Articles | Volume 16, issue 9
https://doi.org/10.5194/tc-16-3575-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-3575-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Persistent, extensive channelized drainage modeled beneath Thwaites Glacier, West Antarctica
Department of Earth Sciences, University of Oregon, Eugene, OR, USA
Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
Matthew J. Hoffman
Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
Stephen F. Price
Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
Dustin M. Schroeder
Department of Electrical Engineering, Stanford University, Stanford, CA, USA
Department of Geophysics, Stanford University, Stanford, CA, USA
Related authors
Alexander O. Hager, David A. Sutherland, and Donald A. Slater
The Cryosphere, 18, 911–932, https://doi.org/10.5194/tc-18-911-2024, https://doi.org/10.5194/tc-18-911-2024, 2024
Short summary
Short summary
Warming ocean temperatures cause considerable ice loss from the Greenland Ice Sheet; however climate models are unable to resolve the complex ocean processes within fjords that influence near-glacier ocean temperatures. Here, we use a computer model to test the accuracy of assumptions that allow climate and ice sheet models to project near-glacier ocean temperatures, and thus glacier melt, into the future. We then develop new methods that improve accuracy by accounting for local ocean processes.
Tim Hill, Derek Bingham, Gwenn E. Flowers, and Matthew J. Hoffman
EGUsphere, https://doi.org/10.22541/essoar.172736254.41350153/v2, https://doi.org/10.22541/essoar.172736254.41350153/v2, 2024
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Subglacial drainage models represent water flow beneath glaciers and ice sheets. Here, we train fast statistical models called Gaussian Process emulators to accelerate subglacial drainage modelling by ~1000 times. We use the fast emulator predictions to show that three of the model parameters are responsible for >90 % of the variance in model outputs. The fast GP emulators will enable future uncertainty quantification and calibration of these models.
Sanket Jantre, Matthew J. Hoffman, Nathan M. Urban, Trevor Hillebrand, Mauro Perego, Stephen Price, and John D. Jakeman
The Cryosphere, 18, 5207–5238, https://doi.org/10.5194/tc-18-5207-2024, https://doi.org/10.5194/tc-18-5207-2024, 2024
Short summary
Short summary
We investigate potential sea-level rise from Antarctica's Lambert Glacier, once considered stable but now at risk due to projected ocean warming by 2100. Using statistical methods and limited supercomputer simulations, we calibrated our ice-sheet model using three observables. We find that, under high greenhouse gas emissions, glacier retreat could raise sea levels by 46–133 mm by 2300. This study highlights the need for better observations to reduce uncertainty in ice-sheet model projections.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Irena Vaňková, Xylar Asay-Davis, Carolyn Branecky Begeman, Darin Comeau, Alexander Hager, Matthew Hoffman, Stephen F. Price, and Jonathan Wolfe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2297, https://doi.org/10.5194/egusphere-2024-2297, 2024
Short summary
Short summary
We study the effect of subglacial discharge on basal melting for Antarctic Ice Shelves. We find that the results from previous studies of vertical ice fronts and two-dimensional ice tongues do not translate to the rotating ice-shelf framework. The melt rate dependence on discharge is stronger in the rotating framework. Further, there is a substantial melt-rate sensitivity to the location of the discharge along the grounding line relative to the directionality of the Coriolis force.
Nanna B. Karlsson, Dustin M. Schroeder, Louise Sandberg Sørensen, Winnie Chu, Jørgen Dall, Natalia H. Andersen, Reese Dobson, Emma J. Mackie, Simon J. Köhn, Jillian E. Steinmetz, Angelo S. Tarzona, Thomas O. Teisberg, and Niels Skou
Earth Syst. Sci. Data, 16, 3333–3344, https://doi.org/10.5194/essd-16-3333-2024, https://doi.org/10.5194/essd-16-3333-2024, 2024
Short summary
Short summary
In the 1970s, more than 177 000 km of observations were acquired from airborne radar over the Greenland ice sheet. The radar data contain information on not only the thickness of the ice, but also the properties of the ice itself. This information was recorded on film rolls and subsequently stored. In this study, we document the digitization of these film rolls that shed new and unprecedented detailed light on the Greenland ice sheet 50 years ago.
John D. Jakeman, Mauro Perego, D. Thomas Seidl, Tucker A. Hartland, Trevor R. Hillebrand, Matthew J. Hoffman, and Stephen F. Price
EGUsphere, https://doi.org/10.5194/egusphere-2024-2209, https://doi.org/10.5194/egusphere-2024-2209, 2024
Short summary
Short summary
This study investigated the computational benefits of using multiple models of varying cost and accuracy to quantify uncertainty in the mass change of Humboldt Glacier, Greenland, between 2007 and 2100 using a single climate change scenario. Despite some models being incapable of capturing the local features of the ice flow fields, using multiple models reduced the error in the estimated statistics by over an order of magnitude when compared to an approach that only used a single accurate model.
