Articles | Volume 16, issue 9
https://doi.org/10.5194/tc-16-3635-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-3635-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mechanisms and effects of under-ice warming water in Ngoring Lake of Qinghai–Tibet Plateau
Mengxiao Wang
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
Zhaoguo Li
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
Matti Leppäranta
Institute of Atmospheric and Earth Sciences, University of Helsinki, Helsinki, Finland
Victor Stepanenko
Research Computing Center, Lomonosov Moscow State University,
Moscow, Russia
Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
Yixin Zhao
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
Ruijia Niu
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
Liuyiyi Yang
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
Georgiy Kirillin
Department of Ecohydrology, Leibniz-Institute of Freshwater Ecology
and Inland Fisheries (IGB), Berlin, Germany
Related authors
No articles found.
Zhengxin Jiang, Yubao Qiu, Matti Leppäranta, Xiaoting Li, Peng Yao, Guoqiang Jia, and Jiancheng Shi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-721, https://doi.org/10.5194/essd-2025-721, 2026
Preprint under review for ESSD
Short summary
Short summary
Lake ice profoundly impacts regional climate and ecosystems in cold climate regions. The long-term daily lake ice coverage, annual ice phenology, and the probability of complete ice-cover occurrence were produced for 32800 global lakes using gap-filled MODIS data from 2002 to 2024. Patterns and trends of ice phenology and ice-cover status quantitatively revealed that how lakes respond to the climate change. The dataset provides a valuable resource for hydrology, ecology and climate research.
Georgiy B. Kirillin, Tom Shatwell, and Alexander S. Izhitskiy
Hydrol. Earth Syst. Sci., 29, 3569–3588, https://doi.org/10.5194/hess-29-3569-2025, https://doi.org/10.5194/hess-29-3569-2025, 2025
Short summary
Short summary
The Aral Sea is both an example of large-scale environmental degradation caused by human activity and a message of hope through its partial restoration. Our study shows that the restored part of the Aral Sea is now healthy in terms of vertical mixing and oxygenation. However, small perturbations of water level or transparency could significantly alter the entire ecosystem. The results contribute to understanding the consequences of large-scale lake management worldwide.
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024, https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Short summary
We developed a new model to better understand how water moves in a lake basin. Our model improves upon previous methods by accurately capturing the complexity of water movement, both on the surface and subsurface. Our model, tested using data from China's Qinghai Lake, accurately replicates complex water movements and identifies contributing factors of the lake's water balance. The findings provide a robust tool for predicting hydrological processes, aiding water resource planning.
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527, https://doi.org/10.5194/gmd-17-497-2024, https://doi.org/10.5194/gmd-17-497-2024, 2024
Short summary
Short summary
Our team developed rSHUD v2.0, a toolkit that simplifies the use of the SHUD, a model simulating water movement in the environment. We demonstrated its effectiveness in two watersheds, one in the USA and one in China. The toolkit also facilitated the creation of the Global Hydrological Data Cloud, a platform for automatic data processing and model deployment, marking a significant advancement in hydrological research.
Miao Yu, Peng Lu, Matti Leppäranta, Bin Cheng, Ruibo Lei, Bingrui Li, Qingkai Wang, and Zhijun Li
The Cryosphere, 18, 273–288, https://doi.org/10.5194/tc-18-273-2024, https://doi.org/10.5194/tc-18-273-2024, 2024
Short summary
Short summary
Variations in Arctic sea ice are related not only to its macroscale properties but also to its microstructure. Arctic ice cores in the summers of 2008 to 2016 were used to analyze variations in the ice inherent optical properties related to changes in the ice microstructure. The results reveal changing ice microstructure greatly increased the amount of solar radiation transmitted to the upper ocean even when a constant ice thickness was assumed, especially in marginal ice zones.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Yaodan Zhang, Marta Fregona, John Loehr, Joonatan Ala-Könni, Shuang Song, Matti Leppäranta, and Zhijun Li
The Cryosphere, 17, 2045–2058, https://doi.org/10.5194/tc-17-2045-2023, https://doi.org/10.5194/tc-17-2045-2023, 2023
Short summary
Short summary
There are few detailed studies during the ice decay period, primarily because in situ observations during decay stages face enormous challenges due to safety issues. In the present work, ice monitoring was based on foot, hydrocopter, and boat to get a full time series of the evolution of ice structure and geochemical properties. We argue that the rapid changes in physical and geochemical properties of ice have an important influence on regional climate and the ecological environment under ice.
