new
snow (HN) and water equivalent of snowfall (HNW). Daily
manual observations from a second snow depth pole (HS2)
in the immediate vicinity of the snow pillow and scale are
available as well. LWC was measured automatically with an
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Figure 2. Diagram illustrating the main processing steps for the derivation of the snow cover properties SWE, LWC and HS (blue boxes)
using as GNSS input phase delay, derived from the differential carrier phase measurements and signal strength (orange boxes). Snow density
and the velocity of signals in dry and wet snow are additional inputs or intermediate variables (yellow boxes). For dry snow, the processing
is straightforward, and a constant value vs,dry = 2.3× 108 m s−1 is assumed. Regarding the wet-snow processing chain, SWE, HS and LWC
are first derived as initial values (violet arrows) using snow density ρs and the velocity vs information of the previous time step; in a second
step (black arrows), two iterative calculation steps (second circulation is marked with dashed lines) follow to derive the final values.

upward-looking ground-penetrating radar (upGPR) accord-
ing to Schmid et al. (2014) in the 2019–2020 winter. A good
overview of the location and the sensors is given in Schmid
et al. (2015) or Koch et al. (2019). At this site, GNSS mea-
surements have been ongoing for several years (Henkel et
al., 2018; Koch et al., 2014, 2019; Steiner et al., 2019b);
the data presented here are new and were not previously
used. The site of Laret is located on an open meadow at
1510 m a.s.l. and is wind sheltered resulting in a very uni-
form snow depth. The Laret site is a CryoNet station be-
longing to the GCW CryoNet cluster “Davos” (Wiesmann
et al., 2019) and is equipped with automated snow and me-
teorological sensors: SWE is measured with a snow scale,
HS with an ultrasonic and two laser sensors, and precipita-
tion with a heated pluviometer. The GNSS ground antenna
was placed in close proximity of the snow scale and the ul-
trasonic snow depth sensor (< 1 m) (Fig. 1b). The measuring
site in Klosters is located at 1210 m a.s.l. in a private garden.
In the immediate vicinity of the GNSS ground antenna we in-
stalled an automated laser snow depth sensor. In addition, an
automated air temperature sensor (radiation shielded) was in-
stalled for the 2019–2020 winter. Snow depth, HN and HNW
(for HN> 10 cm) were measured daily by an observer. An
automated and heated pluviometer is present within 200 m at
the same elevation. The Küblis site is situated at 820 m a.s.l.
on a lawn in front of a hydroelectric power plant. Snow depth
was measured continuously by a laser sensor in the immedi-
ate vicinity of the GNSS ground antenna, and an air temper-
ature sensor (radiation shielded) was installed for the 2019–

2020 winter. HS, HN and precipitation (rain gauge) were
manually measured each morning. For the 2019–2020 win-
ter, the plot of the manual measurements (daily data) was
moved to a nearby location (distance 330 m, elevation differ-
ence 20 m). Camera pictures documenting snow conditions
and snow coverage of the ground antenna are available for
all sites.

Manually observed snow profiles were performed weekly
for the sites of Laret, Klosters and Küblis and every 2 weeks
at Weissfluhjoch. The measurements included HS, SWE and
snow temperature. LWC was derived from snow density
(density cutter) and relative dielectric permittivity (capacitive
sensor; Denoth, 1994). LWC was measured only for some of
the manual profiles due to the time-consuming procedure and
need for a trained observer.

The spatial variability of snow density is lower than of HS
(Jonas et al., 2009). For this reason, all manual SWE val-
ues and the SWE data recorded with the snow pillow and
scale at the Weissfluhjoch site were scaled to the nearby ref-
erence depth measurement (laser or ultrasonic HS gauges)
with SWE′ = SWE HSref

HSSWE
, where HSref is the reference snow

depth from the automated sensor and HSSWE is the snow
depth recorded in the snow pit or at the snow depth pole
(HS2) near the snow pillow and scale.

At each of the four sites, we installed a SnowSense®

GNSS sensor system. It consisted of two GNSS antennas
and receivers, an onboard processor, a communication mod-
ule (for data transfer via the mobile phone network) and a
power management unit. The integrated u-blox LEA-M8T
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GNSS receivers are multi-GNSS receivers that can receive
both GPS and Galileo signals (Lamm et al., 2018). GNSS re-
ceivers provide raw data with a rate of 10 Hz or even higher.
However, the receiver–satellite geometry as well as the SWE
is changing only at much lower rates. Therefore, we have
chosen a measurement rate of only 1 Hz for the raw data. A
continuous carrier phase tracking during the measurement is
still essential to prevent the need for a re-estimation of the
carrier phase integer ambiguities.

The choice of the measurement duration for the determi-
nation of a set of snow parameters is mainly driven by two
factors: on the one hand, the measurement period must be
sufficiently long to enable a separation of SWE and carrier
phase integer ambiguities. As the satellite geometry is chang-
ing only slowly over time and as satellites are visible for up
to 6 h per pass, a time span of at least 6 h is recommended as
it is necessary to capture as many satellites as possible with
both ascending and decreasing tracks. On the other hand, the
measurement period should not be too long to be able to ac-
count for changes in SWE. We have chosen a 12 h measure-
ment period as it provides the best trade-off between accu-
racy and latency; it is slightly better than using a 6 h period
as the majority of satellites used for the SWE derivation are
completely tracked in ascent and descent. On the other hand,
increasing the time span (e.g., 24 h) results in a negligible
improvement. If data sets were shorter than 12 h, we still ac-
cepted data sets longer than 6 h but discarded shorter data
sets to avoid outliers in GNSS-based SWE determination.

The data collection and processing with 12 h measurement
periods were successful for the site at Weissfluhjoch for both
winter seasons and for the majority of times at the other three
sites in winter 2019–2020. In winter 2018–2019, we were
faced with a firmware issue at the sites in Laret, Küblis and
Klosters that caused temporally shorter data sets with irreg-
ular time intervals and some data gaps of up to 2 d in Küblis
and Klosters and one data gap of 4 d in Laret (April 2019).
The outages could be significantly reduced in the 2019–2020
season with only very few data sets of less than 6 h.

Unfortunately, the unusually large snowfall in mid-
January 2019 caused a bending/tilting of the station masts
at the sites Klosters and Küblis. The bending and/or tilting of
the mast affects the relative position between the two GNSS
antennas and therefore compromises the validity of the cal-
ibration process and the derivation of snow parameters. The
masts were replaced, and the data recording was continued.
The subsequent data were evaluated in post-processing as a
re-calibration could only be performed after snowmelt. The
tilted masts caused data gaps at the site Klosters from 14 Jan-
uary to 17 February 2019 and at the site Küblis from 14 Jan-
uary to 4 March 2019.