Matthew J. Hoffman, Carolyn Branecky Begeman, Xylar S. Asay-Davis, Darin Comeau, Alice Barthel, Stephen F. Price, and Jonathan D. Wolfe
The Cryosphere, 18, 2917–2937, https://doi.org/10.5194/tc-18-2917-2024, https://doi.org/10.5194/tc-18-2917-2024, 2024
Short summary
Short summary
The Filchner–Ronne Ice Shelf in Antarctica is susceptible to the intrusion of deep, warm ocean water that could increase the melting at the ice-shelf base by a factor of 10. We show that representing this potential melt regime switch in a low-resolution climate model requires careful treatment of iceberg melting and ocean mixing. We also demonstrate a possible ice-shelf melt domino effect where increased melting of nearby ice shelves can lead to the melt regime switch at Filchner–Ronne.
Alexander O. Hager, David A. Sutherland, and Donald A. Slater
The Cryosphere, 18, 911–932, https://doi.org/10.5194/tc-18-911-2024, https://doi.org/10.5194/tc-18-911-2024, 2024
Short summary
Short summary
Warming ocean temperatures cause considerable ice loss from the Greenland Ice Sheet; however climate models are unable to resolve the complex ocean processes within fjords that influence near-glacier ocean temperatures. Here, we use a computer model to test the accuracy of assumptions that allow climate and ice sheet models to project near-glacier ocean temperatures, and thus glacier melt, into the future. We then develop new methods that improve accuracy by accounting for local ocean processes.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023, https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary
Short summary
We find that E3SM-HR reproduces the main features of the Antarctic coastal polynyas. Despite the high amount of coastal sea ice production, the densest water masses are formed in the open ocean. Biases related to the lack of dense water formation are associated with overly strong atmospheric polar easterlies. Our results indicate that the large-scale polar atmospheric circulation must be accurately simulated in models to properly reproduce Antarctic dense water formation.
Mira Berdahl, Gunter Leguy, William H. Lipscomb, Nathan M. Urban, and Matthew J. Hoffman
The Cryosphere, 17, 1513–1543, https://doi.org/10.5194/tc-17-1513-2023, https://doi.org/10.5194/tc-17-1513-2023, 2023
Short summary
Short summary
Contributions to future sea level from the Antarctic Ice Sheet remain poorly constrained. One reason is that ice sheet model initialization methods can have significant impacts on how the ice sheet responds to future forcings. We investigate the impacts of two key parameters used during model initialization. We find that these parameter choices alone can impact multi-century sea level rise by up to 2 m, emphasizing the need to carefully consider these choices for sea level rise predictions.
Trevor R. Hillebrand, Matthew J. Hoffman, Mauro Perego, Stephen F. Price, and Ian M. Howat
The Cryosphere, 16, 4679–4700, https://doi.org/10.5194/tc-16-4679-2022, https://doi.org/10.5194/tc-16-4679-2022, 2022
Short summary
Short summary
We estimate that Humboldt Glacier, northern Greenland, will contribute 5.2–8.7 mm to global sea level in 2007–2100, using an ensemble of model simulations constrained by observations of glacier retreat and speedup. This is a significant fraction of the 40–140 mm from the whole Greenland Ice Sheet predicted by the recent ISMIP6 multi-model ensemble, suggesting that calibrating models against observed velocity changes could result in higher estimates of 21st century sea-level rise from Greenland.
Julie Z. Miller, Riley Culberg, David G. Long, Christopher A. Shuman, Dustin M. Schroeder, and Mary J. Brodzik
The Cryosphere, 16, 103–125, https://doi.org/10.5194/tc-16-103-2022, https://doi.org/10.5194/tc-16-103-2022, 2022
Short summary
Short summary
We use L-band brightness temperature imagery from NASA's Soil Moisture Active Passive (SMAP) satellite to map the extent of perennial firn aquifer and ice slab areas within the Greenland Ice Sheet. As Greenland's climate continues to warm and seasonal surface melting increases in extent, intensity, and duration, quantifying the possible rapid expansion of perennial firn aquifers and ice slab areas has significant implications for understanding the stability of the Greenland Ice Sheet.
Marie G. P. Cavitte, Duncan A. Young, Robert Mulvaney, Catherine Ritz, Jamin S. Greenbaum, Gregory Ng, Scott D. Kempf, Enrica Quartini, Gail R. Muldoon, John Paden, Massimo Frezzotti, Jason L. Roberts, Carly R. Tozer, Dustin M. Schroeder, and Donald D. Blankenship
Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021, https://doi.org/10.5194/essd-13-4759-2021, 2021
Short summary
Short summary
We present a data set consisting of ice-penetrating-radar internal stratigraphy: 26 internal reflecting horizons that cover the greater Dome C area, East Antarctica, the most extensive IRH data set to date in the region. This data set uses radar surveys collected over the span of 10 years, starting with an airborne international collaboration in 2008 to explore the region, up to the detailed ground-based surveys in support of the European Beyond EPICA – Oldest Ice (BE-OI) project.
Tun Jan Young, Carlos Martín, Poul Christoffersen, Dustin M. Schroeder, Slawek M. Tulaczyk, and Eliza J. Dawson
The Cryosphere, 15, 4117–4133, https://doi.org/10.5194/tc-15-4117-2021, https://doi.org/10.5194/tc-15-4117-2021, 2021
Short summary
Short summary
If the molecules that make up ice are oriented in specific ways, the ice becomes softer and enhances flow. We use radar to measure the orientation of ice molecules in the top 1400 m of the Western Antarctic Ice Sheet Divide. Our results match those from an ice core extracted 10 years ago and conclude that the ice flow has not changed direction for the last 6700 years. Our methods are straightforward and accurate and can be applied in places across ice sheets unsuitable for ice coring.
