Articles | Volume 16, issue 9
https://doi.org/10.5194/tc-16-3635-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-3635-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mechanisms and effects of under-ice warming water in Ngoring Lake of Qinghai–Tibet Plateau
Mengxiao Wang
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
Zhaoguo Li
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
Matti Leppäranta
Institute of Atmospheric and Earth Sciences, University of Helsinki, Helsinki, Finland
Victor Stepanenko
Research Computing Center, Lomonosov Moscow State University,
Moscow, Russia
Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
Yixin Zhao
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
Ruijia Niu
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
Liuyiyi Yang
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
Georgiy Kirillin
Department of Ecohydrology, Leibniz-Institute of Freshwater Ecology
and Inland Fisheries (IGB), Berlin, Germany
Related authors
No articles found.
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024, https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Short summary
We developed a new model to better understand how water moves in a lake basin. Our model improves upon previous methods by accurately capturing the complexity of water movement, both on the surface and subsurface. Our model, tested using data from China's Qinghai Lake, accurately replicates complex water movements and identifies contributing factors of the lake's water balance. The findings provide a robust tool for predicting hydrological processes, aiding water resource planning.
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527, https://doi.org/10.5194/gmd-17-497-2024, https://doi.org/10.5194/gmd-17-497-2024, 2024
Short summary
Short summary
Our team developed rSHUD v2.0, a toolkit that simplifies the use of the SHUD, a model simulating water movement in the environment. We demonstrated its effectiveness in two watersheds, one in the USA and one in China. The toolkit also facilitated the creation of the Global Hydrological Data Cloud, a platform for automatic data processing and model deployment, marking a significant advancement in hydrological research.
Miao Yu, Peng Lu, Matti Leppäranta, Bin Cheng, Ruibo Lei, Bingrui Li, Qingkai Wang, and Zhijun Li
The Cryosphere, 18, 273–288, https://doi.org/10.5194/tc-18-273-2024, https://doi.org/10.5194/tc-18-273-2024, 2024
Short summary
Short summary
Variations in Arctic sea ice are related not only to its macroscale properties but also to its microstructure. Arctic ice cores in the summers of 2008 to 2016 were used to analyze variations in the ice inherent optical properties related to changes in the ice microstructure. The results reveal changing ice microstructure greatly increased the amount of solar radiation transmitted to the upper ocean even when a constant ice thickness was assumed, especially in marginal ice zones.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Yaodan Zhang, Marta Fregona, John Loehr, Joonatan Ala-Könni, Shuang Song, Matti Leppäranta, and Zhijun Li
The Cryosphere, 17, 2045–2058, https://doi.org/10.5194/tc-17-2045-2023, https://doi.org/10.5194/tc-17-2045-2023, 2023
Short summary
Short summary
There are few detailed studies during the ice decay period, primarily because in situ observations during decay stages face enormous challenges due to safety issues. In the present work, ice monitoring was based on foot, hydrocopter, and boat to get a full time series of the evolution of ice structure and geochemical properties. We argue that the rapid changes in physical and geochemical properties of ice have an important influence on regional climate and the ecological environment under ice.
Joonatan Ala-Könni, Kukka-Maaria Kohonen, Matti Leppäranta, and Ivan Mammarella
Geosci. Model Dev., 15, 4739–4755, https://doi.org/10.5194/gmd-15-4739-2022, https://doi.org/10.5194/gmd-15-4739-2022, 2022
Short summary
Short summary
Properties of seasonally ice-covered lakes are not currently sufficiently included in global climate models. To fill this gap, this study evaluates three models that could be used to quantify the amount of heat that moves from and into the lake by the air above it and through evaporation of the ice cover. The results show that the complex nature of the surrounding environment as well as difficulties in accurately measuring the surface temperature of ice introduce errors to these models.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Wenfeng Huang, Wen Zhao, Cheng Zhang, Matti Leppäranta, Zhijun Li, Rui Li, and Zhanjun Lin
The Cryosphere, 16, 1793–1806, https://doi.org/10.5194/tc-16-1793-2022, https://doi.org/10.5194/tc-16-1793-2022, 2022
Short summary
Short summary
Thermal regimes of seasonally ice-covered lakes in an arid region like Central Asia are not well constrained despite the unique climate. We observed annual and seasonal dynamics of thermal stratification and energetics in a shallow arid-region lake. Strong penetrated solar radiation and high water-to-ice heat flux are the predominant components in water heat balance. The under-ice stratification and convection are jointly governed by the radiative penetration and salt rejection during freezing.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Manuel C. Almeida, Yurii Shevchuk, Georgiy Kirillin, Pedro M. M. Soares, Rita M. Cardoso, José P. Matos, Ricardo M. Rebelo, António C. Rodrigues, and Pedro S. Coelho
Geosci. Model Dev., 15, 173–197, https://doi.org/10.5194/gmd-15-173-2022, https://doi.org/10.5194/gmd-15-173-2022, 2022
Short summary
Short summary
In this study, we have evaluated the importance of the input of energy conveyed by river inflows into lakes and reservoirs when modeling surface water energy fluxes. Our results suggest that there is a strong correlation between water residence time and the surface water temperature prediction error and that the combined use of process-based physical models and machine-learning models will considerably improve the modeling of air–lake heat and moisture fluxes.
Yunshuai Zhang, Qian Huang, Yaoming Ma, Jiali Luo, Chan Wang, Zhaoguo Li, and Yan Chou
Atmos. Chem. Phys., 21, 15949–15968, https://doi.org/10.5194/acp-21-15949-2021, https://doi.org/10.5194/acp-21-15949-2021, 2021
Short summary
Short summary
The source region of the Yellow River has an important role in issues related to water resources, ecological environment, and climate changes in China. We utilized large eddy simulation to understand whether the surface heterogeneity promotes or inhibits the boundary-layer turbulence, the great contribution of the thermal circulations induced by surface heterogeneity to the water and heat exchange between land/lake and air. Moreover, the turbulence in key locations is characterized.
Johan Ström, Jonas Svensson, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Outi Meinander, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-158, https://doi.org/10.5194/acp-2021-158, 2021
Revised manuscript not accepted
Short summary
Short summary
Snow darkening in the Himalaya results from the deposition of different particles. Here we assess the change in the seasonal snow cover duration due to the presence of mineral dust and black carbon particles in the snow of Sunderdhunga valley, Central Himalaya, India. With the use of in situ weather station data, the snow melt-out date is estimated to be shifted ~13 days earlier due to the presence of the particles in the snow.