The data recording at the Laret site started at 14 Decem-
ber 2019, 1 month after the beginning of the snow accumula-
tion, due to some issues with the initial GNSS system set-up.
An issue with the data logging at the Laret site resulted in a
premature end of the data sets in mid-April.

A corrosion at a cable connection at one receiver at the
site Klosters caused a short gap (17–25 January 2020) that
could be easily fixed by cleaning the connection. In general,
GNSS-derived SWE is quite robust to such data gaps, but not
HS (see also Sect. 6.1 in the Discussion). To have plausible
HS starting values after larger data gaps during the snow-
covered period, an independently measured value of HS (au-
tomated snow depth sensor) was used as input for the GNSS
algorithm.

During the two 2018–2019 and 2019–2020 winter seasons,
snowpack characteristics significantly differed between the
four sites with regard to, for instance, snow depth and snow
density evolution and temperature (Appendix A), as well as
rain-on-snow events (Appendix B). Some webcam pictures
illustrating the different snow conditions at the four sites can
be found in the accompanying data at Envidat (Capelli et al.,
2020).

4 Results

4.1 Snow water equivalent

The seasonal evolution of the GNSS-derived SWE and the
reference data for the four measuring sites along the eleva-
tion gradient are shown in Fig. 3. It is clearly visible that
the temporal occurrence and the amount of snow increase
with the elevation of the sites for both winter seasons. More-
over, at the sites of higher elevation the snow-covered period
starts earlier, peak SWE occurs later and the melt phase is
longer. The 2018–2019 winter season was characterized by
few but large snowfall events, and snow mass was among the
largest in the last 20 years within the study area. At the site
Weissfluhjoch, peak SWE (1313 mm) was even the highest
ever measured since 1936. The 10 d sum of new snow at the
beginning of January 2019 was one of the largest ever mea-
sured for this region. Due to low temperatures in January, the
snow depth was also above average at the lower-elevation
sites Klosters and Küblis. The 2019–2020 winter was par-
ticularly mild with average snow precipitation at Laret and
Weissfluhjoch, but below average snow amounts were mea-
sured at the lower-elevation sites, with frequent rain-on-snow
events in Klosters and non-continuous snow cover in Küb-
lis where the snow never lasted longer than a week. The
end of the melt season in 2019–2020 was approximately 1
month earlier at Laret and Klosters than in the previous win-
ter 2018–2019 and 15 d earlier at Weissfluhjoch.

The GNSS-derived SWE agreed well with the reference
data from manual measurements, snow scale and snow pil-
low during both winter seasons for the three higher-elevation
sites. For Küblis, only a qualitative evaluation was possible
as there was hardly any snow during winter 2019–2020 and
a long data gap in winter 2018–2019. However, the available
data from Küblis show that the GNSS system can discern
very well whether snow also covers the ground for SWE val-
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Table 1. Summary of the station characteristics. An asterisk ∗ indicates that the measurements were only available during the second 2019–
2020 winter season; for the 2018–2019 winter season we used data from nearby stations. HN stands for height of new snow and HNW for
water equivalent of snowfall.

Weissfluhjoch Laret Klosters Küblis

Elevation (m a.s.l.) 2540 1510 1210 820
Coordinates 46◦49′47′′ N, 9◦48′34′′ E 46◦50′2′′ N, 9◦52′17′′ E 46◦51′49′′ N, 9◦53′17′′ E 46◦54′48′′ N, 9◦46′54′′ E
SWE manual every 2 weeks weekly weekly weekly
SWE auto pillow and scale scale no no
HS manual daily no daily daily
HS sensor ultrasonic ultrasonic laser laser
Pluviometer automated, heated automated, heated automated, heated manual daily
HN manual daily no daily daily
HNW manual daily no only if, HN> 10 cm no
upGPR yes∗ no no no
Temperature Yes yes yes∗ yes∗

Figure 3. GNSS-derived SWE and reference data for (a) the 2018–2019 winter and (b) 2019–2020 winter for the sites Weissfluhjoch
2540 m a.s.l. (WFJ), Laret 1510 m a.s.l. (LAR), Klosters 1185 m a.s.l. (KLO) and Küblis 820 m a.s.l. (KUB). The color bars indicate whether
the dry-snow (blue) or wet-snow (orange) GNSS algorithm was used.
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ues lower than 5 mm (see Fig. C1 in Appendix C). While
the GNSS-derived SWE and the manual SWE data agreed
very well during the entire season, the snow scale and pil-
low showed some deviations at the onset of the melt period.
These anomalies are visible in Fig. 3 as sudden decreases in
SWE (May 2019 and end of April 2020 at Weissfluhjoch,
mid-March 2020 at Laret) and daily cycles (Laret, end of
March 2020). For this reason, the uncertainty of the GNSS-
derived SWE was evaluated relative to the manual SWE mea-
surements. The root mean squared absolute error (RMSE),
relative errors (RMSRE) and R2 from linear regression are
shown in Table 2. Scattering and linear regression lines and
parameters are shown in Fig. 4.

With a very shallow snowpack, the spatial variability of
SWE relative to the total SWE can be very large. Accord-
ingly, the difference between SWE above the GNSS antenna
and the manually measured SWE can be large and the relative
error very high. Therefore, we considered only cases with
SWE≥ 25 mm in our statistical comparison. Overall, consid-
ering all sites and both winter seasons, the root mean square
error (RMSE) was 34 mm and the root mean square relative
error (RMSRE) was 11 %. The absolute error increased with
elevation from Klosters to Laret and Weissfluhjoch and was
21, 24 and 47 mm, respectively, whereas the relative error
decreased and was 15 %, 11 % and 8 %, respectively, since at
the higher-elevation sites SWE was generally larger.

In addition to the entire season, we analyzed the uncer-
tainty of the SWE measurements separately for dry-snow
and wet-snow conditions; the latter ones were defined by
the occurrence of liquid water (LWC> 0 %). The uncertainty
of GNSS-derived SWE was also very good when dry- and
wet-snow conditions were analyzed separately (Fig. 4 and
Table 2). In general, the absolute error was larger for wet-
snow conditions, whereas the relative error was of compara-
ble magnitude. Also, in this case the difference was mainly
due to the higher amount of snow during the melt season
(mean

(
SWEdry

)
= 300 mm and mean(SWEwet)= 440 mm

for all data from all sites).
Relating the SWE measured by the snow scale and pillow

with the manual measurements at the sites Weissfluhjoch and
Laret for two seasons and wet-snow conditions revealed that
the RMSE and RMSRE were considerably higher than those
obtained for the comparison with the GNSS-derived SWE.
For dry-snow conditions, the errors were still higher but in
general closer to the range of those for the GNSS-derived
SWE. The higher uncertainty of snow scale and pillow is
mainly caused by the large differences observed at the on-
set of the melt period for the snow pillow and scale (Fig. 3).

