Articles | Volume 16, issue 12
https://doi.org/10.5194/tc-16-4797-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-4797-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drainage and refill of an Antarctic Peninsula subglacial lake reveal an active subglacial hydrological network
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3
0ET, UK
Tom A. Jordan
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3
0ET, UK
Neil Ross
School of Geography, Politics and Sociology, Newcastle University, Claremont Road, Newcastle Upon Tyne, NE1 7RU,
UK
Teal R. Riley
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3
0ET, UK
Peter T. Fretwell
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3
0ET, UK
Related authors
Mark A. Stevenson, Dominic A. Hodgson, Michael J. Bentley, Darren R. Gröcke, Neil Tunstall, Chris Longley, Alice Graham, and Erin L. McClymont
EGUsphere, https://doi.org/10.5194/egusphere-2025-513, https://doi.org/10.5194/egusphere-2025-513, 2025
Short summary
Short summary
We present a record of sea ice and climate inferred from novel snow petrel stomach oil deposits from East Antarctica. Snow petrels feed in the sea ice on a mixture of marine organisms and regurgitate these oils close to their nesting sites in nunatak mountains. We use makers of past diet and productivity from within a deposit to show how sea ice and climate has varied over part of the Holocene. Three periods are identified ranging from low to intermediate and increased sea ice cover.
Oliver J. Marsh, Adrian J. Luckman, and Dominic A. Hodgson
The Cryosphere, 18, 705–710, https://doi.org/10.5194/tc-18-705-2024, https://doi.org/10.5194/tc-18-705-2024, 2024
Short summary
Short summary
The Brunt Ice Shelf has accelerated rapidly after calving an iceberg in January 2023. A decade of GPS data show that the rate of acceleration in August 2023 was 30 times higher than before calving, and velocity has doubled in 6 months. Satellite velocity maps show the extent of the change. The acceleration is due to loss of contact between the ice shelf and a pinning point known as the McDonald Ice Rumples. The observations highlight how iceberg calving can directly impact ice shelves.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
Álvaro Arenas-Pingarrón, Alex M. Brisbourne, Carlos Martín, Hugh F. J. Corr, Carl Robinson, Tom A. Jordan, and Paul V. Brennan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1068, https://doi.org/10.5194/egusphere-2025-1068, 2025
Short summary
Short summary
Synthetic Aperture Radar (SAR) imaging is essential for deep englacial observations. Each pixel is formed by averaging the radar echoes within an antenna beamwidth, but the echo diversity is lost after the average. We improve the SAR interpretation if three sub-images are formed with different sub-beamwidths: each is coloured in red, green, or blue, and they are overlapped, creating a coloured image. Interpreters will better identify the slopes of internal layers, crevasses, and layer roughness.
Mark A. Stevenson, Dominic A. Hodgson, Michael J. Bentley, Darren R. Gröcke, Neil Tunstall, Chris Longley, Alice Graham, and Erin L. McClymont
EGUsphere, https://doi.org/10.5194/egusphere-2025-513, https://doi.org/10.5194/egusphere-2025-513, 2025
Short summary
Short summary
We present a record of sea ice and climate inferred from novel snow petrel stomach oil deposits from East Antarctica. Snow petrels feed in the sea ice on a mixture of marine organisms and regurgitate these oils close to their nesting sites in nunatak mountains. We use makers of past diet and productivity from within a deposit to show how sea ice and climate has varied over part of the Holocene. Three periods are identified ranging from low to intermediate and increased sea ice cover.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
Oliver J. Marsh, Adrian J. Luckman, and Dominic A. Hodgson
The Cryosphere, 18, 705–710, https://doi.org/10.5194/tc-18-705-2024, https://doi.org/10.5194/tc-18-705-2024, 2024
Short summary
Short summary
The Brunt Ice Shelf has accelerated rapidly after calving an iceberg in January 2023. A decade of GPS data show that the rate of acceleration in August 2023 was 30 times higher than before calving, and velocity has doubled in 6 months. Satellite velocity maps show the extent of the change. The acceleration is due to loss of contact between the ice shelf and a pinning point known as the McDonald Ice Rumples. The observations highlight how iceberg calving can directly impact ice shelves.