Jonas Svensson, Johan Ström, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen
Atmos. Chem. Phys., 21, 2931–2943, https://doi.org/10.5194/acp-21-2931-2021, https://doi.org/10.5194/acp-21-2931-2021, 2021
Short summary
Short summary
Light-absorbing particles specifically affect snowmelt in the Himalayas. Through measurements of the constituents in glacier snow pits from the Indian Himalayas our investigations show that different snow layers display striking similarities. These similarities can be characterized by a deposition constant. Our results further indicate that mineral dust can be responsible for the majority of light absorption in the snow in this part of the Himalayas.
Georgiy Kirillin, Ilya Aslamov, Vladimir Kozlov, Roman Zdorovennov, and Nikolai Granin
Hydrol. Earth Syst. Sci., 24, 1691–1708, https://doi.org/10.5194/hess-24-1691-2020, https://doi.org/10.5194/hess-24-1691-2020, 2020
Short summary
Short summary
We found that heat transported from Lake Baikal to its ice cover is up to 10 times higher than traditionally assumed and strongly affects the ice melting. The heat is transported by under-ice currents on the background of a strong temperature gradient between the ice base and warmer waters beneath. To parameterize this newly quantified transport mechanism, an original boundary layer model was developed. The results are crucial for understanding seasonal ice dynamics on lakes and marginal seas.
Dongsheng Su, Xiuqing Hu, Lijuan Wen, Shihua Lyu, Xiaoqing Gao, Lin Zhao, Zhaoguo Li, Juan Du, and Georgiy Kirillin
Hydrol. Earth Syst. Sci., 23, 2093–2109, https://doi.org/10.5194/hess-23-2093-2019, https://doi.org/10.5194/hess-23-2093-2019, 2019
Short summary
Short summary
In this study, freshwater lake model simulation results, verified by satellite and buoy observation data, were used to quantify recent climate change effects on the thermal regime of the largest lake in China. Results indicate that the FLake model can reproduce the lake thermal pattern nicely. The lake surface is warming, while the lake bottom has no significant trend. Climate change also caused an earlier ice-off and later ice-on, leading to an obvious change in the energy balance of the lake.
Tom Shatwell, Wim Thiery, and Georgiy Kirillin
Hydrol. Earth Syst. Sci., 23, 1533–1551, https://doi.org/10.5194/hess-23-1533-2019, https://doi.org/10.5194/hess-23-1533-2019, 2019
Short summary
Short summary
We used models to project future temperature and mixing in temperate lakes. Lakes will probably warm faster in winter than in summer, making ice less frequent and altering mixing. We found that the layers that form seasonally in lakes (ice, stratification) and water clarity affect how lakes accumulate heat. Seasonal changes in climate were thus important. This helps us better understand how different lake types respond to warming and which physical changes to expect in the future.
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Georgiy Kirillin, Ilya Aslamov, Matti Leppäranta, and Elisa Lindgren
Hydrol. Earth Syst. Sci., 22, 6493–6504, https://doi.org/10.5194/hess-22-6493-2018, https://doi.org/10.5194/hess-22-6493-2018, 2018
Short summary
Short summary
We have discovered transient appearances of strong turbulent mixing beneath the ice of an Arctic lake. Such mixing events increase heating of the ice base up to an order of magnitude and can significantly accelerate ice melting. The source of mixing was identified as oscillations of the entire lake water body triggered by strong winds over the lake surface. This previously unknown mechanism of ice melt may help understand the link between the climate conditions and the seasonal ice formation.
Peter O. Zavialov, Alexander S. Izhitskiy, Georgiy B. Kirillin, Valentina M. Khan, Boris V. Konovalov, Peter N. Makkaveev, Vadim V. Pelevin, Nikolay A. Rimskiy-Korsakov, Salmor A. Alymkulov, and Kubanychbek M. Zhumaliev
Hydrol. Earth Syst. Sci., 22, 6279–6295, https://doi.org/10.5194/hess-22-6279-2018, https://doi.org/10.5194/hess-22-6279-2018, 2018
Short summary
Short summary
This paper reports the results of field surveys conducted in Lake Issyk-Kul in 2015–2017 and compares the present-day data with the available historical records. Our data do not confirm the reports of progressive warming of the deep Issyk-Kul waters as suggested in some previous publications. However, they do indicate a positive trend of salinity in the lake’s interior over the last 3 decades. An important newly found feature is a persistent salinity maximum at depths of 70–120 m.
Peng Lu, Matti Leppäranta, Bin Cheng, Zhijun Li, Larysa Istomina, and Georg Heygster
The Cryosphere, 12, 1331–1345, https://doi.org/10.5194/tc-12-1331-2018, https://doi.org/10.5194/tc-12-1331-2018, 2018
Short summary
Short summary
It is the first time that the color of melt ponds on Arctic sea ice was quantitatively and thoroughly investigated. We answer the question of why the color of melt ponds can change and what the physical and optical reasons are that lead to such changes. More importantly, melt-pond color was provided as potential data in determining ice thickness, especially under the summer conditions when other methods such as remote sensing are unavailable.
Jonas Svensson, Johan Ström, Niku Kivekäs, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Arttu Jutila, John Backman, Aki Virkkula, Meri Ruppel, Antti Hyvärinen, Anna Kontu, Henna-Reetta Hannula, Matti Leppäranta, Rakesh K. Hooda, Atte Korhola, Eija Asmi, and Heikki Lihavainen
Atmos. Meas. Tech., 11, 1403–1416, https://doi.org/10.5194/amt-11-1403-2018, https://doi.org/10.5194/amt-11-1403-2018, 2018
Short summary
Short summary
Receding glaciers in the Himalayas are of concern. Here we present measurements of light-absorbing impurities, known to contribute to the ongoing glacier decrease, in snow from Indian Himalayas and compare them to snow samples from the Finnish Arctic. The soot particles in the snow are shown to have lower light absorbing efficiency, possibly affecting their radiative forcing potential in the snow. Further, dust influences the snow in the Himalayas to a much greater extent than in Finland.
Aleksandr F. Sabrekov, Benjamin R. K. Runkle, Mikhail V. Glagolev, Irina E. Terentieva, Victor M. Stepanenko, Oleg R. Kotsyurbenko, Shamil S. Maksyutov, and Oleg S. Pokrovsky
Biogeosciences, 14, 3715–3742, https://doi.org/10.5194/bg-14-3715-2017, https://doi.org/10.5194/bg-14-3715-2017, 2017
Short summary
Short summary
Boreal lakes and wetland ponds have pronounced impacts on the global methane cycle. During field campaigns to West Siberian lakes, strong variations in the methane flux on both local and regional scales were observed, with significant emissions from southern taiga lakes. A newly constructed process-based model helps reveal what controls this variability and on what spatial scales. Our results provide insights into the emissions and possible ways to significantly improve global carbon models.
