Articles | Volume 16, issue 2
https://doi.org/10.5194/tc-16-435-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-435-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Relating snowfall observations to Greenland ice sheet mass changes: an atmospheric circulation perspective
Michael R. Gallagher
CORRESPONDING AUTHOR
Cooperative Institute for Research in Environmental Science, Boulder, Colorado, USA
Physical Sciences Laboratory, NOAA, Boulder, Colorado, USA
Matthew D. Shupe
Cooperative Institute for Research in Environmental Science, Boulder, Colorado, USA
Physical Sciences Laboratory, NOAA, Boulder, Colorado, USA
Hélène Chepfer
LMD/IPSL, Sorbonne Université, Paris, France
LMD/IPSL, CNRS, Ecole Polytechnique, Palaiseau, France
Tristan L'Ecuyer
Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, WI, USA
Related authors
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Zen Mariani, Sara M. Morris, Taneil Uttal, Elena Akish, Robert Crawford, Laura Huang, Jonathan Day, Johanna Tjernström, Øystein Godøy, Lara Ferrighi, Leslie M. Hartten, Jareth Holt, Christopher J. Cox, Ewan O'Connor, Roberta Pirazzini, Marion Maturilli, Giri Prakash, James Mather, Kimberly Strong, Pierre Fogal, Vasily Kustov, Gunilla Svensson, Michael Gallagher, and Brian Vasel
Earth Syst. Sci. Data, 16, 3083–3124, https://doi.org/10.5194/essd-16-3083-2024, https://doi.org/10.5194/essd-16-3083-2024, 2024
Short summary
Short summary
During the Year of Polar Prediction (YOPP), we increased measurements in the polar regions and have made dedicated efforts to centralize and standardize all of the different types of datasets that have been collected to facilitate user uptake and model–observation comparisons. This paper is an overview of those efforts and a description of the novel standardized Merged Observation Data Files (MODFs), including a description of the sites, data format, and instruments.
Christopher J. Cox, Janet M. Intrieri, Brian Butterworth, Gijs de Boer, Michael R. Gallagher, Jonathan Hamilton, Erik Hulm, Tilden Meyers, Sara M. Morris, Jackson Osborn, P. Ola G. Persson, Benjamin Schmatz, Matthew D. Shupe, and James M. Wilczak
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-158, https://doi.org/10.5194/essd-2024-158, 2024
Preprint under review for ESSD
Short summary
Short summary
Snow is an essential water resource in the intermountain western United States and predictions are made using models. We made observations to validate, constrain, and develop the models. The data is from the Study of Precipitation, the Lower Atmosphere, and Surface for Hydrometeorology (SPLASH) campaign in Colorado’s East River Valley, 2021–2023. The measurements include meteorology and variables that quantify energy transfer between the atmosphere and surface. The data are available publicly.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
Chanyoung Park, Brian J. Soden, Ryan J. Kramer, Tristan S. L’Ecuyer, and Haozhe He
EGUsphere, https://doi.org/10.5194/egusphere-2024-2547, https://doi.org/10.5194/egusphere-2024-2547, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study addresses the challenge of quantifying the impact of aerosol-cloud interactions. By analyzing satellite data and reanalysis, we examine cloud responses to aerosols by incorporating aerosol-to-cloud droplet activation rates. Our "perfect-model" validation reveals a smaller, less uncertain impact of aerosol-cloud interactions than previously estimated. This breakthrough suggests a reduced role of aerosol-cloud interactions in determining climate sensitivity.
Carola Barrientos-Velasco, Christopher J. Cox, Hartwig Deneke, J. Brant Dodson, Anja Hünerbein, Matthew D. Shupe, Patrick C. Taylor, and Andreas Macke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2193, https://doi.org/10.5194/egusphere-2024-2193, 2024
Short summary
Short summary
Understanding how clouds affect the climate, especially in the Arctic, is crucial. This study used data from the largest polar expedition in history, MOSAiC, and the CERES satellite to analyse the impact of clouds on radiation. Simulations showed accurate results, aligning with observations. Over the year, clouds caused the atmospheric-surface system to lose 5.2 W/m² of radiative energy to space, while the surface gained 25 W/m², and the atmosphere cooled by 30.2 W/m².
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Natasha Vos, Tristan S. L'Ecuyer, and Tim Michaels
EGUsphere, https://doi.org/10.5194/egusphere-2024-2040, https://doi.org/10.5194/egusphere-2024-2040, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
PREFIRE uses two CubeSats to make novel measurements of outgoing energy. The CubeSats will frequently resample regions, forming orbit “intersections” that reveal how polar processes impact thermal emissions. This study develops new methods to characterize orbit intersections and applies them to simulated PREFIRE orbits to assess the hypothetical resampling distribution. Generalizing our results informs future missions that two CubeSats at different altitudes greatly enhance resampling coverage.
Madison M. Smith, Niels Fuchs, Evgenii Salganik, Donald K. Perovich, Ian Raphael, Mats A. Granskog, Kirstin Schulz, Matthew D. Shupe, and Melinda Webster
EGUsphere, https://doi.org/10.5194/egusphere-2024-1977, https://doi.org/10.5194/egusphere-2024-1977, 2024
Short summary
Short summary
The fate of freshwater from Arctic sea ice and snow melt impacts interactions of the atmosphere, sea ice, and ocean. We complete a comprehensive analysis of datasets from a Central Arctic field campaign in 2020 to understand the drivers of the sea ice freshwater budget and the fate of this water. Over half of the freshwater comes from surface melt, and a majority fraction is incorporated into the ocean. Results suggest that the representation of melt ponds is a key area for future development.
Zen Mariani, Sara M. Morris, Taneil Uttal, Elena Akish, Robert Crawford, Laura Huang, Jonathan Day, Johanna Tjernström, Øystein Godøy, Lara Ferrighi, Leslie M. Hartten, Jareth Holt, Christopher J. Cox, Ewan O'Connor, Roberta Pirazzini, Marion Maturilli, Giri Prakash, James Mather, Kimberly Strong, Pierre Fogal, Vasily Kustov, Gunilla Svensson, Michael Gallagher, and Brian Vasel
Earth Syst. Sci. Data, 16, 3083–3124, https://doi.org/10.5194/essd-16-3083-2024, https://doi.org/10.5194/essd-16-3083-2024, 2024
Short summary
Short summary
During the Year of Polar Prediction (YOPP), we increased measurements in the polar regions and have made dedicated efforts to centralize and standardize all of the different types of datasets that have been collected to facilitate user uptake and model–observation comparisons. This paper is an overview of those efforts and a description of the novel standardized Merged Observation Data Files (MODFs), including a description of the sites, data format, and instruments.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiaa Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-1912, https://doi.org/10.5194/egusphere-2024-1912, 2024
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol-climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Locally wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Christopher J. Cox, Janet M. Intrieri, Brian Butterworth, Gijs de Boer, Michael R. Gallagher, Jonathan Hamilton, Erik Hulm, Tilden Meyers, Sara M. Morris, Jackson Osborn, P. Ola G. Persson, Benjamin Schmatz, Matthew D. Shupe, and James M. Wilczak
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-158, https://doi.org/10.5194/essd-2024-158, 2024
Preprint under review for ESSD
Short summary
Short summary
Snow is an essential water resource in the intermountain western United States and predictions are made using models. We made observations to validate, constrain, and develop the models. The data is from the Study of Precipitation, the Lower Atmosphere, and Surface for Hydrometeorology (SPLASH) campaign in Colorado’s East River Valley, 2021–2023. The measurements include meteorology and variables that quantify energy transfer between the atmosphere and surface. The data are available publicly.