A qualitative analysis of rain-on-snow events showed no
particular influence of rain on the GNSS-based SWE estima-
tion. See Figs. B1–B4 in Appendix B.

Table 2. Root mean square error (RMSE), root mean square rela-
tive error (RMSRE), number of data points N and linear regression
parameters (slope, intercept and R2) for GNSS-derived SWE com-
pared to the manual measurements for the single stations and all
data (for both winter seasons). For the snow pillow, the data from
Weissfluhjoch were used. For the snow scale, the analysis includes
data from Weissfluhjoch and Laret.

RMSE RMSRE N R2

(mm) (%) (–) (–)

All 34 11 84 0.99
Dry 24 11 45 0.99
Wet 43 11 39 0.99

WFJ 47 8 32 0.99
Dry 29 9 18 0.99
Wet 62 7 14 0.98

Laret 24 11 30 0.98
Dry 20 12 19 0.98
Wet 30 8 11 0.94

Klosters 21 15 21 0.96
Dry 16 12 7 0.98
Wet 24 16 14 0.95

Küblis 12 80 5 0.95

Pillow 92 13 32 0.95
Dry 47 11 18 0.99
Wet 128 15 14 0.91

Scale 79 17 61 0.95
Dry 39 14 37 0.99
Wet 117 204 24 0.91

4.2 Detection of new snow

Some operational applications (e.g., avalanche forecasting or
flood prediction) require not only an estimation of SWE of
the bulk snowpack but also the daily variations indicative of
snowfall and melting. Therefore, we evaluated whether the
GNSS algorithm can reliably measure such variations over
24 and 72 h by comparing these with reference precipitation
data. As reference data for the Weissfluhjoch we used the
water equivalent of the new snow measured manually daily
at 08:00 LT. For the other sites, which are less influenced by
snow drift due to wind, we used the precipitation data from
nearby pluviometers (automated for Klosters and Laret and
manual for Küblis). For this analysis, we used only the data
from the 2019–2020 season, since the GNSS-derived SWE
for Laret, Küblis and Klosters for the 2018–2019 season was
available only at irregular time intervals and determining the
daily change in SWE (1SWE) was not feasible.

Snowmelt results in a decrease in total SWE and con-
sequently in negative values of 1SWEGNSS that were not
measured with the reference method. Therefore, we did a
separate analysis for dry-snow conditions when decreases
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Figure 4. Scatter plots of GNSS-derived SWE vs. manually measured SWE for dry-snow conditions (blue) and wet-snow conditions (red)
for all sites together and the single sites (for both winter seasons). We do not show the data for Küblis because only a few data points were
available. The dashed lines represent the linear regressions (green for dry- and wet-snow data jointly). Data points with SWE< 25 mm were
excluded from the analysis. The 1:1 line is shown in black.

in SWE are not expected. Figure 5 shows scatter plots of
1SWE for 24 and 72 h for the GNSS-derived data, the snow
pillow data and the snow scale data versus the reference data
for all sites for winter 2019–2020. The linear regressions
were computed only for days with considerable precipita-
tion, i.e., for reference changes 1SWEref> 10 mm within
24 h or 1SWEref> 20 mm within 72 h. The GNSS-derived
daily 1SWE relative to reference data showed considerable
scatter with an RMSE of 11 mm and an RMSRE of 65 %
for dry-snow conditions (Fig. 5a). For the entire season (dry-
and wet-snow conditions), RMSE and RMSRE were 12 mm
and 72 %, respectively. Considering the 72 h time period
(Fig. 5b), the relative errors (RMSRE) were slightly smaller,
namely 55 % for dry-snow conditions and 62 % for the entire
season (dry- and wet-snow conditions).

Even for days without precipitation, the changes in total
SWE can be quite large as can be seen in Fig. 5 for days with
1SWEref = 0. For dry-snow conditions, the majority of the
changes in total SWE on these days were within [−10 mm,

+10 mm] for the 24 h period and within [−20 mm,+20 mm]
for the 72 h period.

To evaluate the performance of the different methods
with regard to new snow detection, we compiled a contin-
gency table (Table 3) that compares the number of days
with or without precipitation (1SWEref,24 h ≤ 10mm) with
the number of days with an increase, decrease or un-
changed value of SWE from GNSS, scale and pillow. We
used the same threshold (±10 mm) over 24 h for deter-
mining whether on a given day there was an increase
(1SWE> 10 mm), a decrease (1SWE<−10 mm) or no
change (|1SWE| ≤ 10 mm). For the 72 h period we used
a threshold of ±20 mm. On 28 out of 317 d (9 %) with-
out precipitation (1SWEref ≤ 10mm) and dry-snow condi-
tions, GNSS-derived 1SWE24 h resulted in a false alarm (in-
crease or decrease). The magnitude of false alarms was up to
1SWEGNSS,24 h = 32 mm. On days with precipitation, 41 %
(18 out of 44) of the GNSS-derived changes were classified
as no change or even a decrease (1SWEGNSS,24 h ≤ 10 mm);
i.e., these snowfall events were missed. Missed events in-
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Figure 5. Changes in GNSS-derived SWE vs. new snow water equivalent from reference measurements (pluviometer or observer) for all
stations and for winter 2019–2020: (a) over 24 h and (b) over 72 h. Changes in SWE obtained with (c) snow pillow (Weissfluhjoch) and
(d) snow scale (Weissfluhjoch and Laret) vs. reference measurements for both winters. The dashed lines indicate linear regression for the
dry-snow conditions (red) and the entire season (green). The black dashed line indicates the 1 : 1 line. The linear regressions were computed
only for data points with 1SWEref> 10 mm within 24 h or 1SWEref> 20 mm within 72 h (dotted lines).

cluded snowfalls with up to 1SWEref,24 h = 34 mm. For
the 3 d sum of new snow, there were fewer false alarms
on days without precipitation, but again about 30 % of
the precipitation days with 1SWEref,72 h> 20 mm were
not detected. The maximum magnitude of the undetected
events over 72 h was 1SWEref,72 h = 32 mm water equiva-
lent. The maximum value for false alarms over 72 h was
1SWEGNSS,72 h = 32 mm.

If days with wet-snow conditions were included in the
analysis, the uncertainty of 1SWE decreased compared to
dry-snow conditions, with an increase in false and missed
precipitation days. Figure 5 shows that the increase in
false events is strongly influenced by melting (large in-
crease in days with negative values). Therefore, the scatter
of 1SWE24 h was larger when wet-snow conditions were
included (Fig. 5a, RMSRE= 72 %, and lower correlation).
We did not find any distinct difference in the uncertainty of
1SWE between the sites at the different elevations.