Georgiy Kirillin, Lijuan Wen, and Tom Shatwell
Hydrol. Earth Syst. Sci., 21, 1895–1909, https://doi.org/10.5194/hess-21-1895-2017, https://doi.org/10.5194/hess-21-1895-2017, 2017
Short summary
Short summary
We report a first description of the seasonal temperature, mixing, and ice regime in the two largest freshwater lakes of the Tibetan Plateau. We perform a validation of lake model FLake for the parameterization of the Tibetan lake system in regional climate models and present evidence of the absent warming trend in the Tibetan lakes despite significant atmospheric warming. The reason for this unexpected behavior is the significant decrease in solar radiation at the surface.
Andrey Glazunov, Üllar Rannik, Victor Stepanenko, Vasily Lykosov, Mikko Auvinen, Timo Vesala, and Ivan Mammarella
Geosci. Model Dev., 9, 2925–2949, https://doi.org/10.5194/gmd-9-2925-2016, https://doi.org/10.5194/gmd-9-2925-2016, 2016
Short summary
Short summary
Large-eddy simulation (LES) and Lagrangian stochastic modeling of passive particle dispersion were applied to the scalar flux footprint determination in the stable atmospheric boundary layer. The footprint functions obtained in LES were compared with the functions calculated with the use of first-order single-particle Lagrangian stochastic models (LSMs) and zeroth-order Lagrangian stochastic models - the random displacement models (RDMs).
Victor Stepanenko, Ivan Mammarella, Anne Ojala, Heli Miettinen, Vasily Lykosov, and Timo Vesala
Geosci. Model Dev., 9, 1977–2006, https://doi.org/10.5194/gmd-9-1977-2016, https://doi.org/10.5194/gmd-9-1977-2016, 2016
Short summary
Short summary
A 1-D lake model is presented, reproducing temperature, oxygen, carbon dioxide and methane. All prognostic variables are treated in unified manner via generic 1-D transport equation. The model is validated vs. comprehensive observational data set gathered at Kuivajärvi Lake (Finland). Our results suggest that a gas transfer through thermocline under intense seiche motions is a bottleneck in quantifying greenhouse gas dynamics in dimictic lakes, calling for further research.
J. Boike, C. Georgi, G. Kirilin, S. Muster, K. Abramova, I. Fedorova, A. Chetverova, M. Grigoriev, N. Bornemann, and M. Langer
Biogeosciences, 12, 5941–5965, https://doi.org/10.5194/bg-12-5941-2015, https://doi.org/10.5194/bg-12-5941-2015, 2015
Short summary
Short summary
We show that lakes in northern Siberia are very efficient with respect to energy absorption and mixing using measurements as well as numerical modeling. We show that (i) the lakes receive substantial energy for warming from net short-wave radiation; (ii) convective mixing occurs beneath the ice cover, follow beneath the ice cover, following ice break-up, summer, and fall (iii) modeling suggests that the annual mean net heat flux across the bottom sediment boundary is approximately zero.
G. Kirillin, M. S. Lorang, T. C. Lippmann, C. C. Gotschalk, and S. Schimmelpfennig
Hydrol. Earth Syst. Sci., 19, 2605–2615, https://doi.org/10.5194/hess-19-2605-2015, https://doi.org/10.5194/hess-19-2605-2015, 2015
O. Meinander, A. Kontu, A. Virkkula, A. Arola, L. Backman, P. Dagsson-Waldhauserová, O. Järvinen, T. Manninen, J. Svensson, G. de Leeuw, and M. Leppäranta
The Cryosphere, 8, 991–995, https://doi.org/10.5194/tc-8-991-2014, https://doi.org/10.5194/tc-8-991-2014, 2014
V. M. Stepanenko, A. Martynov, K. D. Jöhnk, Z. M. Subin, M. Perroud, X. Fang, F. Beyrich, D. Mironov, and S. Goyette
Geosci. Model Dev., 6, 1337–1352, https://doi.org/10.5194/gmd-6-1337-2013, https://doi.org/10.5194/gmd-6-1337-2013, 2013
Related subject area
Discipline: Other | Subject: Freshwater Ice
Measurements of frazil ice flocs in rivers
Assessment of the impact of dam reservoirs on river ice cover – an example from the Carpathians (central Europe)
Reconstructing ice phenology of lake with complex surface cover: A case study of Lake Ulansu during 1941–2023
Forward modelling of synthetic-aperture radar (SAR) backscatter during lake ice melt conditions using the Snow Microwave Radiative Transfer (SMRT) model
A comparison of constant false alarm rate object detection algorithms for iceberg identification in L- and C-band SAR imagery of the Labrador Sea
Fusion of Landsat 8 Operational Land Imager and Geostationary Ocean Color Imager for hourly monitoring surface morphology of lake ice with high resolution in Chagan Lake of Northeast China
Tricentennial trends in spring ice break-ups on three rivers in northern Europe
Climate warming shortens ice durations and alters freeze and break-up patterns in Swedish water bodies
Sunlight penetration dominates the thermal regime and energetics of a shallow ice-covered lake in arid climate
Dam type and lake location characterize ice-marginal lake area change in Alaska and NW Canada between 1984 and 2019
River ice phenology and thickness from satellite altimetry: potential for ice bridge road operation and climate studies
Giant ice rings in southern Baikal: multi-satellite data help to study ice cover dynamics and eddies under ice
Ice roughness estimation via remotely piloted aircraft and photogrammetry
Analyses of Peace River Shallow Water Ice Profiling Sonar data and their implications for the roles played by frazil ice and in situ anchor ice growth in a freezing river
Creep and fracture of warm columnar freshwater ice
Climate change and Northern Hemisphere lake and river ice phenology from 1931–2005
Methane pathways in winter ice of a thermokarst lake–lagoon–coastal water transect in north Siberia
Continuous in situ measurements of anchor ice formation, growth, and release
Proglacial icings as records of winter hydrological processes
Investigation of spatial and temporal variability of river ice phenology and thickness across Songhua River Basin, northeast China
Observation-derived ice growth curves show patterns and trends in maximum ice thickness and safe travel duration of Alaskan lakes and rivers
Chuankang Pei, Jiaqi Yang, Yuntong She, and Mark Loewen
The Cryosphere, 18, 4177–4196, https://doi.org/10.5194/tc-18-4177-2024, https://doi.org/10.5194/tc-18-4177-2024, 2024
Short summary
Short summary
Frazil flocs are aggregates of frazil ice particles that form in supercooled water. As they grow, they rise to the river surface, contributing to ice cover formation. We measured the properties of frazil flocs in rivers for the first time using underwater imaging. We found that the floc size distributions follow a lognormal distribution and mean floc size decreases linearly as the local Reynolds number increases. Floc volume concentration has a power law correlation with the relative depth.