Joonatan Ala-Könni, Kukka-Maaria Kohonen, Matti Leppäranta, and Ivan Mammarella
Geosci. Model Dev., 15, 4739–4755, https://doi.org/10.5194/gmd-15-4739-2022, https://doi.org/10.5194/gmd-15-4739-2022, 2022
Short summary
Short summary
Properties of seasonally ice-covered lakes are not currently sufficiently included in global climate models. To fill this gap, this study evaluates three models that could be used to quantify the amount of heat that moves from and into the lake by the air above it and through evaporation of the ice cover. The results show that the complex nature of the surrounding environment as well as difficulties in accurately measuring the surface temperature of ice introduce errors to these models.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Wenfeng Huang, Wen Zhao, Cheng Zhang, Matti Leppäranta, Zhijun Li, Rui Li, and Zhanjun Lin
The Cryosphere, 16, 1793–1806, https://doi.org/10.5194/tc-16-1793-2022, https://doi.org/10.5194/tc-16-1793-2022, 2022
Short summary
Short summary
Thermal regimes of seasonally ice-covered lakes in an arid region like Central Asia are not well constrained despite the unique climate. We observed annual and seasonal dynamics of thermal stratification and energetics in a shallow arid-region lake. Strong penetrated solar radiation and high water-to-ice heat flux are the predominant components in water heat balance. The under-ice stratification and convection are jointly governed by the radiative penetration and salt rejection during freezing.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Manuel C. Almeida, Yurii Shevchuk, Georgiy Kirillin, Pedro M. M. Soares, Rita M. Cardoso, José P. Matos, Ricardo M. Rebelo, António C. Rodrigues, and Pedro S. Coelho
Geosci. Model Dev., 15, 173–197, https://doi.org/10.5194/gmd-15-173-2022, https://doi.org/10.5194/gmd-15-173-2022, 2022
Short summary
Short summary
In this study, we have evaluated the importance of the input of energy conveyed by river inflows into lakes and reservoirs when modeling surface water energy fluxes. Our results suggest that there is a strong correlation between water residence time and the surface water temperature prediction error and that the combined use of process-based physical models and machine-learning models will considerably improve the modeling of air–lake heat and moisture fluxes.
Yunshuai Zhang, Qian Huang, Yaoming Ma, Jiali Luo, Chan Wang, Zhaoguo Li, and Yan Chou
Atmos. Chem. Phys., 21, 15949–15968, https://doi.org/10.5194/acp-21-15949-2021, https://doi.org/10.5194/acp-21-15949-2021, 2021
Short summary
Short summary
The source region of the Yellow River has an important role in issues related to water resources, ecological environment, and climate changes in China. We utilized large eddy simulation to understand whether the surface heterogeneity promotes or inhibits the boundary-layer turbulence, the great contribution of the thermal circulations induced by surface heterogeneity to the water and heat exchange between land/lake and air. Moreover, the turbulence in key locations is characterized.
Johan Ström, Jonas Svensson, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Outi Meinander, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-158, https://doi.org/10.5194/acp-2021-158, 2021
Revised manuscript not accepted
Short summary
Short summary
Snow darkening in the Himalaya results from the deposition of different particles. Here we assess the change in the seasonal snow cover duration due to the presence of mineral dust and black carbon particles in the snow of Sunderdhunga valley, Central Himalaya, India. With the use of in situ weather station data, the snow melt-out date is estimated to be shifted ~13 days earlier due to the presence of the particles in the snow.