Michael Lonardi, Elisa F. Akansu, André Ehrlich, Mauro Mazzola, Christian Pilz, Matthew D. Shupe, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 24, 1961–1978, https://doi.org/10.5194/acp-24-1961-2024, https://doi.org/10.5194/acp-24-1961-2024, 2024
Short summary
Short summary
Profiles of thermal-infrared irradiance were measured at two Arctic sites. The presence or lack of clouds influences the vertical structure of these observations. In particular, the cloud top region is a source of radiative energy that can promote cooling and mixing in the cloud layer. Simulations are used to further characterize how the amount of water in the cloud modifies this forcing. A case study additionally showcases the evolution of the radiation profiles in a dynamic atmosphere.
Maximilian Maahn, Dmitri Moisseev, Isabelle Steinke, Nina Maherndl, and Matthew D. Shupe
Atmos. Meas. Tech., 17, 899–919, https://doi.org/10.5194/amt-17-899-2024, https://doi.org/10.5194/amt-17-899-2024, 2024
Short summary
Short summary
The open-source Video In Situ Snowfall Sensor (VISSS) is a novel instrument for characterizing particle shape, size, and sedimentation velocity in snowfall. It combines a large observation volume with relatively high resolution and a design that limits wind perturbations. The open-source nature of the VISSS hardware and software invites the community to contribute to the development of the instrument, which has many potential applications in atmospheric science and beyond.
Brian Kahn, Cameron Bertossa, Xiuhong Chen, Brian Drouin, Erin Hokanson, Xianglei Huang, Tristan L'Ecuyer, Kyle Mattingly, Aronne Merrelli, Tim Michaels, Nate Miller, Federico Donat, Tiziano Maestri, and Michele Martinazzo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2463, https://doi.org/10.5194/egusphere-2023-2463, 2023
Short summary
Short summary
A cloud detection mask algorithm is developed for the upcoming Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) satellite mission to be launched by NASA in May 2024. The cloud mask is compared to "truth" and is capable of detecting over 90 % of all clouds globally tested with simulated data, and about 87 % of all clouds in the Arctic region.
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023, https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Manfred Wendisch, Johannes Stapf, Sebastian Becker, André Ehrlich, Evelyn Jäkel, Marcus Klingebiel, Christof Lüpkes, Michael Schäfer, and Matthew D. Shupe
Atmos. Chem. Phys., 23, 9647–9667, https://doi.org/10.5194/acp-23-9647-2023, https://doi.org/10.5194/acp-23-9647-2023, 2023
Short summary
Short summary
Atmospheric radiation measurements have been conducted during two field campaigns using research aircraft. The data are analyzed to see if the near-surface air in the Arctic is warmed or cooled if warm–humid air masses from the south enter the Arctic or cold–dry air moves from the north from the Arctic to mid-latitude areas. It is important to study these processes and to check if climate models represent them well. Otherwise it is not possible to reliably forecast the future Arctic climate.
Shijie Peng, Qinghua Yang, Matthew D. Shupe, Xingya Xi, Bo Han, Dake Chen, Sandro Dahlke, and Changwei Liu
Atmos. Chem. Phys., 23, 8683–8703, https://doi.org/10.5194/acp-23-8683-2023, https://doi.org/10.5194/acp-23-8683-2023, 2023
Short summary
Short summary
Due to a lack of observations, the structure of the Arctic atmospheric boundary layer (ABL) remains to be further explored. By analyzing a year-round radiosonde dataset collected over the Arctic sea-ice surface, we found the annual cycle of the ABL height (ABLH) is primarily controlled by the evolution of ABL thermal structure, and the surface conditions also show a high correlation with ABLH variation. In addition, the Arctic ABLH is found to be decreased in summer compared with 20 years ago.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, and Frederic Szczap
Atmos. Meas. Tech., 16, 3363–3390, https://doi.org/10.5194/amt-16-3363-2023, https://doi.org/10.5194/amt-16-3363-2023, 2023
Short summary
Short summary
The response of clouds to human-induced climate warming remains the largest source of uncertainty in model predictions of climate. We consider cloud retrievals from spaceborne observations, the existing CALIOP lidar and future ATLID lidar; show how they compare for the same scenes; and discuss the advantage of adding a new lidar for detecting cloud changes in the long run. We show that ATLID's advanced technology should allow for better detecting thinner clouds during daytime than before.
Kameswara S. Vinjamuri, Marco Vountas, Luca Lelli, Martin Stengel, Matthew D. Shupe, Kerstin Ebell, and John P. Burrows
Atmos. Meas. Tech., 16, 2903–2918, https://doi.org/10.5194/amt-16-2903-2023, https://doi.org/10.5194/amt-16-2903-2023, 2023
Short summary
Short summary
Clouds play an important role in Arctic amplification. Cloud data from ground-based sites are valuable but cannot represent the whole Arctic. Therefore the use of satellite products is a measure to cover the entire Arctic. However, the quality of such cloud measurements from space is not well known. The paper discusses the differences and commonalities between satellite and ground-based measurements. We conclude that the satellite dataset, with a few exceptions, can be used in the Arctic.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Ulrike Egerer, John J. Cassano, Matthew D. Shupe, Gijs de Boer, Dale Lawrence, Abhiram Doddi, Holger Siebert, Gina Jozef, Radiance Calmer, Jonathan Hamilton, Christian Pilz, and Michael Lonardi
Atmos. Meas. Tech., 16, 2297–2317, https://doi.org/10.5194/amt-16-2297-2023, https://doi.org/10.5194/amt-16-2297-2023, 2023
Short summary
Short summary
This paper describes how measurements from a small uncrewed aircraft system can be used to estimate the vertical turbulent heat energy exchange between different layers in the atmosphere. This is particularly important for the atmosphere in the Arctic, as turbulent exchange in this region is often suppressed but is still important to understand how the atmosphere interacts with sea ice. We present three case studies from the MOSAiC field campaign in Arctic sea ice in 2020.
Felix Pithan, Marylou Athanase, Sandro Dahlke, Antonio Sánchez-Benítez, Matthew D. Shupe, Anne Sledd, Jan Streffing, Gunilla Svensson, and Thomas Jung
Geosci. Model Dev., 16, 1857–1873, https://doi.org/10.5194/gmd-16-1857-2023, https://doi.org/10.5194/gmd-16-1857-2023, 2023
Short summary
Short summary
Evaluating climate models usually requires long observational time series, but we present a method that also works for short field campaigns. We compare climate model output to observations from the MOSAiC expedition in the central Arctic Ocean. All models show how the arrival of a warm air mass warms the Arctic in April 2020, but two models do not show the response of snow temperature to the diurnal cycle. One model has too little liquid water and too much ice in clouds during cold days.