Maksymilian Fukś
The Cryosphere, 18, 2509–2529, https://doi.org/10.5194/tc-18-2509-2024, https://doi.org/10.5194/tc-18-2509-2024, 2024
Short summary
Short summary
This paper presents a method for determining the impact of dam reservoirs on the occurrence of ice cover on rivers downstream of their location. It was found that the operation of dam reservoirs reduces the duration of ice cover and significantly affects the ice regime of rivers. Based on the results presented, it can be assumed that dam reservoirs play an important role in transforming ice conditions on rivers.
Puzhen Huo, Peng Lu, Bin Cheng, Miao Yu, Qingkai Wang, Xuewei Li, and Zhijun Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-849, https://doi.org/10.5194/egusphere-2024-849, 2024
Short summary
Short summary
We developed a new method to retrieve lake ice phenology for the lake with a complex surface cover. The method is particularly useful for mixed-pixel satellite data. We implement this method on Lake Ulansu, a lake characterized by complex shorelines and rich aquatic plants in Northwest China. In connection with a random forest model, we reconstructed the longest lake ice phenology in China.
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024, https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
Short summary
This research focuses on the interaction between microwave signals and lake ice under wet conditions. Field data collected for Lake Oulujärvi in Finland were used to model backscatter under different conditions. The results of the modelling likely indicate that a combination of increased water content and roughness of different interfaces caused backscatter to increase. These results could help to identify areas where lake ice is unsafe for winter transportation.
Laust Færch, Wolfgang Dierking, Nick Hughes, and Anthony P. Doulgeris
The Cryosphere, 17, 5335–5355, https://doi.org/10.5194/tc-17-5335-2023, https://doi.org/10.5194/tc-17-5335-2023, 2023
Short summary
Short summary
Icebergs in open water are a risk to maritime traffic. We have compared six different constant false alarm rate (CFAR) detectors on overlapping C- and L-band synthetic aperture radar (SAR) images for the detection of icebergs in open water, with a Sentinel-2 image used for validation. The results revealed that L-band gives a slight advantage over C-band, depending on which detector is used. Additionally, the accuracy of all detectors decreased rapidly as the iceberg size decreased.
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975, https://doi.org/10.5194/tc-17-959-2023, https://doi.org/10.5194/tc-17-959-2023, 2023
Short summary
Short summary
A large-scale linear structure has repeatedly appeared on satellite images of Chagan Lake in winter, which was further verified as being ice ridges in the field investigation. We extracted the length and the angle of the ice ridges from multi-source remote sensing images. The average length was 21 141.57 ± 68.36 m. The average azimuth angle was 335.48° 141.57 ± 0.23°. The evolution of surface morphology is closely associated with air temperature, wind, and shoreline geometry.
Stefan Norrgård and Samuli Helama
The Cryosphere, 16, 2881–2898, https://doi.org/10.5194/tc-16-2881-2022, https://doi.org/10.5194/tc-16-2881-2022, 2022
Short summary
Short summary
We examined changes in the dates of ice break-ups in three Finnish rivers since the 1700s. The analyses show that ice break-ups nowadays occur earlier in spring than in previous centuries. The changes are pronounced in the south, and both rivers had their first recorded years without a complete ice cover in the 21st century. These events occurred during exceptionally warm winters and show that climate extremes affect the river-ice regime in southwest Finland differently than in the north.
Sofia Hallerbäck, Laurie S. Huning, Charlotte Love, Magnus Persson, Katarina Stensen, David Gustafsson, and Amir AghaKouchak
The Cryosphere, 16, 2493–2503, https://doi.org/10.5194/tc-16-2493-2022, https://doi.org/10.5194/tc-16-2493-2022, 2022
Short summary
Short summary
Using unique data, some dating back to the 18th century, we show a significant trend in shorter ice duration, later freeze, and earlier break-up dates across Sweden. In recent observations, the mean ice durations have decreased by 11–28 d and the chance of years with an extremely short ice cover duration (less than 50 d) have increased by 800 %. Results show that even a 1 °C increase in air temperatures can result in a decrease in ice duration in Sweden of around 8–23 d.
Wenfeng Huang, Wen Zhao, Cheng Zhang, Matti Leppäranta, Zhijun Li, Rui Li, and Zhanjun Lin
The Cryosphere, 16, 1793–1806, https://doi.org/10.5194/tc-16-1793-2022, https://doi.org/10.5194/tc-16-1793-2022, 2022
Short summary
Short summary
Thermal regimes of seasonally ice-covered lakes in an arid region like Central Asia are not well constrained despite the unique climate. We observed annual and seasonal dynamics of thermal stratification and energetics in a shallow arid-region lake. Strong penetrated solar radiation and high water-to-ice heat flux are the predominant components in water heat balance. The under-ice stratification and convection are jointly governed by the radiative penetration and salt rejection during freezing.
Brianna Rick, Daniel McGrath, William Armstrong, and Scott W. McCoy
The Cryosphere, 16, 297–314, https://doi.org/10.5194/tc-16-297-2022, https://doi.org/10.5194/tc-16-297-2022, 2022
Short summary
Short summary
Glacial lakes impact societies as both resources and hazards. Lakes form, grow, and drain as glaciers thin and retreat, and understanding lake evolution is a critical first step in assessing their hazard potential. We map glacial lakes in Alaska between 1984 and 2019. Overall, lakes grew in number and area, though lakes with different damming material (ice, moraine, bedrock) behaved differently. Namely, ice-dammed lakes decreased in number and area, a trend lost if dam type is not considered.
Elena Zakharova, Svetlana Agafonova, Claude Duguay, Natalia Frolova, and Alexei Kouraev
The Cryosphere, 15, 5387–5407, https://doi.org/10.5194/tc-15-5387-2021, https://doi.org/10.5194/tc-15-5387-2021, 2021
Short summary
Short summary
The paper investigates the performance of altimetric satellite instruments to detect river ice onset and melting dates and to retrieve ice thickness of the Ob River. This is a first attempt to use satellite altimetry for monitoring ice in the challenging conditions restrained by the object size. A novel approach permitted elaboration of the spatiotemporal ice thickness product for the 400 km river reach. The potential of the product for prediction of ice road operation was demonstrated.