Jonas Svensson, Johan Ström, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen
Atmos. Chem. Phys., 21, 2931–2943, https://doi.org/10.5194/acp-21-2931-2021, https://doi.org/10.5194/acp-21-2931-2021, 2021
Short summary
Short summary
Light-absorbing particles specifically affect snowmelt in the Himalayas. Through measurements of the constituents in glacier snow pits from the Indian Himalayas our investigations show that different snow layers display striking similarities. These similarities can be characterized by a deposition constant. Our results further indicate that mineral dust can be responsible for the majority of light absorption in the snow in this part of the Himalayas.
Cited articles
Bai, Q. X., Li, R. L., Li, Z. J., Leppäranta, M., Arvola, L., and Li, M.:
Time-series analyses of water temperature and dissolved oxygen concentration
in Lake Valkea-Kotinen (Finland) during ice season, Ecol. Inform., 36,
181–189, https://doi.org/10.1016/j.ecoinf.2015.06.009, 2016.
Brown, L. C. and Duguay, C. R.: The fate of lake ice in the North American Arctic, The Cryosphere, 5, 869–892, https://doi.org/10.5194/tc-5-869-2011, 2011.
Cao, X. W., Lu, P., Leppäranta, M., Arvola, L., Huotari, J., Shi, X. H.,
Li, G. Y., and Li, Z. J.: Solar radiation transfer for an ice-covered lake in
the central Asian arid climate zone, Inland Waters, 11, 89–103, https://doi.org/10.1080/20442041.2020.1790274, 2020.
Dai, Y. J., Wei, N., Huang, A. N., Zhu, S. G., Shangguan, W., Yuan, H.,
Zhang, S. P., and Liu, S. F.: The lake scheme of the Common Land Model and
its performance evaluation, Chinese Sci. Bull., 63, 3002–3021, https://doi.org/10.1360/n972018-00609, 2018 (in Chinese).
Dauginis, A. A. and Brown, L. C.: Recent changes in pan-Arctic sea ice, lake ice, and snow-on/off timing, The Cryosphere, 15, 4781–4805, https://doi.org/10.5194/tc-15-4781-2021, 2021.
Dokulil, M. T.: Predicting summer surface water temperatures for large
Austrian lakes in 2050 under climate change scenarios, Hydrobiologia, 731,
19–29, https://doi.org/10.1007/s10750-013-1550-5, 2013.
Donlon, C. J., Minnett, P. J., Gentemann, C., Nightingale, T. J., Barton, I.
J., Ward, B., and Murray, M. J.: Toward improved validation of satellite sea
surface skin temperature measurements for climate research, J. Climate, 15,
353–369, https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2, 2002.
Efremova, T., Palshin, N., and Zdorovennov, R.: Long-term characteristics of
ice phenology in Karelian lakes, Est. J. Earth Sci., 62, 33–41, https://doi.org/10.3176/earth.2013.04, 2013.
Fang, N., Yang, K., Lazhu, Chen, Y. Y., Wang, J. B., and Zhu, L. P.: Research
on the application of WRF-lake Modeling at Nam Co Lake on the
Qinghai-Tibetan Plateau, Plateau Meteorology, 36, 610–618, 2017.
Fang, X. and Stefan, H. G.: Long-term lake water temperature and ice cover
simulations/measurements, Cold. Reg. Sci. Technol., 24, 289–304, 1996.
Gan, G. J. and Liu, Y. B.: Heat storage effect on evaporation estimates of
China's largest freshwater lake, J. Geophys. Res.-Atmos., 125, e2019JD032334, https://doi.org/10.1029/2019jd032334, 2020.
Grant, L.,Vanderkelen, I., Gudmundsson, L., Tan, Z., Perroud, M.,
Stepanenko, V., Debolskiy, A. V., Droppers, B., Janssen, A. B., Woolway, R.
I., Choulga, M., Balsamo, G., Kirillin, G., Schewe, J., Zhao, F., Valle, I.
V., Golub, M., Pierson, D., Marcé, R., Seneviratne, S. I., and Thiery,
W.: Attribution of global lake systems change to anthropogenic forcing, Nat.