Compared to the GNSS-derived data, the number of
missed events for dry-snow conditions was much lower for
the snow pillow (17 %) and the snow scale (16 %) (Table 3).

For dry-snow conditions, RMSE and RMSRE of 1SWE
from pillow and scale (Fig. 5c, d) were also moderately
smaller than those of the GNSS-based 1SWE. However, the
large deviation in SWE of pillow and scale occurring at the
onset of the melt season (see Fig. 3) caused some large errors
in 1SWE under wet-snow conditions.

4.3 Liquid water content

The temporal evolution of the GNSS-derived LWC and the
corresponding reference data for Weissfluhjoch, Laret and
Klosters for the 2019–2020 winter season are shown in
Fig. 6. The reference data were obtained from the manual
snow pit observations (capacitive probe). In addition, the
snow temperature as was measured in the snow pit is indi-
cated with three classes: dry (< 0 ◦C), partially dry (< 0 ◦C)
and isothermal. For Weissfluhjoch the LWC obtained from
the upGPR data is also shown (Fig. 7a). In general, the higher
the elevation the later liquid water was present, or LWC was
lower at a specific time within the season. Generally, we ob-
served a good qualitative correspondence between the value
of the GNSS-derived LWC and the snow cover temperature.
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Table 3. Contingency table illustrating the detection performance of new snow events for GNSS (all sites, winter 2019–2020), snow pillow
(Weissfluhjoch, 2018–2019 and 2019–2020) and snow scale (Weissfluhjoch and Laret, 2018–2019 and 2019–2020). We considered new
snow days with an increase in 1SWEref larger than 10 mm in the preceding 24 h or larger than 20 mm in the preceding 72 h. For 1SWE
from GNSS, pillow and scale we defined three classes: (1) days with an increase if 1SWE> 10 mm over 24 h, (2) days with no change if
|1SWE| ≤ 10 mm and (3) days with a decrease if 1SWE<−10 mm. For 1SWE over 72 h we used ±20 mm as the threshold. N is the total
number of days considered.

Reference measurements

Dry snow All

1SWE 24 h 1SWE 72 h 1SWE 24 h 1SWE 72 h

> 10 mm ≤ 10 mm > 20 mm ≤ 20 mm > 10 mm ≤ 10 mm > 20 mm ≤ 20 mm

Prediction GNSS Increase 26 19 48 11 45 44 78 26
No change 17 289 20 261 36 435 43 393
Decrease 1 9 1 6 1 75 2 74
N 44 317 69 278 82 554 123 493

Pillow Increase 48 11 78 4 70 32 108 21
No change 10 245 9 205 11 358 17 289
Decrease 0 7 0 10 0 68 3 79
N 58 263 87 219 81 458 128 389

Scale Increase 67 15 109 19 98 40 152 44
No change 13 336 13 269 17 544 30 440
Decrease 0 8 0 10 3 75 5 80
N 80 359 122 298 118 659 187 564

The transition from dry to partially isothermal snow cover
based on the snow temperatures corresponded with the first
increase in LWC. The LWC was below 2 % for partially
isothermal conditions and increased once the snow cover
reached isothermal conditions. The periods with LWC< 1 %
corresponded to periods with daily melting and freezing of
the snow surface. Depending on the time of the manual snow
temperature measurements, the snow cover temperature con-
ditions were classified as dry (< 0 ◦C) or as partially isother-
mal. GNSS-derived values of LWC and measurements with
the capacitive probe agreed well, yet values obtained with the
capacitive probe were generally lower during periods with
partially isothermal snow cover. We assume that the lower
values are due to a systematic error of the dielectric measure-
ment method, which is known to be subject to relatively large
uncertainties, in particular at low values of LWC (Techel and
Pielmeier, 2011). In contrast, the GNSS-derived and upGPR-
derived values of LWC agreed well, with regard to both ab-
solute values and variation in time for the period after 7 April
2020 (Fig. 6a). For the preceding period since mid-February
2020, repeated melting at the snow surface was evident in
the upGPR data, but the LWC could not be derived due to
the limited resolution of the radar. The performance of LWC
derivation with the GNSS method was similar at all sites and
did not depend on elevation. The high values of LWC ob-
served at the Weissfluhjoch site during the melt season in
2020 were probably due to a particular snowpack layering
with many ice lenses, which may have hindered meltwater
percolation. The LWC results for spring 2019 were similar
to the above-presented ones.

4.4 Snow depth

The seasonal evolution of the GNSS-derived HS and the ref-
erence data from the ultrasonic and laser sensors are shown
in Fig. 7 for the four sites and two winters. Both seasons fol-
lowed the patterns as described for SWE in Sect. 4.1. Ta-
ble 4 shows RMSE, RMSRE and linear regression values
for the GNSS-derived HS relative to the reference values.
Scatter plots of GNSS-derived HS vs. reference data for all
stations are shown in the Appendix D in Fig. D1. Overall,
GNSS-derived HS correlated well with the reference data;
RMSE and RMSRE were 14 cm and 19 %, respectively, for
all sites and both winters. The correlation for the high-alpine
site Weissfluhjoch, where the dry-snow and wet-snow densi-
fication models were developed and tested, was highest with
R2
= 0.99. RMSE values for all sites were in the range of 12

to 15 cm, without a clear dependence on elevation. However,
the RMSRE increased with decreasing elevation – as was ob-
served for SWE. Towards the end of the melt season 2018–
2019, the GNSS-derived decrease in snow depth was delayed
at Weissfluhjoch in June and at Laret and Klosters since mid-
March. In contrast, the decrease was rather well captured dur-
ing the melt season 2019–2020. At the lower-elevation sites,
the densification after a snowfall during dry-snow conditions
was often overestimated. Moreover, small snowfalls on top
of a thick snowpack were often not detected, in particular for
wet-snow conditions (e.g., in February and March 2020 for
Weissfluhjoch, Laret and Klosters).
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Figure 6. GNSS-derived LWC during the 2019–2020 winter for
(a) Weissfluhjoch, (b) Laret and (c) Klosters in blue. The red points
show the manually measured LWC (capacitive probe) averaged over
the depth, and the vertical bars indicate the estimated error of the
manually measured LWC. The green diamonds indicate the mean
snowpack temperature. Only data points with HS> 5 cm are shown.

5 Discussion

5.1 GNSS-derived snow cover properties and reference
data

The GNSS-derived SWE values were accurate compared to
the reference data, and no particular dependence on the el-

Table 4. Root mean square error (RMSE), root mean square rela-
tive error (RMSRE), number of data points N and R2 from linear
regression for GNSS-derived HS compared to the data from the au-
tomated sensors for all sites jointly and separately for the individual
sites. Data points with HS< 10 cm were excluded from the analysis.