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377, https://doi.org/10.5194/gmd-16-1359-2023, https://doi.org/10.5194/gmd-16-1359-2023, 2023
Short summary
Short summary
Aerosol has a large impact on climate. Using a lidar aerosol simulator ensures consistent comparisons between modeled and observed aerosol. We present a lidar aerosol simulator that applies a cloud masking and an aerosol detection threshold. We estimate the lidar signals that would be observed at 532 nm by the Cloud-Aerosol Lidar with Orthogonal Polarization overflying the atmosphere predicted by a climate model. Our comparison at the seasonal timescale shows a discrepancy in the Southern Ocean.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
Alyson Rose Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-688, https://doi.org/10.5194/acp-2022-688, 2022
Revised manuscript not accepted
Short summary
Short summary
Aerosol, or small particles released by human activities, enter the atmosphere and eventually interact with clouds in what we term aerosol-cloud interactions. As more aerosol enter a cloud, they act as cloud droplet nuclei, increasing the number of cloud droplets in a cloud and delaying rain formation, leading to a larger cloud. We use machine learning and found that these interactions lead to 1.27 % more cloudiness on Earth and offset ~1/4 of the warming due to CO2.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, Rodrigo Guzman, Cyprien Gindre, Po-Lun Ma, and Marjolaine Chiriaco
Atmos. Meas. Tech., 15, 1055–1074, https://doi.org/10.5194/amt-15-1055-2022, https://doi.org/10.5194/amt-15-1055-2022, 2022
Short summary
Short summary
Space-borne lidars have been providing invaluable information of atmospheric optical properties since 2006, and new lidar missions are on the way to ensure continuous observations. In this work, we compare the clouds estimated from space-borne ALADIN and CALIOP lidar observations. The analysis of collocated data shows that the agreement between the retrieved clouds is good up to 3 km height. Above that, ALADIN detects 40 % less clouds than CALIOP, except for polar stratospheric clouds (PSCs).
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021, https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Short summary
We present the first full year of surface aerosol number concentration measurements from the central Greenland Ice Sheet. Aerosol concentrations here have a distinct seasonal cycle from those at lower-altitude Arctic sites, which is driven by large-scale atmospheric circulation. Our results can be used to help understand the role aerosols might play in Greenland surface melt through the modification of cloud properties. This is crucial in a rapidly changing region where observations are sparse.
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 21, 15103–15114, https://doi.org/10.5194/acp-21-15103-2021, https://doi.org/10.5194/acp-21-15103-2021, 2021
Short summary
Short summary
When aerosols enter the atmosphere, they interact with the clouds above in what we term aerosol–cloud interactions and lead to a series of reactions which delay the onset of rain. This delay may lead to increased rain rates, or invigoration, when the cloud eventually rains. We show that aerosol leads to invigoration in certain environments. The strength of the invigoration depends on how large the cloud is, which suggests that it is highly tied to the organization of the cloud system.
Erik Johansson, Abhay Devasthale, Michael Tjernström, Annica M. L. Ekman, Klaus Wyser, and Tristan L'Ecuyer
Geosci. Model Dev., 14, 4087–4101, https://doi.org/10.5194/gmd-14-4087-2021, https://doi.org/10.5194/gmd-14-4087-2021, 2021
Short summary
Short summary
Understanding the coupling of clouds to large-scale circulation is a grand challenge for the climate community. Cloud radiative heating (CRH) is a key parameter in this coupling and is therefore essential to model realistically. We, therefore, evaluate a climate model against satellite observations. Our findings indicate good agreement in the seasonal pattern of CRH even if the magnitude differs. We also find that increasing the horizontal resolution in the model has little effect on the CRH.
Andrew M. Dzambo, Tristan L'Ecuyer, Kenneth Sinclair, Bastiaan van Diedenhoven, Siddhant Gupta, Greg McFarquhar, Joseph R. O'Brien, Brian Cairns, Andrzej P. Wasilewski, and Mikhail Alexandrov
Atmos. Chem. Phys., 21, 5513–5532, https://doi.org/10.5194/acp-21-5513-2021, https://doi.org/10.5194/acp-21-5513-2021, 2021
Short summary
Short summary
This work highlights a new algorithm using data collected from the 2016–2018 NASA ORACLES field campaign. This algorithm synthesizes cloud and rain measurements to attain estimates of cloud and precipitation properties over the southeast Atlantic Ocean. Estimates produced by this algorithm compare well against in situ estimates. Increased rain fractions and rain rates are found in regions of atmospheric instability. This dataset can be used to explore aerosol–cloud–precipitation interactions.
Jessie M. Creamean, Gijs de Boer, Hagen Telg, Fan Mei, Darielle Dexheimer, Matthew D. Shupe, Amy Solomon, and Allison McComiskey
Atmos. Chem. Phys., 21, 1737–1757, https://doi.org/10.5194/acp-21-1737-2021, https://doi.org/10.5194/acp-21-1737-2021, 2021
Short summary
Short summary
Arctic clouds play a role in modulating sea ice extent. Importantly, aerosols facilitate cloud formation, and thus it is crucial to understand the interactions between aerosols and clouds. Vertical measurements of aerosols and clouds are needed to tackle this issue. We present results from balloon-borne measurements of aerosols and clouds over the course of 2 years in northern Alaska. These data shed light onto the vertical distributions of aerosols relative to clouds spanning multiple seasons.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Norman B. Wood and Tristan S. L'Ecuyer
Atmos. Meas. Tech., 14, 869–888, https://doi.org/10.5194/amt-14-869-2021, https://doi.org/10.5194/amt-14-869-2021, 2021
Short summary
Short summary
Although millimeter-wavelength radar reflectivity observations are used to investigate snowfall properties, their ability to constrain specific properties has not been well-quantified. An information-focused retrieval
method shows how well snowfall properties, including rate and size distribution, are constrained by reflectivity. Sources of uncertainty in snowfall rate are dominated by uncertainties in the retrieved size distribution properties rather than by other retrieval assumptions.
Elin A. McIlhattan, Claire Pettersen, Norman B. Wood, and Tristan S. L'Ecuyer
The Cryosphere, 14, 4379–4404, https://doi.org/10.5194/tc-14-4379-2020, https://doi.org/10.5194/tc-14-4379-2020, 2020
Short summary
Short summary
Snowfall builds the mass of the Greenland Ice Sheet (GrIS) and reduces melt by brightening the surface. We present satellite observations of GrIS snowfall events divided into two regimes: those coincident with ice clouds and those coincident with mixed-phase clouds. Snowfall from ice clouds plays the dominant role in building the GrIS, producing ~ 80 % of total accumulation. The two regimes have similar snowfall frequency in summer, brightening the surface when solar insolation is at its peak.
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020, https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary
Short summary
We present observations of precipitating and non-precipitating Arctic liquid and mixed-phase clouds during a research cruise along the Russian shelf in summer and autumn of 2014. Active remote-sensing observations, radiosondes, and auxiliary measurements are combined in the synergistic Cloudnet retrieval. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. About 8 % of all liquid clouds show a liquid water path below the infrared black body limit.
Kai-Wei Chang and Tristan L'Ecuyer
Atmos. Chem. Phys., 20, 12499–12514, https://doi.org/10.5194/acp-20-12499-2020, https://doi.org/10.5194/acp-20-12499-2020, 2020
Short summary
Short summary
High-altitude clouds in the tropics that reside in the transition layer between the troposphere and stratosphere are important as they influence the amount of water vapor going into the stratosphere. Waves in the atmosphere can influence the temperature and form these high-altitude cirrus clouds. We use satellite observations to explore the connection between atmospheric waves and clouds and show that cirrus clouds occurrence and properties are closely correlated with waves.
Anne Sophie Daloz, Marian Mateling, Tristan L'Ecuyer, Mark Kulie, Norm B. Wood, Mikael Durand, Melissa Wrzesien, Camilla W. Stjern, and Ashok P. Dimri
The Cryosphere, 14, 3195–3207, https://doi.org/10.5194/tc-14-3195-2020, https://doi.org/10.5194/tc-14-3195-2020, 2020
Short summary
Short summary
The total of snow that falls globally is a critical factor governing freshwater availability. To better understand how this resource is impacted by climate change, we need to know how reliable the current observational datasets for snow are. Here, we compare five datasets looking at the snow falling over the mountains versus the other continents. We show that there is a large consensus when looking at fractional contributions but strong dissimilarities when comparing magnitudes.