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023, https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary
Short summary
Ice-penetrating radar allows us to explore the internal structure of glaciers and ice sheets to constrain past and present ice-flow conditions. In this paper, we examine englacial layers within the Lambert Glacier in East Antarctica using a quantitative layer tracing tool. Analysis reveals that the ice flow here has been relatively stable, but evidence for former fast flow along a tributary suggests that changes have occurred in the past and could change again in the future.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Alice C. Frémand, Julien A. Bodart, Tom A. Jordan, Fausto Ferraccioli, Carl Robinson, Hugh F. J. Corr, Helen J. Peat, Robert G. Bingham, and David G. Vaughan
Earth Syst. Sci. Data, 14, 3379–3410, https://doi.org/10.5194/essd-14-3379-2022, https://doi.org/10.5194/essd-14-3379-2022, 2022
Short summary
Short summary
This paper presents the release of large swaths of airborne geophysical data (including gravity, magnetics, and radar) acquired between 1994 and 2020 over Antarctica by the British Antarctic Survey. These include a total of 64 datasets from 24 different surveys, amounting to >30 % of coverage over the Antarctic Ice Sheet. This paper discusses how these data were acquired and processed and presents the methods used to standardize and publish the data in an interactive and reproducible manner.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
William D. Smith, Stuart A. Dunning, Stephen Brough, Neil Ross, and Jon Telling
Earth Surf. Dynam., 8, 1053–1065, https://doi.org/10.5194/esurf-8-1053-2020, https://doi.org/10.5194/esurf-8-1053-2020, 2020
Short summary
Short summary
Glacial landslides are difficult to detect and likely underestimated due to rapid covering or dispersal. Without improved detection rates we cannot constrain their impact on glacial dynamics or their potential climatically driven increases in occurrence. Here we present a new open-access tool (GERALDINE) that helps a user detect 92 % of these events over the past 38 years on a global scale. We demonstrate its ability by identifying two new, large glacial landslides in the Hayes Range, Alaska.
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
Short summary
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a lack of detailed subglacial-water characterisation in West Antarctica (WA). We report 33 new subglacial lakes. Additionally, a new digital elevation model of basal topography was built and used to simulate the subglacial hydrological network in WA. The simulated subglacial hydrological catchments of Pine Island and Thwaites glaciers do not match precisely with their ice surface catchments.
Xiangbin Cui, Hafeez Jeofry, Jamin S. Greenbaum, Jingxue Guo, Lin Li, Laura E. Lindzey, Feras A. Habbal, Wei Wei, Duncan A. Young, Neil Ross, Mathieu Morlighem, Lenneke M. Jong, Jason L. Roberts, Donald D. Blankenship, Sun Bo, and Martin J. Siegert
Earth Syst. Sci. Data, 12, 2765–2774, https://doi.org/10.5194/essd-12-2765-2020, https://doi.org/10.5194/essd-12-2765-2020, 2020
Short summary
Short summary
We present a topographic digital elevation model (DEM) for Princess Elizabeth Land (PEL), East Antarctica. The DEM covers an area of approximately 900 000 km2 and was built from radio-echo sounding data collected in four campaigns since 2015. Previously, to generate the Bedmap2 topographic product, PEL’s bed was characterised from low-resolution satellite gravity data across an otherwise large (>200 km wide) data-free zone.
Tom A. Jordan, David Porter, Kirsty Tinto, Romain Millan, Atsuhiro Muto, Kelly Hogan, Robert D. Larter, Alastair G. C. Graham, and John D. Paden
The Cryosphere, 14, 2869–2882, https://doi.org/10.5194/tc-14-2869-2020, https://doi.org/10.5194/tc-14-2869-2020, 2020
Short summary
Short summary
Linking ocean and ice sheet processes allows prediction of sea level change. Ice shelves form a floating buffer between the ice–ocean systems, but the water depth beneath is often a mystery, leaving a critical blind spot in our understanding of how these systems interact. Here, we use airborne measurements of gravity to reveal the bathymetry under the ice shelves flanking the rapidly changing Thwaites Glacier and adjacent glacier systems, providing new insights and data for future models.