RMSE RMSRE N R2

(mm) (%) (–) (–)

All 14 19 1729 0.97
Dry 12 18 947 0.98
Wet 17 23 782 0.95

WFJ 15 15 989 0.97
Dry 10 15 568 0.99
Wet 19 14 421 0.94

Laret 15 18 383 0.88
Dry 14 18 227 0.94
Wet 16 18 156 0.78

Klosters 12 26 337 0.83
Dry 13 25 138 0.90
Wet 12 26 199 0.76

Küblis 12 45 48 0.79
Dry 17 41 36 0.86
Wet 21 57 12 0.83

evation of the sites or their differing local snow conditions
was found, which implies that the algorithm is in addition
to high-alpine sites also suitable for lower-laying sites where
snow conditions may be distinctly different. At lower eleva-
tions, there were more frequent changes between dry- and
wet-snow conditions and more rain-on-snow events. More-
over, at lower elevations with a shallower snowpack the pro-
portion of snow that is subject to daily melt–freeze cycles is
larger than at sites with a thick snowpack, implying a larger
impact on bulk snow cover properties.

Regarding all sites and the two winter seasons overall,
the RMSE was 34 mm and the RMSRE 11 % compared to
manual reference measurements, which also have an uncer-
tainty of at least 5 % (López-Moreno et al., 2020; Royer
et al., 2021). Previously reported findings on GNSS-based
SWE measurements (Henkel et al., 2018; Koch et al., 2019;
Steiner et al., 2019a) at Weissfluhjoch are in agreement with
our results. For the three preceding 2015–2016, 2016–2017
and 2017–2018 winter seasons, Koch et al. (2019) reported
RMSE values of 41 mm for dry-snow conditions and 73 mm
for wet-snow conditions. These values are slightly higher
than the ones we reported (29 and 62 mm, respectively) since
Koch et al. (2019) used the SWE data from the snow pil-
low and scale as reference, which included an offset at the
beginning of the melt season. Steiner et al. (2019a), using
an alternative algorithm, reported an RMSE of 42 mm for
dry-snow conditions and 137 mm for wet-snow conditions at
the Weissfluhjoch site for the 2017–2018 season. In general,
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Figure 7. GNSS-derived snow depth (HS) and reference data for (a) the 2018–2019 winter and (b) 2019–2020 winter for Weissfluhjoch
2540 m a.s.l. (WFJ), Laret 1510 m a.s.l. (LAR), Klosters 1185 m a.s.l. (KLO) and Küblis 820 m a.s.l. (KUB). The color bars indicate whether
the dry-snow (blue) or wet-snow (orange) GNSS algorithm was used.

SWE and its temporal evolution over the entire winter season
can be captured very well with the GNSS method, which is
very promising for, e.g., long-term monitoring of the snow
cover and many hydrological applications.

The overall uncertainty of the other two automated SWE
sensors, snow pillow and scale was higher than the uncer-
tainty of the GNSS-derived SWE. For dry-snow conditions,
the RMSRE of the GNSS-derived SWE (11 %) was equal to
the RMSRE of the snow pillow and slightly lower than the
RMSRE of the snow scale (14 %). For wet-snow conditions,
the uncertainty of the GNSS method (RMSRE= 11 %) was
better than the pillow with an RMSRE of 15 % and the scale
with an RMSRE of 20 %. The reported accuracies are in ac-
cordance with results from previous studies, which reported
an uncertainty for the snow pillow of 5%–15 % (Serreze et
al., 1999) and 8 %–21 % (Johnson et al., 2015). The higher
uncertainty of the snow pillow and scale for wet-snow con-
ditions is due to large deviations often observed at the begin-
ning of the melt period. These anomalies are probably due

to bridging effects caused by different heat fluxes at the bot-
tom of the snowpack causing different melt rates and snow
densification above the sensor surface compared to the sur-
rounding ground, and by meltwater infiltration and drainage
(Johnson and Schaefer, 2002; Johnson et al., 2015).

The results for LWC derived from the GNSS data were
in accordance with the reference data and within the un-
certainty of the reference data (0.5 %–1 %; Fierz and Föhn,
1995; Mavrovic et al., 2020). This finding suggests that LWC
can also be measured reliably for snow conditions different
from those found at Weissfluhjoch where the method was de-
veloped (Koch et al., 2014). The quality of LWC data derived
from GNSS was found to be similar to those derived with the
upGPR method according to Schmid et al. (2014). However,
the GNSS method does not need independently measured
data from another source and supervision in the data process-
ing such as snow surface picking in radargrams (Schmid et
al., 2014). Therefore, the GNSS method is well suited for op-
erational monitoring of LWC. As it can measure LWC non-
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invasively from below the snow cover, it could be used for
wet-snow avalanche research and forecasting. The frequency
of data sampling of 12 h used in this study did not reveal
the sub-daily wetting and refreezing cycle. However, LWC
derivation at (half-)hourly frequency is possible and allows
detection of sub-daily melt–freeze cycles as demonstrated by
Koch et al. (2014) and Schmid et al. (2015).

The GNSS-derived snow depth data, which can be seen as
a by-product of the SWE derivation, showed a good corre-
lation with the reference data and an acceptable uncertainty.
For the lower-elevation sites, the densification after a snow-
fall event was often too fast because the exponential densifi-
cation rate for dry-snow conditions we used does not apply
equally well to all situations. Moreover, small snowfalls on
top of a thick snowpack in spring were often not detected, in-
dicating that the density model for wet-snow needs to be im-
proved for such conditions. The quality of the GNSS-derived
HS is, however, not comparable to the well-established and
widely used ultrasonic or laser HS sensors as the imple-
mented simple snow density models cannot capture the HS
evolution for each snowfall event and densification situation
reliably. Therefore, the GNSS-derived HS is currently only
of interest for operational application in the case of a stand-
alone installation of a SnowSense® GNSS station. It is a
supporting value for the other snow cover parameters SWE
and LWC during wet-snow conditions, whereas for dry-snow
conditions it is just a model output relying on the GNSS-
derived SWE. Therefore, future efforts should aim at im-
proving the densification model used for HS derivation with
the objective of further improving the accuracy of SWE and
LWC. A qualitative evaluation of the rain-on-snow events
showed no major influence on both SWE and HS and a mod-
erate increase in LWC for some events (Appendix B). The
small number of available data points does not allow conclu-
sions on the influence of rain-on-snow events on the GNSS-
derived SWE or HS. More research in this regard would
be needed; however, we can at least exclude that large ef-
fects occur for events of the observed magnitude (< 30 mm
in 24 h) as those should otherwise be visible in the figures in
Appendix B.