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 20, 6225–6241, https://doi.org/10.5194/acp-20-6225-2020, https://doi.org/10.5194/acp-20-6225-2020, 2020
Short summary
Short summary
Aerosols, or small, suspended droplets in the atmosphere, are released from anthropogenic activity and interact with warm clouds, leading to changes in the clouds' brightness and size. Our study evaluates how aerosols alter warm clouds and their ability to cool the Earth's surface. We find aerosols make clouds brighter and grow larger in the atmosphere; however, the cooling effect due to whiter, brighter clouds is 5 times the cooling due to an increased extent.
Rosa Gierens, Stefan Kneifel, Matthew D. Shupe, Kerstin Ebell, Marion Maturilli, and Ulrich Löhnert
Atmos. Chem. Phys., 20, 3459–3481, https://doi.org/10.5194/acp-20-3459-2020, https://doi.org/10.5194/acp-20-3459-2020, 2020
Short summary
Short summary
Multiyear statistics of persistent low-level mixed-phase clouds observed at an Arctic fjord environment in Svalbard are presented. The effects the local boundary layer (i.e. the fjords' wind climate and surface coupling), regional wind direction, and seasonality have on the cloud occurrence and properties are evaluated using a synergy of ground-based remote sensing methods and auxiliary data. The phenomena considered were found to modify the amount of liquid and ice in the studied clouds.
Gijs de Boer, Darielle Dexheimer, Fan Mei, John Hubbe, Casey Longbottom, Peter J. Carroll, Monty Apple, Lexie Goldberger, David Oaks, Justin Lapierre, Michael Crume, Nathan Bernard, Matthew D. Shupe, Amy Solomon, Janet Intrieri, Dale Lawrence, Abhiram Doddi, Donna J. Holdridge, Michael Hubbell, Mark D. Ivey, and Beat Schmid
Earth Syst. Sci. Data, 11, 1349–1362, https://doi.org/10.5194/essd-11-1349-2019, https://doi.org/10.5194/essd-11-1349-2019, 2019
Short summary
Short summary
This paper provides a summary of observations collected at Oliktok Point, Alaska, as part of the Profiling at Oliktok Point to Enhance YOPP Experiments (POPEYE) campaign. The Year of Polar Prediction (YOPP) is a multi-year concentrated effort to improve forecasting capabilities at high latitudes across a variety of timescales. POPEYE observations include atmospheric data collected using unmanned aircraft, tethered balloons, and radiosondes, made in parallel with routine measurements at the site.
Manu Anna Thomas, Abhay Devasthale, Tristan L'Ecuyer, Shiyu Wang, Torben Koenigk, and Klaus Wyser
Geosci. Model Dev., 12, 3759–3772, https://doi.org/10.5194/gmd-12-3759-2019, https://doi.org/10.5194/gmd-12-3759-2019, 2019
Short summary
Short summary
Snow cover significantly influences the surface albedo and radiation budget. Therefore, a realistic representation of snowfall in climate models is important. Here, using decade-long estimates of snowfall derived from the satellite sensor, four climate models are evaluated to assess how well they simulate snowfall in the Arctic. It is found that light and median snowfall is overestimated by the models in comparison to the satellite observations, and extreme snowfall is underestimated.
Ralf Bennartz, Frank Fell, Claire Pettersen, Matthew D. Shupe, and Dirk Schuettemeyer
Atmos. Chem. Phys., 19, 8101–8121, https://doi.org/10.5194/acp-19-8101-2019, https://doi.org/10.5194/acp-19-8101-2019, 2019
Short summary
Short summary
The Greenland Ice Sheet (GrIS) is rapidly melting. Snowfall is the only source of ice mass over the GrIS. We use satellite observations to assess how much snow on average falls over the GrIS and what the annual cycle and spatial distribution of snowfall is. We find the annual mean snowfall over the GrIS inferred from CloudSat to be 34 ± 7.5 cm yr−1 liquid equivalent.
Maximilian Maahn, Fabian Hoffmann, Matthew D. Shupe, Gijs de Boer, Sergey Y. Matrosov, and Edward P. Luke
Atmos. Meas. Tech., 12, 3151–3171, https://doi.org/10.5194/amt-12-3151-2019, https://doi.org/10.5194/amt-12-3151-2019, 2019
Short summary
Short summary
Cloud radars are unique instruments for observing cloud processes, but uncertainties in radar calibration have frequently limited data quality. Here, we present three novel methods for calibrating vertically pointing cloud radars. These calibration methods are based on microphysical processes of liquid clouds, such as the transition of cloud droplets to drizzle drops. We successfully apply the methods to cloud radar data from the North Slope of Alaska (NSA) and Oliktok Point (OLI) ARM sites.
Christopher J. Cox, David C. Noone, Max Berkelhammer, Matthew D. Shupe, William D. Neff, Nathaniel B. Miller, Von P. Walden, and Konrad Steffen
Atmos. Chem. Phys., 19, 7467–7485, https://doi.org/10.5194/acp-19-7467-2019, https://doi.org/10.5194/acp-19-7467-2019, 2019
Short summary
Short summary
Fogs are frequently reported by observers on the Greenland Ice Sheet. Fogs play a role in the hydrological and energetic balances of the ice sheet surface, but as yet the properties of Greenland fogs are not well known. We observed fogs in all months from Summit Station for 2 years and report their properties. Annually, fogs impart a slight warming to the surface and a case study suggests that they are particularly influential by providing insulation during the coldest part of the day in summer.
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 19, 6251–6268, https://doi.org/10.5194/acp-19-6251-2019, https://doi.org/10.5194/acp-19-6251-2019, 2019
Short summary
Short summary
Aerosols are released by natural and human activities. When aerosols encounter clouds they interact in what is known as the indirect effect. Brighter clouds are expected due to the microphysical response; however, certain environments can trigger a modified response. Limits on the stability, humidity, and cloud thickness are applied regionally to investigate local cloud responses to aerosol, resulting in a range of indirect effects that would result in significant cooling or slight warming.
Florentin Lemonnier, Jean-Baptiste Madeleine, Chantal Claud, Christophe Genthon, Claudio Durán-Alarcón, Cyril Palerme, Alexis Berne, Niels Souverijns, Nicole van Lipzig, Irina V. Gorodetskaya, Tristan L'Ecuyer, and Norman Wood
The Cryosphere, 13, 943–954, https://doi.org/10.5194/tc-13-943-2019, https://doi.org/10.5194/tc-13-943-2019, 2019
Short summary
Short summary
Evaluation of the vertical precipitation rate profiles of CloudSat radar by comparison with two surface-based micro-rain radars (MRR) located at two antarctic stations gives a near-perfect correlation between both datasets, even though climatic and geographic conditions are different for the stations. A better understanding and reassessment of CloudSat uncertainties ranging from −13 % up to +22 % confirms the robustness of the CloudSat retrievals of snowfall over Antarctica.