Tong Zhang, Stephen F. Price, Matthew J. Hoffman, Mauro Perego, and Xylar Asay-Davis
The Cryosphere, 14, 3407–3424, https://doi.org/10.5194/tc-14-3407-2020, https://doi.org/10.5194/tc-14-3407-2020, 2020
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Adam M. Schneider, Charles S. Zender, and Stephen F. Price
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-247, https://doi.org/10.5194/gmd-2020-247, 2020
Preprint withdrawn
Short summary
Short summary
We enhance the Energy Exascale Earth System Model's land
component (ELM) to better represent multi-year snow (firn) on ice sheets. Our
developments reveal ELM deficiencies regarding firn density, a fundamental
property in glaciology. To improve firn density profiles, we fine tune
ELM's snowpack parameters using statistical modeling. Our findings demonstrate
how ELM can simulate both seasonal snow and firn on ice sheets and advance a
broader effort to better predict sea level rise.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Michael A. Cooper, Thomas M. Jordan, Dustin M. Schroeder, Martin J. Siegert, Christopher N. Williams, and Jonathan L. Bamber
The Cryosphere, 13, 3093–3115, https://doi.org/10.5194/tc-13-3093-2019, https://doi.org/10.5194/tc-13-3093-2019, 2019
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Short summary
We compare a wide range of Antarctic ice sheet simulations with varying initialization techniques and model parameters to understand the role they play on the projected evolution of this ice sheet under simple scenarios. Results are improved compared to previous assessments and show that continued improvements in the representation of the floating ice around Antarctica are critical to reduce the uncertainty in the future ice sheet contribution to sea level rise.
Katherine J. Evans, Joseph H. Kennedy, Dan Lu, Mary M. Forrester, Stephen Price, Jeremy Fyke, Andrew R. Bennett, Matthew J. Hoffman, Irina Tezaur, Charles S. Zender, and Miren Vizcaíno
Geosci. Model Dev., 12, 1067–1086, https://doi.org/10.5194/gmd-12-1067-2019, https://doi.org/10.5194/gmd-12-1067-2019, 2019
Short summary
Short summary
A robust validation of ice sheet models is presented using LIVVkit, version 2.1. It targets ice sheet and coupled Earth system models, and handles datasets and operations that require high-performance computing and storage. We apply LIVVkit to a Greenland ice sheet simulation to show the degree to which it captures the surface mass balance. LIVVkit identifies a positive bias due to insufficient melting compared to observations that is focused largely around Greenland's southwest region.
William H. Lipscomb, Stephen F. Price, Matthew J. Hoffman, Gunter R. Leguy, Andrew R. Bennett, Sarah L. Bradley, Katherine J. Evans, Jeremy G. Fyke, Joseph H. Kennedy, Mauro Perego, Douglas M. Ranken, William J. Sacks, Andrew G. Salinger, Lauren J. Vargo, and Patrick H. Worley
Geosci. Model Dev., 12, 387–424, https://doi.org/10.5194/gmd-12-387-2019, https://doi.org/10.5194/gmd-12-387-2019, 2019
Short summary
Short summary
This paper describes the Community Ice Sheet Model (CISM) version 2.1. CISM solves equations for ice flow, heat conduction, surface melting, and other processes such as basal sliding and iceberg calving. It can be used for ice-sheet-only simulations or as the ice sheet component of the Community Earth System Model. Model solutions have been verified for standard test problems. CISM can efficiently simulate the whole Greenland ice sheet, with results that are broadly consistent with observations.
Matthew J. Hoffman, Mauro Perego, Stephen F. Price, William H. Lipscomb, Tong Zhang, Douglas Jacobsen, Irina Tezaur, Andrew G. Salinger, Raymond Tuminaro, and Luca Bertagna
Geosci. Model Dev., 11, 3747–3780, https://doi.org/10.5194/gmd-11-3747-2018, https://doi.org/10.5194/gmd-11-3747-2018, 2018
Short summary
Short summary
MPAS-Albany Land Ice (MALI) is a new variable-resolution land ice model that uses unstructured grids on a plane or sphere. MALI is built for Earth system modeling on high-performance computing platforms using existing software libraries. MALI simulates the evolution of ice thickness, velocity, and temperature, and it includes schemes for simulating iceberg calving and the flow of water beneath ice sheets and its effect on ice sliding. The model is demonstrated for the Antarctic ice sheet.
Thomas M. Jordan, Christopher N. Williams, Dustin M. Schroeder, Yasmina M. Martos, Michael A. Cooper, Martin J. Siegert, John D. Paden, Philippe Huybrechts, and Jonathan L. Bamber
The Cryosphere, 12, 2831–2854, https://doi.org/10.5194/tc-12-2831-2018, https://doi.org/10.5194/tc-12-2831-2018, 2018
Short summary
Short summary
Here, via analysis of radio-echo sounding data, we place a new observational constraint upon the basal water distribution beneath the Greenland Ice Sheet. In addition to the outlet glaciers, we demonstrate widespread water storage in the northern and eastern ice-sheet interior, a notable feature being a "corridor" of basal water extending from NorthGRIP to Petermann Glacier. The basal water distribution and its relationship with basal temperature provides a new constraint for numerical models.