Geosci., 14, 849–854, https://doi.org/10.1038/s41561-021-00833-x, 2021.
Guseva, S., Stepanenko, V., Shurpali, N., Biasi, C., Marushchak, M. E., and
Lind, S. E.: Numerical simulation of methane emission from Subarctic Lake in
Komi Republic (Russia), Geography, Environment, Sustainability, 9, 58–74,
https://doi.org/10.15356/2071-9388_02v09_2016_05, 2016.
Hardenbicker, P., Viergutz, C., Becker, A., Kirchesch, V., Nilson, E., and
Fischer, H.: Water temperature increases in the river Rhine in response to
climate change, Reg. Environ. Change, 17, 299–308, https://doi.org/10.1007/s10113-016-1006-3, 2016.
Heiskanen, J. J., Mammarella, I., Ojala, A., Stepanenko, V., Erkkilä, K.
M., Miettinen, H., Sandström, H., Eugster, W., Leppäranta, M.,
Järvinen, H., Vesala, T., and Nordbo, A.: Effects of water clarity on
lake stratification and lake-atmosphere heat exchange, J. Geophys. Res.-Atmos., 120,
7412–7428, https://doi.org/10.1002/2014jd022938, 2015.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Huang, A. N., Lazhu, Wang, J. B., Dai, Y. J., Yang, K., Wei, N., Wen, L. J.,
Wu, Y., Zhu, X. Y., Zhang, X. D., and Cai, S. X.: Evaluating and improving
the performance of three 1-D lake models in a large deep lake of the central
Tibetan Plateau, J. Geophys. Res.-Atmos., 124, 3143–3167, https://doi.org/10.1029/2018JD029610,
2019.
Kirillin, G. B., Leppäranta, M., Terzhevik, A., Granin, N., Bernhardt,
J., Engelhardt, C., Efremova, T., Golosov, S., Palshin, N., Sherstyankin,
P., Zdorovennova, G., and Zdorovennov, R: Physics of seasonally ice-covered
lakes: a review, Aquat. Sci., 74, 659–682, https://doi.org/10.1007/s00027-012-0279-y,
2012.
Kirillin, G. B., Forrest, A. L., Graves, K. E., Fischer, A., Engelhardt, C.,
and Laval, B. E.: Axisymmetric circulation driven by marginal heating in
ice-covered lakes, Geophys. Res. Lett., 42, 2893–2900, https://doi.org/10.1002/2014gl062180, 2015.
Kirillin, G., Wen, L., and Shatwell, T.: Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands, Hydrol. Earth Syst. Sci., 21, 1895–1909, https://doi.org/10.5194/hess-21-1895-2017, 2017.
Kirillin, G., Aslamov, I., Leppäranta, M., and Lindgren, E.: Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations, Hydrol. Earth Syst. Sci., 22, 6493–6504, https://doi.org/10.5194/hess-22-6493-2018, 2018.
Kirillin, G., Aslamov, I., Kozlov, V., Zdorovennov, R., and Granin, N.: Turbulence in the stratified boundary layer under ice: observations from Lake Baikal and a new similarity model, Hydrol. Earth Syst. Sci., 24, 1691–1708, https://doi.org/10.5194/hess-24-1691-2020, 2020.
Kirillin, G. B., Shatwell, T., and Wen, L. J.: Ice-covered lakes of Tibetan
Plateau as solar heat collectors, Geophys. Res. Lett., 48, e2021GL093429, https://doi.org/10.1029/2021gl093429, 2021a.
Kirillin, G., Shatwell, T., and Wen, L.: Data on under-ice temperatures and solar radiation in Lake Ngoring (Qinghai-Tibet), Zenodo [data set], https://doi.org/10.5281/zenodo.4750910, 2021b.
Lazhu, Yang, K., Wang, J. B., Lei, Y. B., Chen, Y. Y., Zhu, L. P., Ding, B. H., and Qin, J.: Quantifying evaporation and its decadal change for Lake Nam Co, central
Tibetan Plateau, J. Geophys. Res., 121, 7578–7591,
https://doi.org/10.1002/2015jd024523, 2016.