Johannes Mülmenstädt, Odran Sourdeval, David S. Henderson, Tristan S. L'Ecuyer, Claudia Unglaub, Leonore Jungandreas, Christoph Böhm, Lynn M. Russell, and Johannes Quaas
Earth Syst. Sci. Data, 10, 2279–2293, https://doi.org/10.5194/essd-10-2279-2018, https://doi.org/10.5194/essd-10-2279-2018, 2018
Short summary
Short summary
One of the key pieces of information about a cloud is how high its base is. Unlike cloud top, cloud base is hard to observe from a satellite perspective – the cloud blocks the view. But without using satellites, it is difficult to compile global datasets. Here we describe how we worked around the limitations of a cloud-detecting laser satellite to observe global cloud base heights. This dataset will expand our knowledge of the cloudy atmosphere and its interaction with the planetary surface.
Amy Solomon, Gijs de Boer, Jessie M. Creamean, Allison McComiskey, Matthew D. Shupe, Maximilian Maahn, and Christopher Cox
Atmos. Chem. Phys., 18, 17047–17059, https://doi.org/10.5194/acp-18-17047-2018, https://doi.org/10.5194/acp-18-17047-2018, 2018
Short summary
Short summary
The results of this study indicate that perturbations in ice nucleating particles (INPs) dominate over cloud condensation nuclei (CCN) perturbations in Arctic mixed-phase stratocumulus; i.e., an equivalent fractional decrease in CCN and INPs results in an increase in the cloud-top longwave cooling rate, even though the droplet effective radius increases and the cloud emissivity decreases. In addition, cloud-processing causes layering of aerosols with increased concentrations of CCN at cloud top.
Matthew S. Norgren, Gijs de Boer, and Matthew D. Shupe
Atmos. Chem. Phys., 18, 13345–13361, https://doi.org/10.5194/acp-18-13345-2018, https://doi.org/10.5194/acp-18-13345-2018, 2018
Short summary
Short summary
Arctic mixed-phase clouds are a critical component of the Arctic climate system because of their ability to influence the surface radiation budget. The radiative impact of an individual cloud is closely linked to the ability of the cloud to convert liquid drops to ice. In this paper, we show through an observational record that clouds present in polluted atmospheric conditions have lower amounts of ice than similar clouds found in clean conditions.
Claire Pettersen, Ralf Bennartz, Aronne J. Merrelli, Matthew D. Shupe, David D. Turner, and Von P. Walden
Atmos. Chem. Phys., 18, 4715–4735, https://doi.org/10.5194/acp-18-4715-2018, https://doi.org/10.5194/acp-18-4715-2018, 2018
Short summary
Short summary
A novel method for classifying Arctic precipitation using ground based remote sensors is presented. The classification reveals two distinct, primary regimes of precipitation over the central Greenland Ice Sheet: snowfall coupled to deep, fully glaciated ice clouds or to shallow, mixed-phase clouds. The ice clouds are associated with low-pressure storm systems from the southeast, while the mixed-phase clouds slowly propagate from the southwest along a quiescent flow.
Robert A. Stillwell, Ryan R. Neely III, Jeffrey P. Thayer, Matthew D. Shupe, and David D. Turner
Atmos. Meas. Tech., 11, 835–859, https://doi.org/10.5194/amt-11-835-2018, https://doi.org/10.5194/amt-11-835-2018, 2018
Short summary
Short summary
This work focuses on making unambiguous measurements of Arctic cloud phase and assessing those measurements within the context of cloud radiative effects. It is found that effects related to lidar data recording systems can cause retrieval ambiguities that alter the interpretation of cloud phase in as much as 30 % of the available data. This misinterpretation of cloud-phase data can cause a misinterpretation of the effect of cloud phase on the surface radiation budget by as much as 10 to 30 %.
Heming Bai, Cheng Gong, Minghuai Wang, Zhibo Zhang, and Tristan L'Ecuyer
Atmos. Chem. Phys., 18, 1763–1783, https://doi.org/10.5194/acp-18-1763-2018, https://doi.org/10.5194/acp-18-1763-2018, 2018
Short summary
Short summary
Precipitation susceptibility to aerosol perturbation plays a key role in understanding aerosol–cloud interactions and for constraining aerosol indirect effects. Here, multisensor aerosol and cloud products from A-Train satellites are analyzed to estimate precipitation susceptibility. Compared to precipitation intensity susceptibility, precipitation frequency susceptibility demonstrates relatively robust features across different retrieval products.
Lars Norin, Abhay Devasthale, and Tristan S. L'Ecuyer
Atmos. Meas. Tech., 10, 3249–3263, https://doi.org/10.5194/amt-10-3249-2017, https://doi.org/10.5194/amt-10-3249-2017, 2017
Short summary
Short summary
For a high-latitude country like Sweden snowfall is an important contributor to the regional water cycle. For Sweden, large-scale atmospheric circulation patterns, or weather states, are important for precipitation variability. In this work we investigate the sensitivity of snowfall to weather states over Sweden to eight selected weather states. The analysis is based on measurements from ground-based radar, satellite observations, spatially interpolated in situ observations, and reanalysis data.
Steven J. Cooper, Norman B. Wood, and Tristan S. L'Ecuyer
Atmos. Meas. Tech., 10, 2557–2571, https://doi.org/10.5194/amt-10-2557-2017, https://doi.org/10.5194/amt-10-2557-2017, 2017
Short summary
Short summary
Estimates of snowfall rate as derived from radar observations can suffer large uncertainties due to great natural variability in snowflake microphysical properties. We used in situ observations of particle size, shape, and fall speed to refine radar-based estimates of snowfall for five snow events at the ARM Barrow Climate Research Facility. Estimated snowfall amounts agreed well with nearby snow gauge observations and demonstrated significant sensitivity to both particle shape and fall speed.
Yinghui Liu, Matthew D. Shupe, Zhien Wang, and Gerald Mace
Atmos. Chem. Phys., 17, 5973–5989, https://doi.org/10.5194/acp-17-5973-2017, https://doi.org/10.5194/acp-17-5973-2017, 2017
Short summary
Short summary
Detailed and accurate vertical distributions of cloud properties are essential to accurately calculate the surface radiative flux and to depict the mean climate state, and such information is more desirable in the Arctic due to its recent rapid changes and the challenging observation conditions. This study presents a feasible way to provide such information by blending cloud observations from surface and space-based instruments with the understanding of their respective strength and limitations.
Nathaniel B. Miller, Matthew D. Shupe, Christopher J. Cox, David Noone, P. Ola G. Persson, and Konrad Steffen
The Cryosphere, 11, 497–516, https://doi.org/10.5194/tc-11-497-2017, https://doi.org/10.5194/tc-11-497-2017, 2017
Short summary
Short summary
A comprehensive observational dataset is assembled to investigate atmosphere–Greenland ice sheet interactions and characterize surface temperature variability. The amount the surface temperature warms, due to increases in cloud presence and/or elevated sun angle, varies throughout the annual cycle and is modulated by the responses of latent, sensible and ground heat fluxes. This observationally based study provides process-based relationships, which are useful for evaluation of climate models.
Robert A. Stillwell, Ryan R. Neely III, Jeffrey P. Thayer, Matthew D. Shupe, and Michael O'Neill
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-303, https://doi.org/10.5194/amt-2016-303, 2016
Revised manuscript not accepted
Short summary
Short summary
This work explores the observation of Arctic mixed phase clouds by lidar and the consequences of mishandling lidar signals linking the signals to their geophysical interpretation. It concludes 3 points: 1) cloud phase identification is not only linked to cloud phase but other cloud properties, 2) having more than two polarization signals can be used to quality control data not possible with only two signals, and 3) phase retrievals with more than two polarizations enhance retrieval flexibility.