Thomas M. Jordan, Michael A. Cooper, Dustin M. Schroeder, Christopher N. Williams, John D. Paden, Martin J. Siegert, and Jonathan L. Bamber
The Cryosphere, 11, 1247–1264, https://doi.org/10.5194/tc-11-1247-2017, https://doi.org/10.5194/tc-11-1247-2017, 2017
Short summary
Short summary
Using radio-echo sounding data from northern Greenland, we demonstrate that subglacial roughness exhibits self-affine (fractal) scaling behaviour. This enables us to assess topographic control upon the bed-echo waveform, and explain the spatial distribution of the degree of scattering (specular and diffuse reflections). Via comparison with a prediction for the basal thermal state (thawed and frozen regions of the bed) we discuss the consequences of our study for basal water discrimination.
Tong Zhang, Stephen Price, Lili Ju, Wei Leng, Julien Brondex, Gaël Durand, and Olivier Gagliardini
The Cryosphere, 11, 179–190, https://doi.org/10.5194/tc-11-179-2017, https://doi.org/10.5194/tc-11-179-2017, 2017
Short summary
Short summary
Stokes-flow models are the highest-fidelity representation of the equations governing ice sheet flow and they are often treated as the standard against which other models are compared in model benchmark activities. We compare two different Stokes models applied to a canonical set of idealized marine ice sheet experiments and demonstrate that the solutions converge with increasing grid resolution. This provides confidence in the use of Stokes models for generating test case solution metrics.
Stephen F. Price, Matthew J. Hoffman, Jennifer A. Bonin, Ian M. Howat, Thomas Neumann, Jack Saba, Irina Tezaur, Jeffrey Guerber, Don P. Chambers, Katherine J. Evans, Joseph H. Kennedy, Jan Lenaerts, William H. Lipscomb, Mauro Perego, Andrew G. Salinger, Raymond S. Tuminaro, Michiel R. van den Broeke, and Sophie M. J. Nowicki
Geosci. Model Dev., 10, 255–270, https://doi.org/10.5194/gmd-10-255-2017, https://doi.org/10.5194/gmd-10-255-2017, 2017
Short summary
Short summary
We introduce the Cryospheric Model Comparison Tool (CmCt) and propose qualitative and quantitative metrics for evaluating ice sheet model simulations against observations. Greenland simulations using the Community Ice Sheet Model are compared to gravimetry and altimetry observations from 2003 to 2013. We show that the CmCt can be used to score simulations of increasing complexity relative to observations of dynamic change in Greenland over the past decade.
S. de la Peña, I. M. Howat, P. W. Nienow, M. R. van den Broeke, E. Mosley-Thompson, S. F. Price, D. Mair, B. Noël, and A. J. Sole
The Cryosphere, 9, 1203–1211, https://doi.org/10.5194/tc-9-1203-2015, https://doi.org/10.5194/tc-9-1203-2015, 2015
Short summary
Short summary
This paper presents an assessment of changes in the near-surface structure of the accumulation zone of the Greenland Ice Sheet caused by an increase of melt at higher elevations in the last decade, especially during the unusually warm years of 2010 and 2012. The increase in melt and firn densification complicate the interpretation of changes in the ice volume, and the observed increase in firn ice content may reduce the important meltwater buffering capacity of the Greenland Ice Sheet.
I. K. Tezaur, M. Perego, A. G. Salinger, R. S. Tuminaro, and S. F. Price
Geosci. Model Dev., 8, 1197–1220, https://doi.org/10.5194/gmd-8-1197-2015, https://doi.org/10.5194/gmd-8-1197-2015, 2015
Short summary
Short summary
In this manuscript, we discuss the development and validation of a new momentum balance solver for modeling the flow of glaciers and ice sheets based on the 1st-order Stokes equations. We demonstrate the numerical convergence of our solver (with respect to computational mesh spacing), its flexibility (with respect to both the choice of mesh and finite element type), and its computational performance (robustness and scalability when applied to both idealized and realistic ice sheet simulations).
M. P. Lüthi, C. Ryser, L. C. Andrews, G. A. Catania, M. Funk, R. L. Hawley, M. J. Hoffman, and T. A. Neumann
The Cryosphere, 9, 245–253, https://doi.org/10.5194/tc-9-245-2015, https://doi.org/10.5194/tc-9-245-2015, 2015
Short summary
Short summary
We analyze the thermal structure of the Greenland Ice Sheet with a heat flow model. New borehole measurements indicate that more heat is stored within the ice than would be expected from heat diffusion alone. We conclude that temperate paleo-firn and cyro-hydrologic warming are essential processes that explain the measurements.