Lazhu, Yang, K., Hou, J. Z., Wang, J. B., Lei, Y. B., Zhu, L. P., Chen, Y. Y., Wang, M. D., and He, X. G.: A new finding on the prevalence of rapid water warming durinig lake ice melting on the Tibetan Plateau, Sci. Bull., 66, 2358–2361, https://doi.org/10.1016/j.scib.2021.07.022, 2021.
Lei, R. B., Leppäranta, M., Erm, A., Jaatinen, E., and Pärn, O.:
Field investigations of apparent optical properties of ice cover in Finnish
and Estonian lakes in winter 2009, Est. J. Earth Sci., 60, 50–64, https://doi.org/10.3176/earth.2011.1.05, 2011.
Leppäranta, M.: Freezing of lakes and the evolution of their ice cover, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-29081-7, 2015.
Leppäranta, M., Lindgren, E., and Shirasawa, K.: The heat budget of Lake
Kilpisjärvi in the Arctic tundra, Hydrol. Res., 48, 969–980, https://doi.org/10.2166/nh.2016.171, 2017.
Leppäranta, M., Lindgren, E., Wen, L. J., and Kirillin, G.: Ice cover
decay and heat balance in Lake Kilpisjärvi in Arctic tundra, J. Limnol.,
78, 163–175, https://doi.org/10.4081/jlimnol.2019.1879, 2019.
Li, G. C., Liu, Z. G., Zhang, M., Li, J., Pi, K., Xiong, Y., and Xu, J.: A
preliminary study of effects of warming on the nutrients dynamic in sediment
of hypereutrophic shallow lake, Acta Ecologica Sinica, 35, 4016–4025, https://doi.org/10.5846/stxb201309102244, 2015.
Li, Z. G., Lyu, S. H., Ao, Y. H., Wen, L. J., Zhao, L., and Wang, S. Y.:
Long-term energy flux and radiation balance observations over Lake Ngoring,
Tibetan Plateau, Atmos. Res., 155, 13–25, https://doi.org/10.1016/j.atmosres.2014.11.019,
2015.
Li, Z. G., Ao, Y. H., Lyu, S. H., Lang, J. H., Wen, L. J., Stepanenko, V.,
Meng, X. H., and Zhao, L.: Investigation of the ice surface albedo in the
Tibetan Plateau lakes based on the field observation and MODIS products, J.
Glaciol., 64, 506–516, https://doi.org/10.1017/jog.2018.35, 2018.
Li, Z. G., Lyu, S. H., Wen, L. J., Zhao, L., Ao, Y. H., and Meng, X. H.:
Study of freeze-thaw cycle and key radiation transfer parameters in a
Tibetan Plateau lake using LAKE2.0 model and field observations, J. Glaciol.,
67, 91–106, https://doi.org/10.1017/jog.2020.87, 2020.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Nordbo, A., Launiainen, S., Mammarella, I., Leppäranta, M., Huotari, J.,
Ojala, A., and Vesala, T.: Long-term energy flux measurements and energy
balance over a small boreal lake using eddy covariance technique, J.
Geophys. Res.-Atmos., 116, D02119, https://doi.org/10.1029/2010jd014542, 2011.
Ramp, C., Delarue, J., Palsboll, P. J., Sears, R., and Hammond, P. S.:
Adapting to a warmer ocean–seasonal shift of baleen whale movements over
three decades, PLoS One, 10, e0121374, https://doi.org/10.1371/journal.pone.0121374, 2015.
Rösner, R. R., Müller-Navarra, D. C., and Zorita, E.: Trend analysis
of weekly temperatures and oxygen concentrations during summer
stratification in Lake Plußsee: A long-term study, Limnol. Oceanogr.,
57, 1479–1491, https://doi.org/10.4319/lo.2012.57.5.1479, 2012.