Claire Pettersen, Ralf Bennartz, Mark S. Kulie, Aronne J. Merrelli, Matthew D. Shupe, and David D. Turner
Atmos. Chem. Phys., 16, 4743–4756, https://doi.org/10.5194/acp-16-4743-2016, https://doi.org/10.5194/acp-16-4743-2016, 2016
Short summary
Short summary
We examined four summers of data from a ground-based atmospheric science instrument suite at Summit Station, Greenland, to isolate the signature of the ice precipitation. By using a combination of instruments with different specialities, we identified a passive microwave signature of the ice precipitation. This ice signature compares well to models using synthetic data characteristic of the site.
A. Solomon, G. Feingold, and M. D. Shupe
Atmos. Chem. Phys., 15, 10631–10643, https://doi.org/10.5194/acp-15-10631-2015, https://doi.org/10.5194/acp-15-10631-2015, 2015
Short summary
Short summary
The maintenance of cloud ice production in Arctic mixed-phase stratocumulus is investigated in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. It is demonstrated that IN recycling through subcloud sublimation prolongs ice production. Competing feedbacks between dynamical mixing and recycling are found to slow the rate of ice lost. The results of this study have important implications for the maintenance of phase partitioning in Arctic clouds.
G. Sotiropoulou, J. Sedlar, M. Tjernström, M. D. Shupe, I. M. Brooks, and P. O. G. Persson
Atmos. Chem. Phys., 14, 12573–12592, https://doi.org/10.5194/acp-14-12573-2014, https://doi.org/10.5194/acp-14-12573-2014, 2014
Short summary
Short summary
During ASCOS, clouds are more frequently decoupled from the surface than coupled to it; when coupling occurs it is primary driven by the cloud. Decoupled clouds have a bimodal structure; they are either weakly or strongly decoupled from the surface; the enhancement of the decoupling is possibly due to sublimation of precipitation. Stable clouds (no cloud-driven mixing) are also observed; those are optically thin, often single-phase liquid, with no or negligible precipitation (e.g. fog).
J. M. Intrieri, G. de Boer, M. D. Shupe, J. R. Spackman, J. Wang, P. J. Neiman, G. A. Wick, T. F. Hock, and R. E. Hood
Atmos. Meas. Tech., 7, 3917–3926, https://doi.org/10.5194/amt-7-3917-2014, https://doi.org/10.5194/amt-7-3917-2014, 2014
Short summary
Short summary
In winter 2011, the Global Hawk unmanned aircraft system (UAS) was deployed over the Arctic to evaluate a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind speed and direction information between the stratosphere and surface. During the 25-hour polar flight, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude.
J. Sedlar and M. D. Shupe
Atmos. Chem. Phys., 14, 3461–3478, https://doi.org/10.5194/acp-14-3461-2014, https://doi.org/10.5194/acp-14-3461-2014, 2014
M. Tjernström, C. Leck, C. E. Birch, J. W. Bottenheim, B. J. Brooks, I. M. Brooks, L. Bäcklin, R. Y.-W. Chang, G. de Leeuw, L. Di Liberto, S. de la Rosa, E. Granath, M. Graus, A. Hansel, J. Heintzenberg, A. Held, A. Hind, P. Johnston, J. Knulst, M. Martin, P. A. Matrai, T. Mauritsen, M. Müller, S. J. Norris, M. V. Orellana, D. A. Orsini, J. Paatero, P. O. G. Persson, Q. Gao, C. Rauschenberg, Z. Ristovski, J. Sedlar, M. D. Shupe, B. Sierau, A. Sirevaag, S. Sjogren, O. Stetzer, E. Swietlicki, M. Szczodrak, P. Vaattovaara, N. Wahlberg, M. Westberg, and C. R. Wheeler
Atmos. Chem. Phys., 14, 2823–2869, https://doi.org/10.5194/acp-14-2823-2014, https://doi.org/10.5194/acp-14-2823-2014, 2014
G. de Boer, M. D. Shupe, P. M. Caldwell, S. E. Bauer, O. Persson, J. S. Boyle, M. Kelley, S. A. Klein, and M. Tjernström
Atmos. Chem. Phys., 14, 427–445, https://doi.org/10.5194/acp-14-427-2014, https://doi.org/10.5194/acp-14-427-2014, 2014
M. D. Shupe, P. O. G. Persson, I. M. Brooks, M. Tjernström, J. Sedlar, T. Mauritsen, S. Sjogren, and C. Leck
Atmos. Chem. Phys., 13, 9379–9399, https://doi.org/10.5194/acp-13-9379-2013, https://doi.org/10.5194/acp-13-9379-2013, 2013
Related subject area
Discipline: Snow | Subject: Greenland
Post-depositional modification on seasonal-to-interannual timescales alters the deuterium-excess signals in summer snow layers in Greenland
Exploring the role of snow metamorphism on the isotopic composition of the surface snow at EastGRIP
Local-scale deposition of surface snow on the Greenland ice sheet
Satellite observations of snowfall regimes over the Greenland Ice Sheet
Michael S. Town, Hans Christian Steen-Larsen, Sonja Wahl, Anne-Katrine Faber, Melanie Behrens, Tyler R. Jones, and Arny Sveinbjornsdottir
The Cryosphere, 18, 3653–3683, https://doi.org/10.5194/tc-18-3653-2024, https://doi.org/10.5194/tc-18-3653-2024, 2024
Short summary
Short summary
A polar snow isotope dataset from northeast Greenland shows that snow changes isotopically after deposition. Summer snow sometimes enriches in oxygen-18, making it seem warmer than it actually was when the snow fell. Deuterium excess sometimes changes after deposition, making the snow seem to come from warmer, closer, or more humid places. After a year of aging, deuterium excess of summer snow layers always increases. Reinterpretation of deuterium excess used in climate models is necessary.
Romilly Harris Stuart, Anne-Katrine Faber, Sonja Wahl, Maria Hörhold, Sepp Kipfstuhl, Kristian Vasskog, Melanie Behrens, Alexandra M. Zuhr, and Hans Christian Steen-Larsen
The Cryosphere, 17, 1185–1204, https://doi.org/10.5194/tc-17-1185-2023, https://doi.org/10.5194/tc-17-1185-2023, 2023
Short summary
Short summary
This empirical study uses continuous daily measurements from the Greenland Ice Sheet to document changes in surface snow properties. Consistent changes in snow isotopic composition are observed in the absence of deposition due to surface processes, indicating the isotopic signal of deposited precipitation is not always preserved. Our observations have potential implications for the interpretation of water isotopes in ice cores – historically assumed to reflect isotopic composition at deposition.
Alexandra M. Zuhr, Thomas Münch, Hans Christian Steen-Larsen, Maria Hörhold, and Thomas Laepple
The Cryosphere, 15, 4873–4900, https://doi.org/10.5194/tc-15-4873-2021, https://doi.org/10.5194/tc-15-4873-2021, 2021
Short summary
Short summary
Firn and ice cores are used to infer past temperatures. However, the imprint of the climatic signal in stable water isotopes is influenced by depositional modifications. We present and use a photogrammetry structure-from-motion approach and find variability in the amount, the timing, and the location of snowfall. Depositional modifications of the surface are observed, leading to mixing of snow from different snowfall events and spatial locations and thus creating noise in the proxy record.
Elin A. McIlhattan, Claire Pettersen, Norman B. Wood, and Tristan S. L'Ecuyer
The Cryosphere, 14, 4379–4404, https://doi.org/10.5194/tc-14-4379-2020, https://doi.org/10.5194/tc-14-4379-2020, 2020
Short summary
Short summary
Snowfall builds the mass of the Greenland Ice Sheet (GrIS) and reduces melt by brightening the surface. We present satellite observations of GrIS snowfall events divided into two regimes: those coincident with ice clouds and those coincident with mixed-phase clouds. Snowfall from ice clouds plays the dominant role in building the GrIS, producing ~ 80 % of total accumulation. The two regimes have similar snowfall frequency in summer, brightening the surface when solar insolation is at its peak.