Alexei V. Kouraev, Elena A. Zakharova, Andrey G. Kostianoy, Mikhail N. Shimaraev, Lev V. Desinov, Evgeny A. Petrov, Nicholas M. J. Hall, Frédérique Rémy, and Andrey Ya. Suknev
The Cryosphere, 15, 4501–4516, https://doi.org/10.5194/tc-15-4501-2021, https://doi.org/10.5194/tc-15-4501-2021, 2021
Short summary
Short summary
Giant ice rings are a beautiful and puzzling natural phenomenon. Our data show that ice rings are generated by lens-like warm eddies below the ice. We use multi-satellite data to analyse lake ice cover in the presence of eddies in April 2020 in southern Baikal. Unusual changes in ice colour may be explained by the competing influences of atmosphere above and the warm eddy below the ice. Tracking ice floes also helps to estimate eddy currents and their influence on the upper water layer.
James Ehrman, Shawn Clark, and Alexander Wall
The Cryosphere, 15, 4031–4046, https://doi.org/10.5194/tc-15-4031-2021, https://doi.org/10.5194/tc-15-4031-2021, 2021
Short summary
Short summary
This research proposes and tests new methods for the estimation of the surface roughness of newly formed river ice covers. The hypothesis sought to determine if surface ice roughness was indicative of the subsurface. Ice roughness has consequences for winter flow characteristics of rivers and can greatly impact river ice jams. Remotely piloted aircraft and photogrammetry were used, and good correlation was found between the observed surface ice roughness and estimated subsurface ice roughness.
John R. Marko and David R. Topham
The Cryosphere, 15, 2473–2489, https://doi.org/10.5194/tc-15-2473-2021, https://doi.org/10.5194/tc-15-2473-2021, 2021
Short summary
Short summary
Acoustic backscattering data from Peace River frazil events are interpreted to develop a quantitative model of interactions between ice particles in the water column and riverbed ice layers. Two generic behaviours, evident in observed time variability, are linked to differences in the relative stability of in situ anchor ice layers which develop at the beginning of each frazil interval and are determined by cooling rates. Changes in these layers are shown to control water column frazil content.
Iman E. Gharamti, John P. Dempsey, Arttu Polojärvi, and Jukka Tuhkuri
The Cryosphere, 15, 2401–2413, https://doi.org/10.5194/tc-15-2401-2021, https://doi.org/10.5194/tc-15-2401-2021, 2021
Short summary
Short summary
We study the creep and fracture behavior of 3 m × 6 m floating edge-cracked rectangular plates of warm columnar freshwater S2 ice under creep/cyclic-recovery loading and monotonic loading to fracture. Under the testing conditions, the ice response was elastic–viscoplastic; no significant viscoelasticity or major recovery was detected. There was no clear effect of the creep/cyclic loading on the fracture properties: failure load and crack opening displacements at crack growth initiation.
Andrew M. W. Newton and Donal J. Mullan
The Cryosphere, 15, 2211–2234, https://doi.org/10.5194/tc-15-2211-2021, https://doi.org/10.5194/tc-15-2211-2021, 2021
Short summary
Short summary
This paper investigates changes in the dates of ice freeze-up and breakup for 678 Northern Hemisphere lakes and rivers from 1931–2005. From 3510 time series, the results show that breakup dates have gradually occurred earlier through time, whilst freeze-up trends have tended to be significantly more variable. These data combined show that the number of annual open-water days has increased through time for most sites, with the magnitude of change at its largest in more recent years.
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021, https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
Short summary
Thermokarst lakes are common on ice-rich permafrost. Many studies have shown that they are sources of methane to the atmosphere. Although they are usually covered by ice, little is known about what happens to methane in winter. We studied how much methane is contained in the ice of a thermokarst lake, a thermokarst lagoon and offshore. Methane concentrations differed strongly, depending on water body type. Microbes can also oxidize methane in ice and lower the concentrations during winter.
Tadros R. Ghobrial and Mark R. Loewen
The Cryosphere, 15, 49–67, https://doi.org/10.5194/tc-15-49-2021, https://doi.org/10.5194/tc-15-49-2021, 2021
Short summary
Short summary
Anchor ice typically forms on riverbeds during freeze-up and can alter the river ice regime. Most of the knowledge on anchor ice mechanisms has been attributed to lab experiments. This study presents for the first time insights into anchor ice initiation, growth, and release in rivers using an underwater camera system. Three stages of growth and modes of release have been identified. These results will improve modelling capabilities in predicting the effect of anchor ice on river ice regimes.
Anna Chesnokova, Michel Baraër, and Émilie Bouchard
The Cryosphere, 14, 4145–4164, https://doi.org/10.5194/tc-14-4145-2020, https://doi.org/10.5194/tc-14-4145-2020, 2020
Short summary
Short summary
In the context of a ubiquitous increase in winter discharge in cold regions, our results show that icing formations can help overcome the lack of direct observations in these remote environments and provide new insights into winter runoff generation. The multi-technique approach used in this study provided important information about the water sources active during the winter season in the headwaters of glacierized catchments.
Qian Yang, Kaishan Song, Xiaohua Hao, Zhidan Wen, Yue Tan, and Weibang Li
The Cryosphere, 14, 3581–3593, https://doi.org/10.5194/tc-14-3581-2020, https://doi.org/10.5194/tc-14-3581-2020, 2020
Short summary
Short summary
Using daily ice records of 156 hydrological stations across Songhua River Basin, we examined the spatial variability in the river ice phenology and river ice thickness from 2010 to 2015 and explored the role of snow depth and air temperature on the ice thickness. Snow cover correlated with ice thickness significantly and positively when the freshwater was completely frozen. Cumulative air temperature of freezing provides a better predictor than the air temperature for ice thickness modeling.
Christopher D. Arp, Jessica E. Cherry, Dana R. N. Brown, Allen C. Bondurant, and Karen L. Endres
The Cryosphere, 14, 3595–3609, https://doi.org/10.5194/tc-14-3595-2020, https://doi.org/10.5194/tc-14-3595-2020, 2020
Short summary
Short summary
River and lake ice thickens at varying rates geographically and from year to year. We took a closer look at ice growth across a large geographic region experiencing rapid climate change, the State of Alaska, USA. Slower ice growth was most pronounced in northern Alaskan lakes over the last 60 years. Western and interior Alaska ice showed more variability in thickness and safe travel duration. This analysis provides a comprehensive evaluation of changing freshwater ice in Alaska.