Shang, Y. X., Song, K. S., Jiang, P., Ma, J. H., Wen, Z. D., and Zhao, Y.:
Optical absorption properties and diffuse attenuation of photosynthetic
active radiation for inland waters across the Tibetan Plateau, Journal of
Lake Sciences, 30, 802–811, https://doi.org/10.18307/2018.0322, 2018.
Sharma, S., Blagrave, K., Magnuson, J. J., O'Reilly, C. M., Oliver, S.,
Batt, R. D., Magee, M. R., Winslow, L., and Woolway, R. I.: Widespread loss
of lake ice around the Northern Hemisphere in a warming world, Nat. Clim.
Change, 9, 227–231, https://doi.org/10.1038/s41558-018-0393-5, 2019.
Sharma, S., Meyer, M. F., Culpepper, J., Yang, X., Hampton, S., Berger, S.
A., Brousil, M. R., Fradkin, S. C., Higgins, S. N., Jankowski, K. J.,
Kirillin, G., Smits, A. P., Whitaker, E. C., Yousef, F., and Zhang, S.:
Integrating perspectives to understand lake ice dynamics in a changing
world, J. Geophys. Res.-Biogeo., 125, e2020JG005799, https://doi.org/10.1029/2020jg005799,
2020.
Shen, D. F., Li, S. J., Jiang, Y. J., and Chen, W.: Water environment
characteristics and regional climate response of typical lakes in Yellow
River headwater area, J. Arid Environ., 26, 91–97, https://doi.org/10.13448/j.cnki.jalre.2012.07.030, 2012.
Song, X. Y., Wen, L. J., Li, M. S., Du, J., Su, D. S., Yin, S. C., and Lv,
Z.: Comparative study on applicability of different lake models to typical
lakes in Qinghai-Tibetan Plateau, Plateau Meteorology, 39, 213–225, 2020.
Stepanenko, V.: LAKE (2.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6353238, 2022.
Stepanenko, V. and Lykossov, V. N.: Numerical modeling of heat and moisture
transfer processes in a system lake soil, Russ. Meteorol. Hydrol., 3,
95–104, 2005.
Stepanenko, V., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., and Vesala, T.: LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes, Geosci. Model Dev., 9, 1977–2006, https://doi.org/10.5194/gmd-9-1977-2016, 2016.
Stepanenko, V., Machul'skaya, E. E., Glagolev, M. V., and Lykossov, V. N.:
Numerical modeling of methane emissions from lakes in the permafrost zone,
Izv. Atmos. Ocean. Phy.+, 47, 252–264, https://doi.org/10.1134/s0001433811020113, 2011.
Stepanenko, V., Repina, I. A., Ganbat, G., and Davaa, G.: Numerical
simulation of ice cover of saline lakes, Izv. Atmos. Ocean. Phy.+, 55,
129–138, https://doi.org/10.1134/s0001433819010092, 2019.
Tavares, M., Cunha, A., Motta-Marques, D., Ruhoff, A., Cavalcanti, J.,
Fragoso, C., Martín Bravo, J., Munar, A., Fan, F., and Rodrigues, L.:
Comparison of methods to estimate Lake-Surface-Water temperature using
Landsat 7 ETM+ and MODIS imagery: Case study of a large shallow
subtropical lake in Southern Brazil, Water, 11, 168, https://doi.org/10.3390/w11010168, 2019.
Tolonen, A.: Application of a bioenergetics model for analysis of growth and
food consumption of subarctic whitefish Coregonus lavaretus (L.) in Lake
Kilpisjärvi, Finnish Lapland, Hydrobiologia, 390, 153–169, https://doi.org/10.1023/A:1003525008870, 1998.
Wan, W., Long, D., Hong, Y., Ma, Y. Z., Yuan, Y., Xiao, P. F., Duan, H. T.,
Han, Z. Y., and Gu, X. F.: A lake data set for the Tibetan Plateau from the
1960s, 2005, and 2014, Sci. Data., 3, 160039, https://doi.org/10.1038/sdata.2016.39,
2016.