Cited articles
Boening, C., Lebsock, M., Landerer, F., and Stephens, G.: Snowfall-driven mass
change on the East Antarctic ice sheet, Geophys. Res. Lett., 39,
1–5, https://doi.org/10.1029/2012GL053316, 2012. a
Boisvert, L. N. and Stroeve, J. C.: The Arctic is becoming warmer and wetter
as revealed by the Atmospheric Infrared Sounder, Geophys.
Res. Lett., 42,
4439–4446,
https://doi.org/10.1002/2015GL063775, 2015. a
Box, J. E., Bromwich, D. H., Veenhuis, B. A., Bai, L.-S., Stroeve, J. C.,
Rogers, J. C., Steffen, K., Haran, T., and Wang, S.-H.: Greenland Ice Sheet
Surface Mass Balance Variability (1988–2004) from Calibrated Polar MM5
Output, J. Climate, 19, 2783–2800, https://doi.org/10.1175/JCLI3738.1, 2006. a
Cao, Q., Zhang, J., Gourley, J. J., Kirstetter, P. E., Chen, S., and Hong, Y.:
Snowfall Detectability of Nasa'S Cloudsat: the First Cross-Investigation of
Its 2C-Snow-Profile Product and National Multi-Sensor Mosaic Qpe (Nmq)
Snowfall Data, Prog. Electromagn. Res., 148, 55–61,
https://doi.org/10.2528/pier14030405, 2014. a
Crane, R. G. and Hewitson, B. C.: Clustering and upscaling of station
precipitation records to regional patterns using self-organizing maps
(SOMs), Clim. Res., 25, 95–107, https://doi.org/10.3354/cr025095, 2003. a
Danco, J. F., DeAngelis, A. M., Raney, B. K., and Broccoli, A. J.: Effects of a Warming Climate on Daily Snowfall Events in the Northern
Hemisphere, J. Climate, 29, 6295–6318, https://doi.org/10.1175/JCLI-D-15-0687.1, 2016. a
Doyle, S. H., Hubbard, A., Van De Wal, R. S., Box, J. E., Van As, D.,
Scharrer, K., Meierbachtol, T. W., Smeets, P. C., Harper, J. T., Johansson,
E., Mottram, R. H., Mikkelsen, A. B., Wilhelms, F., Patton, H.,
Christoffersen, P., and Hubbard, B.: Amplified melt and flow of the
Greenland ice sheet driven by late-summer cyclonic rainfall, Nat.
Geosci., 8, 647–653, https://doi.org/10.1038/ngeo2482, 2015. a
Edel, L., Claud, C., Genthon, C., Palerme, C., Wood, N., L’Ecuyer, T., and
Bromwich, D.: Arctic Snowfall from CloudSat Observations and Reanalyses,
J. Climate, 33, 2093–2109, https://doi.org/10.1175/JCLI-D-19-0105.1, 2020. a
Fettweis, X., Mabille, G., Erpicum, M., Nicolay, S., and van den Broeke, M.:
The 1958-2009 Greenland ice sheet surface melt and the mid-tropospheric
atmospheric circulation, Clim. Dynam., 36, 139–159,
https://doi.org/10.1007/s00382-010-0772-8, 2011. a, b
Gallagher, M., Shupe, M. D., and Miller, N. B.: Impact of Atmospheric
Circulation on Temperature, Clouds, and Radiation at Summit Station,
Greenland with Self-Organizing Maps, J. Climate, 31, 8895–8915,
https://doi.org/10.1175/JCLI-D-17-0893.1, 2018. a, b, c
Hall, D. K., Comiso, J. C., Digirolamo, N. E., Shuman, C. A., Box, J. E., and
Koenig, L. S.: Variability in the surface temperature and melt extent of the
Greenland ice sheet from MODIS, Geophys. Res. Lett., 40,
2114–2120, https://doi.org/10.1002/grl.50240, 2013. a
Hanna, E., Fettweis, X., Mernild, S. H., Cappelen, J., Ribergaard, M. H.,
Shuman, C. A., Steffen, K., Wood, L., and Mote, T. L.: Atmospheric and
oceanic climate forcing of the exceptional Greenland ice sheet surface melt
in summer 2012, Int. J. Climatol., 34, 1022–1037,
https://doi.org/10.1002/joc.3743, 2014. a
Hewitson, B. C. and Crane, R. G.: Self-organizing maps : applications to
synoptic climatology, Clim. Res., 22, 13–26, 2002. a
Im, E., Wu, C., and Durden, S. L.: Cloud profiling radar for the CloudSat
mission, IEEE National Radar Conference – Proceedings, 2005-Janua, 483–486,
https://doi.org/10.1109/RADAR.2005.1435874, 2005. a
Joughin, I., Smith, B. E., and Howat, I.: Greenland Ice Mapping Project: ice flow velocity variation at sub-monthly to decadal timescales, The Cryosphere, 12, 2211–2227, https://doi.org/10.5194/tc-12-2211-2018, 2018. a, b, c
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A.,
Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo,
K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc.,
77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. a
King, M. D., Howat, I. M., Jeong, S., Noh, M. J., Wouters, B., Noël, B., and van den Broeke, M. R.: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet, The Cryosphere, 12, 3813–3825, https://doi.org/10.5194/tc-12-3813-2018, 2018. a, b, c
Koenig, L. S., Ivanoff, A., Alexander, P. M., MacGregor, J. A., Fettweis, X., Panzer, B., Paden, J. D., Forster, R. R., Das, I., McConnell, J. R., Tedesco, M., Leuschen, C., and Gogineni, P.: Annual Greenland accumulation rates (2009–2012) from airborne snow radar, The Cryosphere, 10, 1739–1752, https://doi.org/10.5194/tc-10-1739-2016, 2016. a
Kohonen, T.: Essentials of the self-organizing map, Neural Networks, 37,
52–65, https://doi.org/10.1016/j.neunet.2012.09.018, 2013. a
Liu, C. and Barnes, E. A.: Extrememoisture transport into the Arctic linked to
Rossby wave breaking, J. Geophys. Res., 120, 3774–3788,
https://doi.org/10.1002/2014JD022796, 2015. a
Luthcke, S. B., Camp, J., Arendt, A., Loomis, B., Sabaka, T., and McCarthy, J.:
Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated
GRACE global mascon solution, J. Glaciol., 59, 613–631,
https://doi.org/10.3189/2013jog12j147, 2013. a, b
Maahn, M., Burgard, C., Crewell, S., Gorodetskaya, I. V., Kneifel, S.,
Lhermitte, S., Van Tricht, K., and Van Lipzig, N. P.: How does the
spaceborne radar blind zone affect derived surface snowfall statistics in
polar regions?, J. Geophys. Res., 119, 13604–13620,
https://doi.org/10.1002/2014JD022079, 2014. a, b, c
Mattingly, K. S., Mote, T. L., and Fettweis, X.: Atmospheric River Impacts on
Greenland Ice Sheet Surface Mass Balance, J. Geophys. Res.-Atmos., 123, 8538–8560, https://doi.org/10.1029/2018JD028714, 2018. a
McIlhattan, E. A., Pettersen, C., Wood, N. B., and L'Ecuyer, T. S.: Satellite observations of snowfall regimes over the Greenland Ice Sheet, The Cryosphere, 14, 4379–4404, https://doi.org/10.5194/tc-14-4379-2020, 2020. a
McMillan, M., Leeson, A., Shepherd, A., Briggs, K., Armitage, T. W. K., Hogg,
A., Kuipers Munneke, P., van den Broeke, M., Noël, B., van de Berg,
W. J., Ligtenberg, S., Horwath, M., Groh, A., Muir, A., and Gilbert, L.: A
high-resolution record of Greenland mass balance, Geophys. Res.