Kelly A. Hogan, Robert D. Larter, Alastair G. C. Graham, Robert Arthern, James D. Kirkham, Rebecca L. Totten, Tom A. Jordan, Rachel Clark, Victoria Fitzgerald, Anna K. Wåhlin, John B. Anderson, Claus-Dieter Hillenbrand, Frank O. Nitsche, Lauren Simkins, James A. Smith, Karsten Gohl, Jan Erik Arndt, Jongkuk Hong, and Julia Wellner
The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, https://doi.org/10.5194/tc-14-2883-2020, 2020
Short summary
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
Cited articles
Abram, N. J., Mulvaney, R., W.Wolff, E., Triest, J., Kipfstuhl, S., Trusel,
L. D., Vimeux, F., Fleet, L., and Arrowsmith, C.: Acceleration of snow melt
in an Antarctic Peninsula ice core during the twentieth century, Nat.
Geosci., 6, 404–411, 2013.
Aitkenhead, N.: An Ice Caldera in North-east Graham Land, Brit. Antarct. Surv. B., 1, 9–15, 1963.
Arnold, E., Leuschen, C., Rodriguez-Morales, F., Li, J., Paden, J., Hale,
R., and Keshmiri, S.: CReSIS airborne radars and platforms for ice and
snow sounding, Ann. Glaciol., 61, 58–67, https://doi.org/10.1017/aog.2019.37,
2020.
Ashmore, D. W. and Bingham, R. G.: Antarctic subglacial hydrology: current
knowledge and future challenges, Antarct. Sci., 26, 758–773,
10.1017/S0954102014000546, 2014.
Banwell, A. F., Datta, R. T., Dell, R. L., Moussavi, M., Brucker, L., Picard, G., Shuman, C. A., and Stevens, L. A.: The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, Antarctic Peninsula, The Cryosphere, 15, 909–925, https://doi.org/10.5194/tc-15-909-2021, 2021.
Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., and King, M.
A.: Short-term variability in Greenland Ice Sheet motion forced by
time-varying meltwater drainage: Implications for the relationship between
subglacial drainage system behavior and ice velocity, J. Geophys.
Res.-Earth Surf., 117, F03002, https://doi.org/10.1029/2011JF002220, 2012.
Benn, D. and Evans, D. J. A.: Glaciers and Glaciation, 2nd Routledge,
https://doi.org/10.4324/9780203785010, 2010.
Bindschadler, R., Scambos, T. A., Rott, H., Skvarca, P., and Vornberger, P.:
Ice dolines on Larsen Ice Shelf, Antarctica, Ann. Glaciol., 34,
283–290, https://doi.org/10.3189/172756402781817996, 2002.
Björnsson, H.: Subglacial lakes and jökulhlaups in Iceland, Global
Planet. Change, 35, 255–271, https://doi.org/10.1016/S0921-8181(02)00130-3, 2003.
Boronina, A., Popov, S., Pryakhina, G., Chetverova, A., Ryzhova, E., and
Grigoreva, S.: Formation of a large ice depression on Dålk Glacier
(Larsemann Hills, East Antarctica) caused by the rapid drainage of an
englacial cavity, J. Glaciol., 67, 1121–1136, https://doi.org/10.1017/jog.2021.58,
2021.
Bowling, J. S., Livingstone, S. J., Sole, A. J., and Chu, W.: Distribution
and dynamics of Greenland subglacial lakes, Nat. Commun., 10, 2810,
https://doi.org/10.1038/s41467-019-10821-w, 2019.
Boxall, K., Christie, F. D. W., Willis, I. C., Wuite, J., and Nagler, T.: Seasonal land-ice-flow variability in the Antarctic Peninsula, The Cryosphere, 16, 3907–3932, https://doi.org/10.5194/tc-16-3907-2022, 2022.
Capps, D. M., Rabus, B., Clague, J. J., and Shugar, D. H.: Identification
and characterization of alpine subglacial lakes using interferometric
synthetic aperture radar (InSAR): Brady Glacier, Alaska, USA, J.
Glaciol., 56, 861–870, https://doi.org/10.3189/002214310794457254, 2010.