Cited articles
Bai, Q. X., Li, R. L., Li, Z. J., Leppäranta, M., Arvola, L., and Li, M.:
Time-series analyses of water temperature and dissolved oxygen concentration
in Lake Valkea-Kotinen (Finland) during ice season, Ecol. Inform., 36,
181–189, https://doi.org/10.1016/j.ecoinf.2015.06.009, 2016.
Brown, L. C. and Duguay, C. R.: The fate of lake ice in the North American Arctic, The Cryosphere, 5, 869–892, https://doi.org/10.5194/tc-5-869-2011, 2011.
Cao, X. W., Lu, P., Leppäranta, M., Arvola, L., Huotari, J., Shi, X. H.,
Li, G. Y., and Li, Z. J.: Solar radiation transfer for an ice-covered lake in
the central Asian arid climate zone, Inland Waters, 11, 89–103, https://doi.org/10.1080/20442041.2020.1790274, 2020.
Dai, Y. J., Wei, N., Huang, A. N., Zhu, S. G., Shangguan, W., Yuan, H.,
Zhang, S. P., and Liu, S. F.: The lake scheme of the Common Land Model and
its performance evaluation, Chinese Sci. Bull., 63, 3002–3021, https://doi.org/10.1360/n972018-00609, 2018 (in Chinese).
Dauginis, A. A. and Brown, L. C.: Recent changes in pan-Arctic sea ice, lake ice, and snow-on/off timing, The Cryosphere, 15, 4781–4805, https://doi.org/10.5194/tc-15-4781-2021, 2021.
Dokulil, M. T.: Predicting summer surface water temperatures for large
Austrian lakes in 2050 under climate change scenarios, Hydrobiologia, 731,
19–29, https://doi.org/10.1007/s10750-013-1550-5, 2013.
Donlon, C. J., Minnett, P. J., Gentemann, C., Nightingale, T. J., Barton, I.
J., Ward, B., and Murray, M. J.: Toward improved validation of satellite sea
surface skin temperature measurements for climate research, J. Climate, 15,
353–369, https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2, 2002.
Efremova, T., Palshin, N., and Zdorovennov, R.: Long-term characteristics of
ice phenology in Karelian lakes, Est. J. Earth Sci., 62, 33–41, https://doi.org/10.3176/earth.2013.04, 2013.
Fang, N., Yang, K., Lazhu, Chen, Y. Y., Wang, J. B., and Zhu, L. P.: Research
on the application of WRF-lake Modeling at Nam Co Lake on the
Qinghai-Tibetan Plateau, Plateau Meteorology, 36, 610–618, 2017.
Fang, X. and Stefan, H. G.: Long-term lake water temperature and ice cover
simulations/measurements, Cold. Reg. Sci. Technol., 24, 289–304, 1996.
Gan, G. J. and Liu, Y. B.: Heat storage effect on evaporation estimates of
China's largest freshwater lake, J. Geophys. Res.-Atmos., 125, e2019JD032334, https://doi.org/10.1029/2019jd032334, 2020.
Grant, L.,Vanderkelen, I., Gudmundsson, L., Tan, Z., Perroud, M.,
Stepanenko, V., Debolskiy, A. V., Droppers, B., Janssen, A. B., Woolway, R.
I., Choulga, M., Balsamo, G., Kirillin, G., Schewe, J., Zhao, F., Valle, I.
V., Golub, M., Pierson, D., Marcé, R., Seneviratne, S. I., and Thiery,
W.: Attribution of global lake systems change to anthropogenic forcing, Nat.
Geosci., 14, 849–854, https://doi.org/10.1038/s41561-021-00833-x, 2021.
Guseva, S., Stepanenko, V., Shurpali, N., Biasi, C., Marushchak, M. E., and
Lind, S. E.: Numerical simulation of methane emission from Subarctic Lake in
Komi Republic (Russia), Geography, Environment, Sustainability, 9, 58–74,
https://doi.org/10.15356/2071-9388_02v09_2016_05, 2016.
Hardenbicker, P., Viergutz, C., Becker, A., Kirchesch, V., Nilson, E., and
Fischer, H.: Water temperature increases in the river Rhine in response to
climate change, Reg. Environ. Change, 17, 299–308, https://doi.org/10.1007/s10113-016-1006-3, 2016.
Heiskanen, J. J., Mammarella, I., Ojala, A., Stepanenko, V., Erkkilä, K.
M., Miettinen, H., Sandström, H., Eugster, W., Leppäranta, M.,
Järvinen, H., Vesala, T., and Nordbo, A.: Effects of water clarity on
lake stratification and lake-atmosphere heat exchange, J. Geophys. Res.-Atmos., 120,
7412–7428, https://doi.org/10.1002/2014jd022938, 2015.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Huang, A. N., Lazhu, Wang, J. B., Dai, Y. J., Yang, K., Wei, N., Wen, L. J.,
Wu, Y., Zhu, X. Y., Zhang, X. D., and Cai, S. X.: Evaluating and improving
the performance of three 1-D lake models in a large deep lake of the central
Tibetan Plateau, J. Geophys. Res.-Atmos., 124, 3143–3167, https://doi.org/10.1029/2018JD029610,
2019.
Kirillin, G. B., Leppäranta, M., Terzhevik, A., Granin, N., Bernhardt,
J., Engelhardt, C., Efremova, T., Golosov, S., Palshin, N., Sherstyankin,
P., Zdorovennova, G., and Zdorovennov, R: Physics of seasonally ice-covered
lakes: a review, Aquat. Sci., 74, 659–682, https://doi.org/10.1007/s00027-012-0279-y,
2012.
Kirillin, G. B., Forrest, A. L., Graves, K. E., Fischer, A., Engelhardt, C.,
and Laval, B. E.: Axisymmetric circulation driven by marginal heating in
ice-covered lakes, Geophys. Res. Lett., 42, 2893–2900, https://doi.org/10.1002/2014gl062180, 2015.
Kirillin, G., Wen, L., and Shatwell, T.: Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands, Hydrol. Earth Syst. Sci., 21, 1895–1909, https://doi.org/10.5194/hess-21-1895-2017, 2017.
Kirillin, G., Aslamov, I., Leppäranta, M., and Lindgren, E.: Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations, Hydrol. Earth Syst. Sci., 22, 6493–6504, https://doi.org/10.5194/hess-22-6493-2018, 2018.