T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz
The Cryosphere, 8, 181–194, https://doi.org/10.5194/tc-8-181-2014, https://doi.org/10.5194/tc-8-181-2014, 2014
T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz
The Cryosphere, 8, 195–208, https://doi.org/10.5194/tc-8-195-2014, https://doi.org/10.5194/tc-8-195-2014, 2014
B. F. Morriss, R. L. Hawley, J. W. Chipman, L. C. Andrews, G. A. Catania, M. J. Hoffman, M. P. Lüthi, and T. A. Neumann
The Cryosphere, 7, 1869–1877, https://doi.org/10.5194/tc-7-1869-2013, https://doi.org/10.5194/tc-7-1869-2013, 2013
W. Leng, L. Ju, M. Gunzburger, and S. Price
The Cryosphere, 7, 19–29, https://doi.org/10.5194/tc-7-19-2013, https://doi.org/10.5194/tc-7-19-2013, 2013
Related subject area
Discipline: Glaciers | Subject: Subglacial Processes
Multi-scale variations of subglacial hydro-mechanical conditions at Kongsvegen glacier, Svalbard
Geothermal heat source estimations through ice flow modelling at Mýrdalsjökull, Iceland
Impact of shallow sills on circulation regimes and submarine melting in glacial fjords
Differential impact of isolated topographic bumps on ice sheet flow and subglacial processes
Channelized, distributed, and disconnected: spatial structure and temporal evolution of the subglacial drainage under a valley glacier in the Yukon
Long-period variability in ice-dammed glacier outburst floods due to evolving catchment geometry
Seasonal evolution of basal environment conditions of Russell sector, West Greenland, inverted from satellite observation of surface flow
Brief communication: Heterogenous thinning and subglacial lake activity on Thwaites Glacier, West Antarctica
Subglacial permafrost dynamics and erosion inside subglacial channels driven by surface events in Svalbard
Quantification of seasonal and diurnal dynamics of subglacial channels using seismic observations on an Alpine glacier
Glaciohydraulic seismic tremors on an Alpine glacier
Airborne radionuclides and heavy metals in high Arctic terrestrial environment as the indicators of sources and transfers of contamination
Pervasive cold ice within a temperate glacier – implications for glacier thermal regimes, sediment transport and foreland geomorphology
Coline Bouchayer, Ugo Nanni, Pierre-Marie Lefeuvre, John Hult, Louise Steffensen Schmidt, Jack Kohler, François Renard, and Thomas V. Schuler
The Cryosphere, 18, 2939–2968, https://doi.org/10.5194/tc-18-2939-2024, https://doi.org/10.5194/tc-18-2939-2024, 2024
Short summary
Short summary
We explore the interplay between surface runoff and subglacial conditions. We focus on Kongsvegen glacier in Svalbard. We drilled 350 m down to the glacier base to measure water pressure, till strength, seismic noise, and glacier surface velocity. In the low-melt season, the drainage system adapted gradually, while the high-melt season led to a transient response, exceeding drainage capacity and enhancing sliding. Our findings contribute to discussions on subglacial hydro-mechanical processes.
Alexander H. Jarosch, Eyjólfur Magnússon, Krista Hannesdóttir, Joaquín M. C. Belart, and Finnur Pálsson
The Cryosphere, 18, 2443–2454, https://doi.org/10.5194/tc-18-2443-2024, https://doi.org/10.5194/tc-18-2443-2024, 2024
Short summary
Short summary
Geothermally active regions beneath glaciers not only influence local ice flow as well as the mass balance of glaciers but also control changes of subglacial water reservoirs and possible subsequent glacier lake outburst floods. In Iceland, such outburst floods impose danger to people and infrastructure and are therefore monitored. We present a novel computer-simulation-supported method to estimate the activity of such geothermal areas and to monitor its evolution.
Weiyang Bao and Carlos Moffat
The Cryosphere, 18, 187–203, https://doi.org/10.5194/tc-18-187-2024, https://doi.org/10.5194/tc-18-187-2024, 2024
Short summary
Short summary
A shallow sill can promote the downward transport of the upper-layer freshwater outflow in proglacial fjords. This sill-driven transport reduces fjord temperature and stratification. The sill depth, freshwater discharge, fjord temperature, and stratification are key parameters that modulate the heat supply towards glaciers. Additionally, the relative depth of the plume outflow, the fjord, and the sill can be used to characterize distinct circulation and heat transport regimes in glacial fjords.
Marion A. McKenzie, Lauren E. Miller, Jacob S. Slawson, Emma J. MacKie, and Shujie Wang
The Cryosphere, 17, 2477–2486, https://doi.org/10.5194/tc-17-2477-2023, https://doi.org/10.5194/tc-17-2477-2023, 2023
Short summary
Short summary
Topographic highs (“bumps”) across glaciated landscapes have the potential to affect glacial ice. Bumps in the deglaciated Puget Lowland are assessed for streamlined glacial features to provide insight on ice–bed interactions. We identify a general threshold in which bumps significantly disrupt ice flow and sedimentary processes in this location. However, not all bumps have the same degree of impact. The system assessed here has relevance to parts of the Greenland Ice Sheet and Thwaites Glacier.
Camilo Andrés Rada Giacaman and Christian Schoof
The Cryosphere, 17, 761–787, https://doi.org/10.5194/tc-17-761-2023, https://doi.org/10.5194/tc-17-761-2023, 2023
Short summary
Short summary
Water flowing at the base of glaciers plays a crucial role in controlling the speed at which glaciers move and how glaciers react to climate. The processes happening below the glaciers are extremely hard to observe and remain only partially understood. Here we provide novel insight into the subglacial environment based on an extensive dataset with over 300 boreholes on an alpine glacier in the Yukon Territory. We highlight the importance of hydraulically disconnected regions of the glacier bed.