Clarke, G. K. C.: Hydraulics of subglacial outburst floods: new insights
from the Spring–Hutter formulation, J. Glaciol., 49, 299–313,
https://doi.org/10.3189/172756503781830728, 2003.
Cooper, A. P. R.: Historical observations of Prince Gustav Ice Shelf, Polar
Record, 33, 285–294, https://doi.org/10.1017/S0032247400025389, 1997.
DeConto, R. M., Pollard, D., Alley, R. B., Velicogna, I., Gasson, E., Gomez,
N., Sadai, S., Condron, A., Gilford, D. M., Ashe, E. L., Kopp, R. E., Li,
D., and Dutton, A.: The Paris Climate Agreement and future sea-level rise
from Antarctica, Nature, 593, 83–89, https://doi.org/10.1038/s41586-021-03427-0, 2021.
Glen, J. W.: The Stability of Ice-Dammed Lakes and other Water-Filled Holes
in Glaciers, J. Glaciol., 2, 316–318, https://doi.org/10.3189/S0022143000025132,
1954.
Hewitt, I. J.: Seasonal changes in ice sheet motion due to melt water
lubrication, Earth Planet. Sc. Lett., 371–372, 16–25, https://doi.org/10.1016/j.epsl.2013.04.022, 2013.
Hodgson, D. A., Roberts, S. J., Bentley, M. J., Carmichael, E. L., Smith, J.
A., Verleyen, E., Vyverman, W., Geissler, P., Leng, M. J., and Sanderson, D.
C. W.: Exploring former subglacial Hodgson Lake. Paper II: Palaeolimnology,
Quaternary Sci. Rev., 28, 2310–2325,
https://doi.org/10.1016/j.quascirev.2009.04.014, 2009a.
Hodgson, D. A., Roberts, S. J., Bentley, M. J., Smith, J. A., Johnson, J.
S., Verleyen, E., Vyverman, W., Hodson, A. J., Leng, M. J., Cziferszky, A.,
Fox, A. J., and Sanderson, D. C. W.: Exploring former subglacial Hodgson
Lake. Paper I: Site description, geomorphology and limnology, Quaternary
Sci. Rev., 28, 2295–2309, https://doi.org/10.1016/j.quascirev.2009.04.011, 2009b.
Howat, I. M., Porter, C., Noh, M. J., Smith, B. E., and Jeong, S.: Brief Communication: Sudden drainage of a subglacial lake beneath the Greenland Ice Sheet, The Cryosphere, 9, 103–108, https://doi.org/10.5194/tc-9-103-2015, 2015.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
Jordan, T. and Robinson, C.: Rectified airborne Lidar data over Thwaites Glacier catchment between 1st January and 30th December 2019 (Version 1.0), NERC EDS UK Polar Data
Centre [data set],
https://doi.org/10.5285/6909792B-FADF-4DE6-AC2A-D32FA76A8339, 2022.
Joughin, I., Shean, D. E., Smith, B. E., and Dutrieux, P.: Grounding line
variability and subglacial lake drainage on Pine Island Glacier, Antarctica,
Geophys. Res. Lett., 43, 9093–9102, https://doi.org/10.1002/2016GL070259, 2016.
Kashani, A. G., Olsen, M. J., Parrish, C. E., and Wilson, N.: A Review of
LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous
Radiometric Calibration, Sensors (Basel), 15, 28099–28128,
https://doi.org/10.3390/s151128099, 2015.
Kingslake, J., Ely, J. C., Das, I., and Bell, R. E.: Widespread movement of
meltwater onto and across Antarctic ice shelves, Nature, 544, 349–352,
https://doi.org/10.1038/nature22049, 2017.
Koerner, R. M.: An ice caldera near Hope Bay, Trinity Peninsula, Graham
Land, Brit. Antarct. Surv. B., 3, 37–39, 1964.
Laffin, M. K., Zender, C. S., van Wessem, M., and Marinsek, S.: The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse, The Cryosphere, 16, 1369–1381, https://doi.org/10.5194/tc-16-1369-2022, 2022.