Kirillin, G., Aslamov, I., Kozlov, V., Zdorovennov, R., and Granin, N.: Turbulence in the stratified boundary layer under ice: observations from Lake Baikal and a new similarity model, Hydrol. Earth Syst. Sci., 24, 1691–1708, https://doi.org/10.5194/hess-24-1691-2020, 2020.
Kirillin, G. B., Shatwell, T., and Wen, L. J.: Ice-covered lakes of Tibetan
Plateau as solar heat collectors, Geophys. Res. Lett., 48, e2021GL093429, https://doi.org/10.1029/2021gl093429, 2021a.
Kirillin, G., Shatwell, T., and Wen, L.: Data on under-ice temperatures and solar radiation in Lake Ngoring (Qinghai-Tibet), Zenodo [data set], https://doi.org/10.5281/zenodo.4750910, 2021b.
Lazhu, Yang, K., Wang, J. B., Lei, Y. B., Chen, Y. Y., Zhu, L. P., Ding, B. H., and Qin, J.: Quantifying evaporation and its decadal change for Lake Nam Co, central
Tibetan Plateau, J. Geophys. Res., 121, 7578–7591,
https://doi.org/10.1002/2015jd024523, 2016.
Lazhu, Yang, K., Hou, J. Z., Wang, J. B., Lei, Y. B., Zhu, L. P., Chen, Y. Y., Wang, M. D., and He, X. G.: A new finding on the prevalence of rapid water warming durinig lake ice melting on the Tibetan Plateau, Sci. Bull., 66, 2358–2361, https://doi.org/10.1016/j.scib.2021.07.022, 2021.
Lei, R. B., Leppäranta, M., Erm, A., Jaatinen, E., and Pärn, O.:
Field investigations of apparent optical properties of ice cover in Finnish
and Estonian lakes in winter 2009, Est. J. Earth Sci., 60, 50–64, https://doi.org/10.3176/earth.2011.1.05, 2011.
Leppäranta, M.: Freezing of lakes and the evolution of their ice cover, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-29081-7, 2015.
Leppäranta, M., Lindgren, E., and Shirasawa, K.: The heat budget of Lake
Kilpisjärvi in the Arctic tundra, Hydrol. Res., 48, 969–980, https://doi.org/10.2166/nh.2016.171, 2017.
Leppäranta, M., Lindgren, E., Wen, L. J., and Kirillin, G.: Ice cover
decay and heat balance in Lake Kilpisjärvi in Arctic tundra, J. Limnol.,
78, 163–175, https://doi.org/10.4081/jlimnol.2019.1879, 2019.
Li, G. C., Liu, Z. G., Zhang, M., Li, J., Pi, K., Xiong, Y., and Xu, J.: A
preliminary study of effects of warming on the nutrients dynamic in sediment
of hypereutrophic shallow lake, Acta Ecologica Sinica, 35, 4016–4025, https://doi.org/10.5846/stxb201309102244, 2015.
Li, Z. G., Lyu, S. H., Ao, Y. H., Wen, L. J., Zhao, L., and Wang, S. Y.:
Long-term energy flux and radiation balance observations over Lake Ngoring,
Tibetan Plateau, Atmos. Res., 155, 13–25, https://doi.org/10.1016/j.atmosres.2014.11.019,
2015.
Li, Z. G., Ao, Y. H., Lyu, S. H., Lang, J. H., Wen, L. J., Stepanenko, V.,
Meng, X. H., and Zhao, L.: Investigation of the ice surface albedo in the
Tibetan Plateau lakes based on the field observation and MODIS products, J.
Glaciol., 64, 506–516, https://doi.org/10.1017/jog.2018.35, 2018.
Li, Z. G., Lyu, S. H., Wen, L. J., Zhao, L., Ao, Y. H., and Meng, X. H.:
Study of freeze-thaw cycle and key radiation transfer parameters in a
Tibetan Plateau lake using LAKE2.0 model and field observations, J. Glaciol.,
67, 91–106, https://doi.org/10.1017/jog.2020.87, 2020.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Nordbo, A., Launiainen, S., Mammarella, I., Leppäranta, M., Huotari, J.,
Ojala, A., and Vesala, T.: Long-term energy flux measurements and energy
balance over a small boreal lake using eddy covariance technique, J.
Geophys. Res.-Atmos., 116, D02119, https://doi.org/10.1029/2010jd014542, 2011.
Ramp, C., Delarue, J., Palsboll, P. J., Sears, R., and Hammond, P. S.:
Adapting to a warmer ocean–seasonal shift of baleen whale movements over
three decades, PLoS One, 10, e0121374, https://doi.org/10.1371/journal.pone.0121374, 2015.
Rösner, R. R., Müller-Navarra, D. C., and Zorita, E.: Trend analysis
of weekly temperatures and oxygen concentrations during summer
stratification in Lake Plußsee: A long-term study, Limnol. Oceanogr.,
57, 1479–1491, https://doi.org/10.4319/lo.2012.57.5.1479, 2012.
Shang, Y. X., Song, K. S., Jiang, P., Ma, J. H., Wen, Z. D., and Zhao, Y.:
Optical absorption properties and diffuse attenuation of photosynthetic
active radiation for inland waters across the Tibetan Plateau, Journal of
Lake Sciences, 30, 802–811, https://doi.org/10.18307/2018.0322, 2018.
Sharma, S., Blagrave, K., Magnuson, J. J., O'Reilly, C. M., Oliver, S.,
Batt, R. D., Magee, M. R., Winslow, L., and Woolway, R. I.: Widespread loss
of lake ice around the Northern Hemisphere in a warming world, Nat. Clim.
Change, 9, 227–231, https://doi.org/10.1038/s41558-018-0393-5, 2019.
Sharma, S., Meyer, M. F., Culpepper, J., Yang, X., Hampton, S., Berger, S.
A., Brousil, M. R., Fradkin, S. C., Higgins, S. N., Jankowski, K. J.,
Kirillin, G., Smits, A. P., Whitaker, E. C., Yousef, F., and Zhang, S.:
Integrating perspectives to understand lake ice dynamics in a changing
world, J. Geophys. Res.-Biogeo., 125, e2020JG005799, https://doi.org/10.1029/2020jg005799,
2020.
Shen, D. F., Li, S. J., Jiang, Y. J., and Chen, W.: Water environment
characteristics and regional climate response of typical lakes in Yellow
River headwater area, J. Arid Environ., 26, 91–97, https://doi.org/10.13448/j.cnki.jalre.2012.07.030, 2012.