Amy Jenson, Jason M. Amundson, Jonathan Kingslake, and Eran Hood
The Cryosphere, 16, 333–347, https://doi.org/10.5194/tc-16-333-2022, https://doi.org/10.5194/tc-16-333-2022, 2022
Short summary
Short summary
Outburst floods are sudden releases of water from glacial environments. As glaciers retreat, changes in glacier and basin geometry impact outburst flood characteristics. We combine a glacier flow model describing glacier retreat with an outburst flood model to explore how ice dam height, glacier length, and remnant ice in a basin influence outburst floods. We find storage capacity is the greatest indicator of flood magnitude, and the flood onset mechanism is a significant indicator of duration.
Anna Derkacheva, Fabien Gillet-Chaulet, Jeremie Mouginot, Eliot Jager, Nathan Maier, and Samuel Cook
The Cryosphere, 15, 5675–5704, https://doi.org/10.5194/tc-15-5675-2021, https://doi.org/10.5194/tc-15-5675-2021, 2021
Short summary
Short summary
Along the edges of the Greenland Ice Sheet surface melt lubricates the bed and causes large seasonal fluctuations in ice speeds during summer. Accurately understanding how these ice speed changes occur is difficult due to the inaccessibility of the glacier bed. We show that by using surface velocity maps with high temporal resolution and numerical modelling we can infer the basal conditions that control seasonal fluctuations in ice speed and gain insight into seasonal dynamics over large areas.
Andrew O. Hoffman, Knut Christianson, Daniel Shapero, Benjamin E. Smith, and Ian Joughin
The Cryosphere, 14, 4603–4609, https://doi.org/10.5194/tc-14-4603-2020, https://doi.org/10.5194/tc-14-4603-2020, 2020
Short summary
Short summary
The West Antarctic Ice Sheet has long been considered geometrically prone to collapse, and Thwaites Glacier, the largest glacier in the Amundsen Sea, is likely in the early stages of disintegration. Using observations of Thwaites Glacier velocity and elevation change, we show that the transport of ~2 km3 of water beneath Thwaites Glacier has only a small and transient effect on glacier speed relative to ongoing thinning driven by ocean melt.
Andreas Alexander, Jaroslav Obu, Thomas V. Schuler, Andreas Kääb, and Hanne H. Christiansen
The Cryosphere, 14, 4217–4231, https://doi.org/10.5194/tc-14-4217-2020, https://doi.org/10.5194/tc-14-4217-2020, 2020
Short summary
Short summary
In this study we present subglacial air, ice and sediment temperatures from within the basal drainage systems of two cold-based glaciers on Svalbard during late spring and the summer melt season. We put the data into the context of air temperature and rainfall at the glacier surface and show the importance of surface events on the subglacial thermal regime and erosion around basal drainage channels. Observed vertical erosion rates thereby reachup to 0.9 m d−1.
Ugo Nanni, Florent Gimbert, Christian Vincent, Dominik Gräff, Fabian Walter, Luc Piard, and Luc Moreau
The Cryosphere, 14, 1475–1496, https://doi.org/10.5194/tc-14-1475-2020, https://doi.org/10.5194/tc-14-1475-2020, 2020
Short summary
Short summary
Our study addresses key questions on the subglacial drainage system physics through a novel observational approach that overcomes traditional limitations. We conducted, over 2 years, measurements of the subglacial water-flow-induced seismic noise and of glacier basal sliding speeds. We then inverted for the subglacial channel's hydraulic pressure gradient and hydraulic radius and investigated the links between the equilibrium state of subglacial channels and glacier basal sliding.
Fabian Lindner, Fabian Walter, Gabi Laske, and Florent Gimbert
The Cryosphere, 14, 287–308, https://doi.org/10.5194/tc-14-287-2020, https://doi.org/10.5194/tc-14-287-2020, 2020
Edyta Łokas, Agata Zaborska, Ireneusz Sobota, Paweł Gaca, J. Andrew Milton, Paweł Kocurek, and Anna Cwanek
The Cryosphere, 13, 2075–2086, https://doi.org/10.5194/tc-13-2075-2019, https://doi.org/10.5194/tc-13-2075-2019, 2019
Short summary
Short summary
Cryoconite granules built of mineral particles, organic substances and living organisms significantly influence fluxes of energy and matter at glacier surfaces. They contribute to ice melting, give rise to an exceptional ecosystem, and effectively trap contaminants. This study evaluates contamination levels of radionuclides in cryoconite from Arctic glaciers and identifies sources of this contamination, proving that cryoconite is an excellent indicator of atmospheric contamination.
Benedict T. I. Reinardy, Adam D. Booth, Anna L. C. Hughes, Clare M. Boston, Henning Åkesson, Jostein Bakke, Atle Nesje, Rianne H. Giesen, and Danni M. Pearce
The Cryosphere, 13, 827–843, https://doi.org/10.5194/tc-13-827-2019, https://doi.org/10.5194/tc-13-827-2019, 2019
Short summary
Short summary
Cold-ice processes may be widespread within temperate glacier systems but the role of cold-ice processes in temperate glacier systems is relatively unknown. Climate forcing is the main control on glacier mass balance but potential for heterogeneous thermal conditions at temperate glaciers calls for improved model assessments of future evolution of thermal conditions and impacts on glacier dynamics and mass balance. Cold-ice processes need to be included in temperate glacier land system models.