Lai, C.-Y., Kingslake, J., Wearing, M. G., Chen, P.-H. C., Gentine, P., Li,
H., Spergel, J. J., and van Wessem, J. M.: Vulnerability of Antarctica's ice
shelves to meltwater-driven fracture, Nature, 584, 574–578,
https://doi.org/10.1038/s41586-020-2627-8, 2020.
Lenaerts, J. T. M., Lhermitte, S., Drews, R., Ligtenberg, S. R. M., Berger,
S., Helm, V., Smeets, C. J. P. P., van d. Broeke, M. R., van de Berg, W. J.,
van Meijgaard, E., Eijkelboom, M., Eisen, O., and Pattyn, F.: Meltwater
produced by wind–albedo interaction stored in an East Antarctic ice shelf,
Nat. Clim. Change, 7, 58–62, https://doi.org/10.1038/nclimate3180, 2017.
Liang, Q., Xiao, W., Howat, I., Cheng, X., Hui, F., Chen, Z., Jiang, M., and Zheng, L.: Filling and drainage of a subglacial lake beneath the Flade Isblink ice cap, northeast Greenland, The Cryosphere, 16, 2671–2681, https://doi.org/10.5194/tc-16-2671-2022, 2022.
Livingstone, S. J., Sole, A. J., Storrar, R. D., Harrison, D., Ross, N., and Bowling, J.: Brief communication: Subglacial lake drainage beneath Isunguata Sermia, West Greenland: geomorphic and ice dynamic effects, The Cryosphere, 13, 2789–2796, https://doi.org/10.5194/tc-13-2789-2019, 2019.
Livingstone, S. J., Li, Y., Rutishauser, A., Sanderson, R. J., Winter, K.,
Mikucki, J. A., Björnsson, H., Bowling, J. S., Chu, W., Dow, C. F.,
Fricker, H. A., McMillan, M., Ng, F. S. L., Ross, N., Siegert, M. J.,
Siegfried, M., and Sole, A. J.: Subglacial lakes and their changing role in
a warming climate, Nat. Rev. Earth Environ., 3, 106–124,
https://doi.org/10.1038/s43017-021-00246-9, 2022.
Moore, J.: Ice blisters and ice dolines, J. Glaciol., 39, 714–716,
https://doi.org/10.3189/S002214300001666X, 1993.
Neckel, N., Franke, S., Helm, V., Drews, R., and Jansen, D.: Evidence of
Cascading Subglacial Water Flow at Jutulstraumen Glacier (Antarctica)
Derived From Sentinel-1 and ICESat-2 Measurements, Geophys. Res.
Lett., 48, e2021GL094472, https://doi.org/10.1029/2021GL094472, 2021.
Palmer, S., McMillan, M., and Morlighem, M.: Subglacial lake drainage
detected beneath the Greenland ice sheet, Nat. Commun., 6, 8408,
https://doi.org/10.1038/ncomms9408, 2015.
Pearce, D. A., Hodgson, D. A., Thorne, M. A. S., Burns, G., and Cockell, C.
S.: Preliminary Analysis of Life within a Former Subglacial Lake Sediment in
Antarctica, Diversity, 5, 680–702, https://doi.org/10.3390/d5030680, 2013.
Perren, B. B., Hodgson, D. A., Roberts, S. J., Sime, L., Van Nieuwenhuyze,
W., Verleyen, E., and Vyverman, W.: Southward migration of the Southern
Hemisphere westerly winds corresponds with warming climate over centennial
timescales, Commun. Earth Environ., 1, 58,
https://doi.org/10.1038/s43247-020-00059-6, 2020.
Reynolds, H. I., Gudmundsson, M. T., Högnadóttir, T., and Axelsson,
G.: Changes in Geothermal Activity at Bárdarbunga, Iceland, Following
the 2014–2015 Caldera Collapse, Investigated Using Geothermal System
Modeling, J. Geophys. Res.-Sol. Ea., 124, 8187–8204,
https://doi.org/10.1029/2018JB017290, 2019.
Rignot, E., Mouginot, J., Scheuchl, B., Broeke, M. V. D., Wessem, M. J. V.,
and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA,
116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019.
Rivera, A., Uribe, J., Zamora, R., and Oberreuter, J.: Subglacial Lake CECs:
Discovery and in situ survey of a privileged research site in West
Antarctica, Geophys. Res. Lett., 42, 3944–3953, https://doi.org/10.1002/2015GL063390, 2015.