5.2 Current limitations in retrieving the water
equivalent of new snow

While monitoring the seasonal evolution of snow cover prop-
erties is valuable for various climatological and snow hydro-
logical applications, other applications require an exact es-
timation of variations in SWE at a shorter timescale. Cur-
rently, the GNSS-derived SWE shows significant daily fluc-
tuations resulting in a rather low accuracy in the estimation
of precipitation accumulated over 24 and 72 h. The GNSS-
derived changes in SWE were in general related to the refer-
ence precipitation data, but scattered largely compared to the
reference data. Measuring small daily variations on top of the
much larger total SWE is quite challenging and emerges in

the observed large relative errors (RMSE) for 1SWE. Dur-
ing the melt season, many of the negative deviations can be
explained by the fact that snow melting is not reflected in
the reference data. False positive events (increase in SWE)
and decreases in SWE during the dry-snow conditions were
mainly due to uncertainties in the GNSS-derived SWE deter-
mination caused by increased measurement noise and mul-
tipath propagation leading to an erroneous integer ambigu-
ity fixing. In addition, snow drift by wind and the result-
ing spatial variability may be a source of uncertainty in the
daily variations in SWE for both the GNSS-derived and ref-
erence data. Moreover, pluviometers are known to be prone
to undercatch of up to 50 % due to wind during snowfall
(Grossi et al., 2017; WMO, 2019). Therefore, errors in the
reference data may as well contribute to the observed large
deviations. However, wind speed was generally low at the
lower-elevation sites and, therefore, little influence on SWE
and precipitation measurements is expected. For the Weiss-
fluhjoch site, we used manual data as reference since these
are less influenced by wind. Moreover, cumulated precipita-
tion data agreed well with SWE for all sites.

A correct carrier phase integer ambiguity resolution is nec-
essary for accurate SWE determination since an error of only
one cycle leads to a considerable bias in the SWE estimate.
The integer ambiguity fixing of GNSS measurements below
snow is challenging since the pseudo-range measurements
are affected by severe multipath propagation and since both
the integer ambiguities and the snow-caused time delay are
nearly constant over short time periods, i.e., the parameters
can only be separated based on the change of the satellite ge-
ometry over time. As the orbital period for GNSS satellites
is nearly 12 h and as the integer ambiguity fixing uses the
SWE estimates from the previous day as prior information,
an erroneous integer fixing may occur over subsequent days.

Missed snowfall events and false alarms as described re-
garding GNSS-derived changes in SWE are, as the SWE
and HS derivation are interconnected, also visible in the time
evolution of the GNSS-derived HS (Fig. 7). In particular in
spring, rather small snowfall events on top of a thick snow-
pack are mostly not detected at first, although in the follow-
ing days HS increases progressively.

In summary, we conclude that for practical applica-
tions such as avalanche forecasting the GNSS-derived daily
changes in SWE are not sufficiently reliable and accurate.
The currently necessary data measurement period for the
SWE derivation of at least 6 h is a further limitation for such
(sub-)daily applications, which need hourly input data. On
the other hand, snow pillow and scale allow a real-time ob-
servation of precipitation events. In fact, for dry-snow con-
ditions, the performance of the snow pillow in determin-
ing changes in SWE over 24 and 72 h was better than with
GNSS. However, for wet-snow conditions, both the scale and
the pillow were unreliable due to the large errors caused by
bridging effects and other artifacts.
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5.3 Stability of GNSS-derived snow parameters
regarding data gaps

A measuring system meant for operational use not only needs
to deliver accurate data but also needs to be reliable in terms
of operation. This is particularly challenging for sensor sys-
tems that are subject to harsh conditions and often not acces-
sible for maintenance due to remoteness or dangerous access,
e.g., in case of avalanche danger. As described in Sect. 3,
our GNSS data series over two winter seasons had some data
gaps. The unusually large snow load in January 2019 caused
the failure of the mast at the sites in Klosters and Küblis and
consequently data loss. This clearly shows that it is crucial
that the reference antenna is always mounted on a stable ex-
isting structure or massive pole well anchored to the ground.
Further data gaps were caused by problems with the initial
version of the power management firmware. These problems
could be fixed by a firmware update in summer 2019.

However, data gaps can also occur with the best measure-
ment design; for instance, due to a power shortage an oper-
ational measurement system should resume uninfluenced by
the interruption. It is therefore crucial that data quality is not
affected by data gaps. The algorithm deriving the snow cover
properties from the GNSS signals could particularly be prone
to such problems since it recursively derives all snow proper-
ties from the previous data for wet-snow conditions, whereas
for dry-snow conditions only HS depends on previous data.
Therefore, we analyzed the consequences of data gaps. We
exemplarily chose the data gap from 16–23 January 2020 at
the site Klosters, which occurred due to corrosion. We inves-
tigated the impact on the derivation of the snow cover prop-
erties for the entire period after the data gap occurred, which
was mainly characterized by the wet-snow period until the
end of April 2020. During these 7 d of lacking GNSS data,
there was a snowfall with 10 cm new snow (1SWE= 8 mm)
(Fig. 8). The parameter derivation after this data gap was im-
plemented in a post-processing step in three different ways:
(1) neglecting any previous information, which is normally
stored after processing, corresponding to a cold start of the
system; (2) using the HS information of the last data point of
snow cover properties as input; and (3) using the HS value
measured with the laser sensor as a priori information.

The GNSS-derived SWE was affected only minimally no
matter which of the three methods was used. For HS the dif-
ferences between the three approaches were large. For LWC
significant differences also existed as it is calculated based
on HS and signal strength. The best solution was obtained
with the a priori information from the HS laser sensor. In
case we used the last available data point, HS was underes-
timated by approximately the amount of snow fallen during
the data gap. This offset propagated more or less constantly
for the rest of the season. If no previous information was
used, HS was largely overestimated since with a cold start
the algorithm erroneously assumed an initial snow density
of 100 kg m−3 for the entire snowpack. As the LWC calcu-

lation within the algorithm depends not only on GNSS sig-
nal strength information but also on the GNSS-derived HS, it
therefore reflects the error in HS to a certain extent. Thereby,
the error in LWC increased with a decrease in HS and an
increase in signal strength. This example shows that SWE,
being the main target value of the GNSS approach, was only
affected marginally by an error in HS or LWC and would not
be affected at all during dry-snow conditions, as the deriva-
tion solely depends on carrier phase measurements and no
additional changes in the snow cover parameters. Therefore,
we conclude that the SWE derivation is robust with regard to
data gaps. Regarding HS and LWC, however, a more com-
plex model of densification or an HS estimate obtained by
GNSS reflectometry may mitigate the problem (see below in
Sect. 6.1.) Moreover, a potential further improvement may
be to feed the onboard processing in real time with updated
a priori information on SWE and snow depth after a data gap
so that HS and LWC can also be derived reliably.