Cited articles
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.:
Interannual variations in meltwater input to the Southern Ocean from
Antarctic ice shelves, Nat. Geosci., 13, 616–620,
https://doi.org/10.1038/s41561-020-0616-z, 2020. a, b, c
Alley, R.: Water-pressure coupling of sliding and bed deformation: I. Water
system, J. Glaciol., 35, 108–118,
https://doi.org/10.3189/002214389793701527, 1989. a
Alley, R. B.: Towards a hydrological model for computerized ice-sheet
simulations, Hydrol. Process., 10, 649–660,
https://doi.org/10.1002/(SICI)1099-1085(199604)10:4<649::AID-HYP397>3.0.CO;2-1, 1996. a
Alley, R. B., Lawson, D. E., Evenson, E. B., Strasser, J. C., and Larson,
G. J.: Glaciohydraulic supercooling: a freeze-on mechanism to create
stratified, debris-rich basal ice: II. Theory, J. Glaciol., 44,
563–569, https://doi.org/10.3189/S0022143000002070, 1998. a
Andresen, M. A.: Testing for similarity in area-based spatial patterns: A
nonparametric Monte Carlo approach, Appl. Geogr., 29, 333–345,
https://doi.org/10.1016/j.apgeog.2008.12.004, 2009. a
Andresen, M. A.: An area-based nonparametric spatial point pattern test: The
test, its applications, and the future, Methodological Innovations, 9,
2059799116630659, https://doi.org/10.1177/2059799116630659, 2016. a
Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi,
M. P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of
evolving subglacial drainage beneath the Greenland Ice Sheet, Nature, 514,
80–83, https://doi.org/10.1038/nature13796, 2014. a, b
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a, b
Asay-Davis, X. S., Jourdain, N. C., and Nakayama, Y.: Developments in
simulating and parameterizing interactions between the Southern Ocean and the
Antarctic ice sheet, Current Climate Change Reports, 3, 316–329,
https://doi.org/10.1007/s40641-017-0071-0, 2017. a
Bevan, S. L., Luckman, A. J., Benn, D. I., Adusumilli, S., and Crawford, A.: Brief communication: Thwaites Glacier cavity evolution, The Cryosphere, 15, 3317–3328, https://doi.org/10.5194/tc-15-3317-2021, 2021. a, b
Bjornsson, H.: Jokulhlaups in Iceland: prediction, characteristics and
simulation, Ann. Glaciol., 16, 95–106,
https://doi.org/10.3189/1992aog16-1-95-106, 1992. a, b
Brinkerhoff, D., Aschwanden, A., and Fahnestock, M.: Constraining subglacial
processes from surface velocity observations using surrogate-based Bayesian
inference, J. Glaciol., 67, 385–403, https://doi.org/10.1017/jog.2020.112,
2021. a
Brinkerhoff, D. J., Meyer, C. R., Bueler, E., Truffer, M., and Bartholomaus,
T. C.: Inversion of a glacier hydrology model, Ann. Glaciol., 57,
84–95, https://doi.org/10.1017/aog.2016.3, 2016. a
Bueler, E. and van Pelt, W.: Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model version 0.6, Geosci. Model Dev., 8, 1613–1635, https://doi.org/10.5194/gmd-8-1613-2015, 2015. a
Carroll, D., Sutherland, D. A., Shroyer, E. L., Nash, J. D., Catania, G. A.,
and Stearns, L. A.: Subglacial discharge-driven renewal of tidewater glacier
fjords, J. Geophys. Res.-Oceans, 122, 6611–6629,
https://doi.org/10.1002/2017JC012962, 2017. a
Carter, S. and Fricker, H.: The supply of subglacial meltwater to the grounding
line of the Siple Coast, West Antarctica, Ann. Glaciol., 53, 267–280,
https://doi.org/10.3189/2012AoG60A119, 2012. a
Carter, S. P., Fricker, H. A., and Siegfried, M. R.: Antarctic subglacial lakes drain through sediment-floored canals: theory and model testing on real and idealized domains, The Cryosphere, 11, 381–405, https://doi.org/10.5194/tc-11-381-2017, 2017. a, b
Chandler, D. M., Wadham, J. L., Lis, G. P., Cowton, T., Sole, A., Bartholomew,
I., Telling, J., Nienow, P., Bagshaw, E. B., Mair, D., Vinen, S., and
Hubbard, A.: Evolution of the subglacial drainage system beneath the
Greenland Ice Sheet revealed by tracers, Nat. Geosci., 6, 195–198,
https://doi.org/10.1038/ngeo1737, 2013. a
Chow, V. T.: Open-channel hydraulics, McGraw-Hill, New York, ISBN 9780070859067, 1959. a
Chu, W., Schroeder, D. M., Seroussi, H., Creyts, T. T., Palmer, S. J., and
Bell, R. E.: Extensive winter subglacial water storage beneath the Greenland
Ice Sheet, Geophys. Res. Lett., 43, 12–484,
https://doi.org/10.1002/2016GL071538, 2016. a
Clarke, G. K.: Glacier outburst floods from “Hazard Lake”, Yukon Territory,
and the problem of flood magnitude prediction, J. Glaciol., 28,
3–21, https://doi.org/10.3189/S0022143000011746, 1982. a, b
Clarke, G. K.: Subglacial till: a physical framework for its properties and
processes, J. Geophys. Res.-Sol. Ea., 92, 9023–9036,
https://doi.org/10.1029/JB092iB09p09023, 1987. a
Clarke, G. K.: Hydraulics of subglacial outburst floods: new insights from the
Spring–Hutter formulation, J. Glaciol., 49, 299–313,
https://doi.org/10.3189/172756503781830728, 2003. a, b
Cornford, S. L., Seroussi, H., Asay-Davis, X. S., Gudmundsson, G. H., Arthern, R., Borstad, C., Christmann, J., Dias dos Santos, T., Feldmann, J., Goldberg, D., Hoffman, M. J., Humbert, A., Kleiner, T., Leguy, G., Lipscomb, W. H., Merino, N., Durand, G., Morlighem, M., Pollard, D., Rückamp, M., Williams, C. R., and Yu, H.: Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+), The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020, 2020. a, b
de Fluerian, B., Werder, M. A., Beyer, S., Brinkerhoff, G. J., Delaney, I., Dow, C. F., Downs, J., Gagliardini, O., Hoffman, M., LeB Hooke, R., Seguinot, J., and Sommers, A. N.:
SHMIP The subglacial hydrology model intercomparison Project, J.