Wan, Z., Zhang, Y., Zhang, Q., and Li, Z. L.: Quality assessment and
validation of the MODIS global land surface temperature, Int. J. Remote Sens.,
25, 261–274, https://doi.org/10.1080/0143116031000116417, 2004.
Wang, M. D., Hou, J. Z., and Lei, Y. B.: Classification of Tibetan lakes
based on variations in seasonal lake water temperature, Chinese Sci.
Bull., 59, 4847–4855, https://doi.org/10.1007/s11434-014-0588-8, 2014.
Wang, M. X.: TC-data-Mechanisms and effects of under-ice warming water in Ngoring Lake of Qinghai-Tibet Plateau, IGB IceTMP [data set], https://nimbus.igb-berlin.de/index.php/s/Moqxgn29DbNFyr8, last access: 27 August 2022.
Wang, M. X., Wen, L. J., Li, Z. G., and Su, D. S.: Study on the warming
characteristics during the ice-covered period of Ngoring Lake in the
Qinghai-Xizang Plateau, Plateau Meteorology, 40, 965–976, 2021.
Weitere, M., Vohmann, A., Schulz, N., Linn, C., Dietrich, D., and Arndt, H.:
Linking environmental warming to the fitness of the invasive clamCorbicula
fluminea, Global Change Biol., 15, 2838–2851, https://doi.org/10.1111/j.1365-2486.2009.01925.x, 2010.
Wen, L. J., Lyu, S. H., Kirillin, G., Li, Z. G., and Zhao, L.: Air–lake
boundary layer and performance of a simple lake parameterization scheme over
the Tibetan highlands, Tellus A, 68, 31091, https://doi.org/10.3402/tellusa.v68.31091,
2016.
Wen, L. J., Wang, C., Li, Z. G., Zhao, L., Lyu, S. H., and Chen, S. Q.:
Thermal responses of the largest freshwater lake in the Tibetan Plateau and
its nearby saline lake to climate change, Remote Sens., 14, 1774, https://doi.org/10.3390/rs14081774, 2022.
Wu, Y., Huang, A. N., Lu, Y. Y., Lazhu, Yang, X. Y., Qiu, B., Zhang, Z. Q., and Zhang, X. D.: Numerical study of the thermal structure and circulation in a large
and deep dimictic lake over Tibetan Plateau, J. Geophys. Res.-Oceans, 126,
e2021JC017517, https://doi.org/10.1029/2021jc017517, 2021.
Yang, B., Wells, M. G., McMeans, B. C., Dugan, H. A., Rusak, J. A.,
Weyhenmeyer, G. A., Brentrup, J. A., Hrycik, A. R., Laas, A., Pilla, R. M.,
Austin, J. A., Blanchfield, P. J., Carey, C. C., Guzzo, M. M., Lottig, N.
R., MacKay, M. D., Middel, T. A., Pierson, D. C., Wang, J., and Young, J. D.:
A new thermal categorization of ice-covered lakes, Geophys. Res. Lett., 48,
e2020GL091374, https://doi.org/10.1029/2020gl091374, 2021.
Zhang, G. Q., Luo, W., Chen, W. F., and Zheng, G. X.: A robust but variable
lake expansion on the Tibetan Plateau, Sci. Bull., 64, 1306–1309, https://doi.org/10.1016/j.scib.2019.07.018, 2019.
Zolfaghari, K., Duguay, C. R., and Kheyrollah Pour, H.: Satellite-derived light extinction coefficient and its impact on thermal structure simulations in a 1-D lake model, Hydrol. Earth Syst. Sci., 21, 377–391, https://doi.org/10.5194/hess-21-377-2017, 2017.
Short summary
The under-ice water temperature of Ngoring Lake has been rising based on in situ observations. We obtained results showing that strong downward shortwave radiation is the main meteorological factor, and precipitation, wind speed, downward longwave radiation, air temperature, ice albedo, and ice extinction coefficient have an impact on the range and rate of lake temperature rise. Once the ice breaks, the lake body releases more energy than other lakes, whose water temperature remains horizontal.
The under-ice water temperature of Ngoring Lake has been rising based on in situ observations....