Song, X. Y., Wen, L. J., Li, M. S., Du, J., Su, D. S., Yin, S. C., and Lv,
Z.: Comparative study on applicability of different lake models to typical
lakes in Qinghai-Tibetan Plateau, Plateau Meteorology, 39, 213–225, 2020.
Stepanenko, V.: LAKE (2.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6353238, 2022.
Stepanenko, V. and Lykossov, V. N.: Numerical modeling of heat and moisture
transfer processes in a system lake soil, Russ. Meteorol. Hydrol., 3,
95–104, 2005.
Stepanenko, V., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., and Vesala, T.: LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes, Geosci. Model Dev., 9, 1977–2006, https://doi.org/10.5194/gmd-9-1977-2016, 2016.
Stepanenko, V., Machul'skaya, E. E., Glagolev, M. V., and Lykossov, V. N.:
Numerical modeling of methane emissions from lakes in the permafrost zone,
Izv. Atmos. Ocean. Phy.+, 47, 252–264, https://doi.org/10.1134/s0001433811020113, 2011.
Stepanenko, V., Repina, I. A., Ganbat, G., and Davaa, G.: Numerical
simulation of ice cover of saline lakes, Izv. Atmos. Ocean. Phy.+, 55,
129–138, https://doi.org/10.1134/s0001433819010092, 2019.
Tavares, M., Cunha, A., Motta-Marques, D., Ruhoff, A., Cavalcanti, J.,
Fragoso, C., Martín Bravo, J., Munar, A., Fan, F., and Rodrigues, L.:
Comparison of methods to estimate Lake-Surface-Water temperature using
Landsat 7 ETM+ and MODIS imagery: Case study of a large shallow
subtropical lake in Southern Brazil, Water, 11, 168, https://doi.org/10.3390/w11010168, 2019.
Tolonen, A.: Application of a bioenergetics model for analysis of growth and
food consumption of subarctic whitefish Coregonus lavaretus (L.) in Lake
Kilpisjärvi, Finnish Lapland, Hydrobiologia, 390, 153–169, https://doi.org/10.1023/A:1003525008870, 1998.
Wan, W., Long, D., Hong, Y., Ma, Y. Z., Yuan, Y., Xiao, P. F., Duan, H. T.,
Han, Z. Y., and Gu, X. F.: A lake data set for the Tibetan Plateau from the
1960s, 2005, and 2014, Sci. Data., 3, 160039, https://doi.org/10.1038/sdata.2016.39,
2016.
Wan, Z., Zhang, Y., Zhang, Q., and Li, Z. L.: Quality assessment and
validation of the MODIS global land surface temperature, Int. J. Remote Sens.,
25, 261–274, https://doi.org/10.1080/0143116031000116417, 2004.
Wang, M. D., Hou, J. Z., and Lei, Y. B.: Classification of Tibetan lakes
based on variations in seasonal lake water temperature, Chinese Sci.
Bull., 59, 4847–4855, https://doi.org/10.1007/s11434-014-0588-8, 2014.
Wang, M. X.: TC-data-Mechanisms and effects of under-ice warming water in Ngoring Lake of Qinghai-Tibet Plateau, IGB IceTMP [data set], https://nimbus.igb-berlin.de/index.php/s/Moqxgn29DbNFyr8, last access: 27 August 2022.
Wang, M. X., Wen, L. J., Li, Z. G., and Su, D. S.: Study on the warming
characteristics during the ice-covered period of Ngoring Lake in the
Qinghai-Xizang Plateau, Plateau Meteorology, 40, 965–976, 2021.
Weitere, M., Vohmann, A., Schulz, N., Linn, C., Dietrich, D., and Arndt, H.:
Linking environmental warming to the fitness of the invasive clamCorbicula
fluminea, Global Change Biol., 15, 2838–2851, https://doi.org/10.1111/j.1365-2486.2009.01925.x, 2010.
Wen, L. J., Lyu, S. H., Kirillin, G., Li, Z. G., and Zhao, L.: Air–lake
boundary layer and performance of a simple lake parameterization scheme over
the Tibetan highlands, Tellus A, 68, 31091, https://doi.org/10.3402/tellusa.v68.31091,
2016.
Wen, L. J., Wang, C., Li, Z. G., Zhao, L., Lyu, S. H., and Chen, S. Q.:
Thermal responses of the largest freshwater lake in the Tibetan Plateau and
its nearby saline lake to climate change, Remote Sens., 14, 1774, https://doi.org/10.3390/rs14081774, 2022.
Wu, Y., Huang, A. N., Lu, Y. Y., Lazhu, Yang, X. Y., Qiu, B., Zhang, Z. Q., and Zhang, X. D.: Numerical study of the thermal structure and circulation in a large
and deep dimictic lake over Tibetan Plateau, J. Geophys. Res.-Oceans, 126,
e2021JC017517, https://doi.org/10.1029/2021jc017517, 2021.
Yang, B., Wells, M. G., McMeans, B. C., Dugan, H. A., Rusak, J. A.,
Weyhenmeyer, G. A., Brentrup, J. A., Hrycik, A. R., Laas, A., Pilla, R. M.,
Austin, J. A., Blanchfield, P. J., Carey, C. C., Guzzo, M. M., Lottig, N.
R., MacKay, M. D., Middel, T. A., Pierson, D. C., Wang, J., and Young, J. D.:
A new thermal categorization of ice-covered lakes, Geophys. Res. Lett., 48,
e2020GL091374, https://doi.org/10.1029/2020gl091374, 2021.
Zhang, G. Q., Luo, W., Chen, W. F., and Zheng, G. X.: A robust but variable
lake expansion on the Tibetan Plateau, Sci. Bull., 64, 1306–1309, https://doi.org/10.1016/j.scib.2019.07.018, 2019.
Zolfaghari, K., Duguay, C. R., and Kheyrollah Pour, H.: Satellite-derived light extinction coefficient and its impact on thermal structure simulations in a 1-D lake model, Hydrol. Earth Syst. Sci., 21, 377–391, https://doi.org/10.5194/hess-21-377-2017, 2017.
Short summary
The under-ice water temperature of Ngoring Lake has been rising based on in situ observations. We obtained results showing that strong downward shortwave radiation is the main meteorological factor, and precipitation, wind speed, downward longwave radiation, air temperature, ice albedo, and ice extinction coefficient have an impact on the range and rate of lake temperature rise. Once the ice breaks, the lake body releases more energy than other lakes, whose water temperature remains horizontal.
The under-ice water temperature of Ngoring Lake has been rising based on in situ observations....