6 Outlook on potential improvements and further
applications

6.1 Density and snow depth estimation

Although improvements of the dry- and wet-snow density
models and the HS estimation are out of the scope of this
paper, we would like to outline potential future develop-
ments. As the densification is rather too fast at the lower-
elevation sites, changes of the set time period of densifica-
tion, which was in our case 30 d; the applied exponential den-
sification rate; and the set maximum dry-snow density could
be optimized for the layer-dependent exponential dry-snow
model. For instance, we assume that the densification rate de-
creases the shallower the snowpack, as the bulk weight of the
snowpack decreases. The simple wet-snow densification ap-
proach, which has been up to now solely dependent on LWC
and SWE changes, could be improved by additionally includ-
ing an exponential layer-dependent snow densification simi-
lar to the dry-snow model. Such optimizations seem feasible
based on the data collected in this study.

Alternatively, models deriving SWE statistically from HS
and considering elevation, region and season could be inte-
grated (e.g., Jonas et al., 2009; Winkler et al., 2021). Such
models show good results as they rely on numerous HS mea-
surements at various locations and over long time periods.
However, regarding an implementation into the GNSS algo-
rithm, they would first need to be inverted so that HS could
be derived from SWE and an ad hoc calibration would be
necessary for each climatic region.

However, some effects such as a significant decrease in
snow densification over time due to temperature-gradient-
driven snow metamorphism leading to the development of
faceted crystal and depth hoar (e.g., Wiese and Schneebeli,
2017), typically occurring for shallow snowpacks in cold
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Figure 8. GNSS-derived (a) SWE, (b) HS and (c) LWC after a data
gap of 7 d with corresponding reference value at the site Klosters for
the winter period in 2020. Three approaches were used to derive the
snow parameters after the data gap: neglecting any previous infor-
mation (green), using the last available HS data point (orange) and
using the reference HS measurement as a priori information (blue).

conditions, could still be difficult to capture with the above-
mentioned methods. Such a situation with a shallow snow-
pack and low temperatures leading to faceting and slow-
ing down snow settlement was observed in Klosters in Jan-
uary 2020. Therefore, we suggest that a combination of the
applied GNSS approach with GNSS reflectometry (e.g., Lar-
son et al., 2009) may lead to a more stable HS derivation, as it
would allow tracing of the densification rate after a snowfall

event. Reflectometry approaches derive HS via exploiting the
multipath of reflected signals at a GNSS antenna above the
snow cover, which could be in our case the reference antenna.
Recent studies showed a high accuracy of HS derivation ap-
plying GNSS reflectometry (Boniface et al., 2015; Zhang et
al., 2020) and the possible use of low-cost GNSS receivers
(Rover and Vitti, 2019). With such a combined GNSS signal
delay, attenuation and reflectometry approach, all snow cover
properties could solely be derived from GNSS signals.

6.2 Potential further applications and improvements of
the GNSS algorithm

The GNSS-based snow parameter determination is suitable
for many applications including hydrology, snow load mon-
itoring and avalanche forecasting. In addition, the GNSS-
based snow cover properties could be used for validation
of new promising active microwave remote sensing ap-
proaches deriving snow height and SWE under dry- and wet-
snow conditions at scales of 100 to 250 m in mountainous
regions (Lievens et al., 2019, 2021; Tsang et al., 2021).

With the GNSS method snow cover properties are mea-
sured non-invasively from below the snow cover with a small
GNSS antenna. Therefore, the ground antenna could be in-
stalled in avalanche terrain without the risk of being damaged
by avalanches provided the reference antenna is mounted at a
safe location, e.g., on a nearby ridge. In general, the antenna
below the snow and the reference antenna can be separated
by several kilometers in the horizontal direction and by up to
100 m in the vertical direction without the need to consider
differential atmospheric errors provided the overall meteoro-
logical conditions do not differ. Measuring LWC is relevant
for studying wet-snow and glide-snow avalanches. However,
some adaptations of the GNSS algorithm and data valida-
tion are needed, e.g., for on-slope measurements, since the
present GNSS system was developed for flat terrain with the
purpose of retrieving SWE in remote areas for hydrological
applications.

The focus of our future work will be on the reduction of
fluctuations to improve the determination of SWE and water
equivalent of new snow, as discussed in Sect. 5.2, as well as
the reduction of the measurement period for GNSS-derived
snow parameters. We see mainly three opportunities.

1. The use of all four GNSS (GPS, Galileo, Glonass and
Beidou) compared to the current GPS–Galileo dual con-
stellation solution. The integration of Beidou is straight-
forward, but the integration of Glonass needs to con-
sider a frequency-division multiple access (FDMA)
adapted ambiguity resolution technique.

2. The integration of additional frequencies (L2, L5/ E5,
E6) compared to the current single-constellation solu-
tion. The first dual-constellation mass-market GNSS re-
ceivers have recently become available, and it is ex-

The Cryosphere, 16, 505–531, 2022 https://doi.org/10.5194/tc-16-505-2022



A. Capelli et al.: GNSS signal-based snow water equivalent determination 521

pected that mass-market GNSS receivers will be able
to track all frequencies including E6 in the near future.

3. The use of a Kalman filter with an integrated integer
least-squares estimator instead of a least-squares esti-
mation.

Initial results show that, with these three improvements, the
measurement period can be significantly reduced to less than
1 h. Hourly input data would be particularly beneficial for an
accurate determination of the water equivalent of new snow
and in general of sub-daily changes of SWE that are crucial
for avalanche as well as flood forecasting.

7 Conclusions

We installed GNSS snow measurement systems at four
sites along a steep elevation gradient (820, 1185, 1510 and
2540 m a.s.l.) in the eastern Swiss Alps for two winter sea-
sons (2018–2020) and compared the GNSS-derived snow
cover properties with concurrent reference data.

The GNSS-based SWE measurement was robust and ac-
curate. We did not observe any notable dependency on ele-
vation or snow conditions. The uncertainty was similar for
dry-snow and wet-snow conditions and was negligibly in-
fluenced by rain-on-snow events. Compared to manual ref-
erence measurements, considering the data from all sites
jointly, the RMSE was 34 mm and the RMSRE was 11 %.
This uncertainty was achieved for a GNSS data frequency of
12 h. The shallower the snowpack was, the larger the relative
error became. Therefore, SWE values below 10 mm could
not accurately be determined. Still, the GNSS method re-
liably detected whether snow was lying on the ground or
not. The uncertainty of GNSS-derived SWE was similar to
the uncertainty of SWE measurements obtained with snow
scale and pillow for dry-snow conditions and higher for wet-
snow conditions. However, noise in the GNSS-derived SWE
prevented a reliable estimation of the mass of newly fallen
snow during 24 and 72 h. Only large snowfall events were
detected, but still with poor accuracy in SWE changes. Snow
scale and pillow showed better results in this regard under
dry-snow conditions but performed poorly under wet-snow
conditions. Currently, these methods are not suitable for re-
liably and accurately estimating the water equivalent of new
snow for practical applications such as avalanche forecast-
ing. Regarding the GNSS algorithm, further developments
may overcome this deficiency.