Scambos, T. A., Berthier, E., and Shuman, C. A.: The triggering of
subglacial lake drainage during rapid glacier drawdown: Crane Glacier,
Antarctic Peninsula, Ann. Glaciol., 52, 74–82,
https://doi.org/10.3189/172756411799096204, 2011.
Siegert, M. J., Carter, S., Tabacco, I., Popov, S., and Blakenship, D.: A
revised inventory of Antarctic subglacial lakes, Antarct. Sci., 17,
453–460, 2005.
Siegfried, M. R. and Fricker, H. A.: Thirteen years of subglacial lake
activity in Antarctica from multi-mission satellite altimetry, Ann.
Glaciol., 59, 42–55, https://doi.org/10.1017/aog.2017.36, 2018.
Smellie, J. L. and Hole, M. J.: Chapter 4.1a Antarctic Peninsula:
volcanology, Geological Society, London, Memoirs, 55, 305–325,
https://doi.org/10.1144/m55-2018-59, 2021.
Smellie, J. L., Pankhurst, R. J., Hole, M. J., and Thomson, J. W.: Age,
distribution and eruptive conditions of late Cenozoic alkaline volcanism in
the Antarctic Peninsula and eastern Ellsworth Land: a review, Brit. Antarct. Surv. B., 80, 21–49, 1988.
Smith, A. M., Woodward, J., Ross, N., Bentley, M. J., Hodgson, D. A.,
Siegert, M. J., and King, E. C.: Evidence for the long-term sedimentary
environment in an Antarctic subglacial lake, Earth Planet. Sc.
Lett., 504, 139–151, https://doi.org/10.1016/j.epsl.2018.10.011, 2018.
Stearns, L. A., Smith, B. E., and Hamilton, G. S.: Increased flow speed on a
large East Antarctic outlet glacier caused by subglacial floods, Nat.
Geosci., 1, 827–831, https://doi.org/10.1038/ngeo356, 2008.
Trusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Kuipers Munneke,
P., van Meijgaard, E., and van den Broeke, M. R.: Divergent trajectories of
Antarctic surface melt under two twenty-first-century climate scenarios,
Nat. Geosci., 8, 927–932, https://doi.org/10.1038/ngeo2563, 2015.
Tuckett, P. A., Ely, J. C., Sole, A. J., Livingstone, S. J., Davison, B. J.,
Melchior van Wessem, J., and Howard, J.: Rapid accelerations of Antarctic
Peninsula outlet glaciers driven by surface melt, Nat. Commun., 10,
4311, https://doi.org/10.1038/s41467-019-12039-2, 2019.
Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S.,
Bracegirdle, T. J., Marshall, G. J., Mulvaney, R., and Deb, P.: Absence of
21st century warming on Antarctic Peninsula consistent with natural
variability, Nature, 535, 411–415, https://doi.org/10.1038/nature18645, 2016.
van den Broeke, M.: Strong surface melting preceded collapse of Antarctic
Peninsula ice shelf, Geophys. Res. Lett., 32, L12815, https://doi.org/10.1029/2005GL023247, 2005.
Warner, R. C., Fricker, H. A., Adusumilli, S., Arndt, P., Kingslake, J., and
Spergel, J. J.: Rapid Formation of an Ice Doline on Amery Ice Shelf, East
Antarctica, Geophys. Res. Lett., 48, e2020GL091095, https://doi.org/10.1029/2020GL091095, 2021.
Willis, M. J., Herried, B. G., Bevis, M. G., and Bell, R. E.: Recharge of a
subglacial lake by surface meltwater in northeast Greenland, Nature, 518,
223–227, https://doi.org/10.1038/nature14116, 2015.
Short summary
This paper describes the drainage (and refill) of a subglacial lake on the Antarctic Peninsula resulting in the collapse of the overlying ice into the newly formed subglacial cavity. It provides evidence of an active hydrological network under the region's glaciers and close coupling between surface climate processes and the base of the ice.
This paper describes the drainage (and refill) of a subglacial lake on the Antarctic Peninsula...