Lett., 43, 7002–7010, https://doi.org/10.1002/2016GL069666, 2016. a
Neff, W., Compo, G. P., Martin Ralph, F., and Shupe, M. D.: Continental heat
anomalies and the extreme melting of the Greenland ice surface in 2012 and
1889, J. Geophys. Res.-Atmos., 119, 6520–6536, https://doi.org/10.1002/2014JD021470,
2014. a, b, c, d
Noël, B., van de Berg, W. J., van Meijgaard, E., Kuipers Munneke, P., van de Wal, R. S. W., and van den Broeke, M. R.: Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet, The Cryosphere, 9, 1831–1844, https://doi.org/10.5194/tc-9-1831-2015, 2015. a, b
Norin, L., Devasthale, A., L'Ecuyer, T. S., Wood, N. B., and Smalley, M.: Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground-based weather radar network over Sweden, Atmos. Meas. Tech., 8, 5009–5021, https://doi.org/10.5194/amt-8-5009-2015, 2015. a
Pedersen, S. H., Tamstorf, M. P., Abermann, J., Lund, M., Skov, K., Sigsgaard,
C., Mylius, M. R., Hansen, B. U., Liston, G. E., Schmidt, N. M., Højlund,
S., Tamstorf, M. P., Abermann, J., Pedersen, S. H., Tamstorf, M. P.,
Abermann, J., Westergaard-nielsen, A., Lund, M., Skov, K., Sigsgaard, C.,
Mylius, M. R., Hansen, B. U., Liston, G. E., and Schmidt, N. M.:
Spatiotemporal Characteristics of Seasonal Snow Cover in Northeast Greenland
from in Situ Observations Spatiotemporal characteristics of seasonal snow
cover in Northeast Greenland from in situ observations, Arct. Antarct. Alp. Res., 48, 653–671,
https://doi.org/10.1657/AAAR0016-028, 2018. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011. a
Pettersen, C., Bennartz, R., Merrelli, A. J., Shupe, M. D., Turner, D. D., and Walden, V. P.: Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations, Atmos. Chem. Phys., 18, 4715–4735, https://doi.org/10.5194/acp-18-4715-2018, 2018. a, b
Ran, J., Ditmar, P., Klees, R., and Farahani, H. H.: Statistically optimal
estimation of Greenland Ice Sheet mass variations from GRACE monthly
solutions using an improved mascon approach, J. Geodesy, 92,
299–319, https://doi.org/10.1007/s00190-017-1063-5, 2017. a
Ryan, J. C., Smith, L. C., Wu, M., Cooley, S. W., Miège, C., Montgomery, L. N., Koenig, L. S., Fettweis, X., Noel, B. P. Y., and van den
Broeke, M. R.: Evaluation of CloudSat’s Cloud-Profiling Radar for Mapping Snowfall Rates Across the Greenland Ice Sheet, J.
Geophys. Res.-Atmos., 125, e2019JD031411, https://doi.org/10.1029/2019JD031411, 2020. a, b
Schuenemann, K. C. and Cassano, J. J.: Changes in synoptic weather patterns
and Greenland precipitation in the 20th and 21st centuries: 2. Analysis of
21st century atmospheric changes using self-organizing maps, J.
Geophys. Res.-Atmos., 115, 1–18, https://doi.org/10.1029/2009JD011706,
2010. a, b, c, d, e
Shepherd, A., Ivins, E. R., A, G., Barletta, V. R., Bentley, M. J., Bettadpur,
S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M.,
Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg,
S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G.,
Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard,
H., Rignot, E., Rott, H., Sorensen, L. S., Scambos, T. A., Scheuchl, B.,
Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg,
W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J.,
Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J.: A
Reconciled Estimate of Ice-Sheet Mass Balance, Science, 338, 1183–1189,
https://doi.org/10.1126/science.1228102, 2012. a
Sheridan, S. C. and Lee, C. C.: The self-organizing map in synoptic
climatological research, Prog. Phys. Geogr., 35, 109–119,
https://doi.org/10.1177/0309133310397582, 2011. a
Stephens, G., Winker, D., Pelon, J., Trepte, C., Vane, D., Yuhas, C., L'Ecuyer,
T., and Lebsock, M.: Cloudsat and calipso within the a-train: Ten years of
actively observing the earth system, B. Am. Meteorol.
Soc., 99, 569–581, https://doi.org/10.1175/BAMS-D-16-0324.1, 2018. a
Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M.,
Reinke, D., Partain, P., Mace, G. G., Austin, R., L'Ecuyer, T., Haynes, J.,
Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang,
Z., and Marchand, R.: CloudSat mission: Performance and early science after
the first year of operation, J. Geophys. Res.-Atmos.,
114, 1–18, https://doi.org/10.1029/2008JD009982, 2008.
a
van den Broeke, M. R., Bamber, J. L., Ettema, J., Rignot, E. J., Schrama, E.,
van de Berg, W. J., van Meijgaard, E., Velicogna, I., Wouters, B., Broeke, M.
V. D., Bamber, J. L., Ettema, J., Rignot, E. J., Schrama, E., Berg, W. J.
V. D., Meijgaard, E. V., Velicogna, I., and Wouters, B.: Partitioning Recent
Greenland Mass Loss, Science, 326, 984–986, https://doi.org/10.1126/science.1178176,
2009. a
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.: On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016. a
Vernon, C. L., Bamber, J. L., Box, J. E., van den Broeke, M. R., Fettweis, X., Hanna, E., and Huybrechts, P.: Surface mass balance model intercomparison for the Greenland ice sheet, The Cryosphere, 7, 599–614, https://doi.org/10.5194/tc-7-599-2013, 2013. a
Wood, N. B. and L'Ecuyer, T. S.: What millimeter-wavelength radar reflectivity reveals about snowfall: an information-centric analysis, Atmos. Meas. Tech., 14, 869–888, https://doi.org/10.5194/amt-14-869-2021, 2021. a
Wood, N. B., L'Ecuyer, T. S., Bliven, F. L., and Stephens, G. L.: Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity, Atmos. Meas. Tech., 6, 3635–3648, https://doi.org/10.5194/amt-6-3635-2013, 2013. a
Wood, N. B., L'Ecuyer, T. S., Heymsfield, A. J., Stephen, G. L., Hudak, D. R.,
and Rodriguez, P.: Estimating snow microphysical properties using collocated
multisensor observations, J. Geophys. Res., 119, 8941–8961,
https://doi.org/10.1002/2013JD021303, 2014. a
Short summary
By using direct observations of snowfall and mass changes, the variability of daily snowfall mass input to the Greenland ice sheet is quantified for the first time. With new methods we conclude that cyclones west of Greenland in summer contribute the most snowfall, with 1.66 Gt per occurrence. These cyclones are contextualized in the broader Greenland climate, and snowfall is validated against mass changes to verify the results. Snowfall and mass change observations are shown to agree well.
By using direct observations of snowfall and mass changes, the variability of daily snowfall...