The derivation of LWC was robust and the values of
LWC were in the range of the manual and upGPR mea-
surements. The GNSS method seems suitable for continuous
LWC determination, which could be of interest for wet-snow
avalanche forecasting.

As a by-product, the GNSS-derived HS showed in general
a good correlation to the reference values, with a RMSE of
14 cm and RMSRE of 19 %. However, snow densification af-
ter a major snowfall, especially during dry-snow conditions,
was generally too fast at the lower-elevation sites. Moreover,
with a thick snowpack during wet-snow conditions, snow-
fall events were not captured with the currently implemented
simple wet-snow densification model. Future improvements
of the dry-snow and wet-snow densification model might
mitigate these problems.

Overall, our analysis showed that the GNSS system can
reliably measure the seasonal evolution of SWE at different
elevations where different snow conditions prevail. Hence,
the GNSS-based derivation of SWE is suited for operational
SWE monitoring and a valuable alternative to manual mea-
surements or other automated SWE sensors. Moreover, the
GNSS method represents, to the best of our knowledge, the
most appropriate and cost-effective approach for measur-
ing SWE and LWC simultaneously, continuously and non-
destructively.

Appendix A: Seasonal snow density evolution

In Fig. A1 we show the seasonal evolution of the snow den-
sity for all stations in relation to SWE. The density was ini-
tially low and increased in general with increasing SWE,
although some larger snowfall events caused the density to
temporarily decrease. Toward spring, SWE decreased with
the density staying high. The maximum density was higher
at higher elevations due to the larger amount of snow accu-
mulated over the season. In the second season (2019–2020)
there was less snow, and generally lower values of snow den-
sity and SWE were observed. Figure A2 shows the mean,
maximal and minimal air temperatures at the four sites. The
air temperature was generally higher at lower elevations (ex-
cluding some inversion effects at Klosters and Laret in Jan-
uary 2020).
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Figure A1. Seasonal evolution of snow density vs. SWE from manual measurements for (a) 2018–2019 and (b) 2019–2020 at the four sites
Weissfluhjoch 2540 m a.s.l., Laret 1510 m a.s.l., Klosters 1185 m a.s.l. and Küblis 820 m a.s.l. Measurements were done weekly at the three
lower-elevation sites and every 2 weeks at Weissfluhjoch.

Figure A2. Mean, maximal and minimal daily air temperature for 2019–2020 at the four sites Weissfluhjoch 2540 m a.s.l., Laret 1510 m a.s.l.,
Klosters 1185 m a.s.l. and Küblis 820 m a.s.l. The maximum temperatures at the Klosters and Küblis may be generally too high since we used
unventilated sensors.
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Appendix B: Rain-on-snow events

Figures B1–B4 show the frequency and magnitude of the
rain-on-snow events at the four measurement sites. The site
in Klosters showed the largest frequency of rain-on-snow
events throughout the winter season, whereas at higher el-
evations the rain-on-snow events were concentrated early in
the season and in spring well into the melting phase when the
snowpack was already wet. At the Küblis site a large amount
of winter precipitation fell in the form of rain or as a com-
bination of snow and rain over 24 h. The robustness of the
GNSS-derived snow parameters during rain-on-snow events
is demonstrated with Fig. B1. We did not observe any con-
siderable effect of rain-on-snow events on the GNSS-derived
SWE or HS. The LWC increased during some of the larger
rain-on-snow events. Moreover, the cumulated precipitation
(pluviometer) agreed well with the values of SWE measured
weekly for the dry-snow part of the season provided melting
early in the season is neglected, as occurred in 2019–2020 at
the Klosters site.

Figure B1. Seasonal evolution of GNSS-derived SWE and HS and corresponding reference data for Klosters. The blue columns correspond
to precipitation in the form of snow; the red columns correspond to rain. Reference precipitation was measured by a pluviometer and classified
as rain for air temperature T > 1.1 ◦C and as snow for T ≤ 1.1 ◦C. The various rain-on-snow events did not affect GNSS-derived SWE and
HS.

https://doi.org/10.5194/tc-16-505-2022 The Cryosphere, 16, 505–531, 2022



524 A. Capelli et al.: GNSS signal-based snow water equivalent determination

Figure B2. Seasonal evolution of GNSS-derived SWE and HS and corresponding reference data for Weissfluhjoch. The blue columns
correspond to precipitation in the form of snow; the red columns correspond to rain. Reference precipitation was measured by a pluviometer
and classified as rain for air temperature T > 1.1 ◦C and as snow for T ≤ 1.1 ◦C.
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Figure B3. Seasonal evolution of GNSS-derived SWE and HS and corresponding reference data for Laret. The blue columns correspond to
precipitation in the form of snow; the red columns correspond to rain. Reference precipitation was measured by a pluviometer and classified
as rain for air temperature T > 1.1 ◦C and as snow for T ≤ 1.1 ◦C.
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Figure B4. Seasonal evolution of GNSS-derived SWE and HS and corresponding reference data for Küblis. The blue columns correspond to
precipitation in the form of snow; the red columns correspond to rain. Reference precipitation was measured by a pluviometer and classified
as rain for air temperature T > 1.1 ◦C and as snow for T ≤ 1.1 ◦C.

Appendix C: Detection of snow on the ground

Figure C1 illustrates the ability of the GNSS signal-based
method to discern whether snow is lying on the ground for
HS> 5 cm and SWE> 5 mm. However, the absolute values
of GNSS-derived HS differ largely from HS measured with
the laser sensor. It should be mentioned that for such low
amounts of snow the spatial variability in HS may be high,
limiting the validity of the comparison.
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Figure C1. GNSS-derived SWE and HS from laser sensor measure-
ments at Küblis for the 2019–2020 winter season. The gray zone
indicates when snow was covering the GNSS ground antenna as
determined from concurrent webcam pictures. It can be seen that
for HS> 5 cm and SWE> 5 mm (horizontal dashed line) the GNSS
system could discern well if snow was laying on the ground well.

Appendix D: Snow depth validation

In addition to Fig. 7 and Table 4, we show scatter plots
of GNSS-derived HS vs. reference data for all stations in
Fig. D1.

Figure D1. Scatter plot of GNSS-derived snow depth (HS) vs. automatic measurement with ultrasonic and laser sensors for dry-snow
conditions (blue) and wet-snow conditions (red). The dashed lines represent the linear regressions. Data points with HS< 10 cm were
excluded from the analysis.
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