Glaciol., 64, 897–916, https://doi.org/10.1017/jog.2018.78, 2018. a, b, c, d
Dow, C. F., Kulessa, B., Rutt, I., Doyle, S., and Hubbard, A.: Upper bounds on
subglacial channel development for interior regions of the Greenland ice
sheet, J. Glaciol., 60, 1044–1052, https://doi.org/10.3189/2014JoG14J093,
2014. a
Downs, J. Z., Johnson, J. V., Harper, J. T., Meierbachtol, T., and Werder,
M. A.: Dynamic hydraulic conductivity reconciles mismatch between modeled and
observed winter subglacial water pressure, J. Geophys. Res.-Earth, 123, 818–836, https://doi.org/10.1002/2017JF004522, 2018. a, b, c, d
Drews, R., Pattyn, F., Hewitt, I. J., Ng, F. S. L., Berger, S., Matsuoka, K.,
Helm, V., Bergeot, N., Favier, L., and Neckel, N.: Actively evolving
subglacial conduits and eskers initiate ice shelf channels at an Antarctic
grounding line, Nat. Commun., 8, 15228, https://doi.org/10.1038/ncomms15228,
2017. a
Engelhardt, H. and Kamb, B.: Basal hydraulic system of a West Antarctic ice
stream: constraints from borehole observations, J. Glaciol., 43,
207–230, https://doi.org/10.3189/S0022143000003166, 1997. a, b
Flowers, G. E.: Modelling water flow under glaciers and ice sheets, P. Roy. Soc. A-Math. Phy., 471,
20140907, https://doi.org/10.1098/rspa.2014.0907, 2015. a, b
Flowers, G. E. and Clarke, G. K.: A multicomponent coupled model of glacier
hydrology 1. Theory and synthetic examples, J. Geophys. Res.-Sol. Ea., 107, 2287, https://doi.org/10.1029/2001JB001122, 2002. a
Fountain, A. G. and Walder, J. S.: Water flow through temperate glaciers,
Rev. Geophys., 36, 299–328, https://doi.org/10.1029/97RG03579, 1998. a
Fowler, A.: Sliding with cavity formation, J. Glaciol., 33, 255–267,
https://doi.org/10.3189/S0022143000008820, 1987. a
Fowler, A.: Breaking the seal at Grímsvötn, Iceland, J.
Glaciol., 45, 506–516, https://doi.org/10.3189/S0022143000001362, 1999. a
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018. a
Gillet-Chaulet, F., Durand, G., Gagliardini, O., Mosbeux, C., Mouginot, J.,
Rémy, F., and Ritz, C.: Assimilation of surface velocities acquired
between 1996 and 2010 to constrain the form of the basal friction law under
Pine Island Glacier, Geophys. Res. Lett., 43, 10–311,
https://doi.org/10.1002/2016GL069937, 2016. a, b, c, d, e
Gladish, C. V., Holland, D. M., Rosing-Asvid, A., Behrens, J. W., and Boje, J.:
Oceanic boundary conditions for Jakobshavn Glacier. Part I: Variability and
renewal of Ilulissat Icefjord waters, 2001–14, J. Phys.
Oceanogr., 45, 3–32, https://doi.org/10.1175/JPO-D-14-0044.1, 2015. a
Gordon, S., Sharp, M., Hubbard, B., Smart, C., Ketterling, B., and Willis, I.:
Seasonal reorganization of subglacial drainage inferred from measurements in
boreholes, Hydrol. Process., 12, 105–133,
https://doi.org/10.1002/(SICI)1099-1085(199801)12:1<105::AID-HYP566>3.3.CO;2-R, 1998. a, b
Gulley, J., Walthard, P., Martin, J., a.F. Banwell, Benn, D., and Catania, G.:
Conduit roughness and dye-trace breakthrough curves: why slow velocity and
high dispersivity may not reflect flow in distributed systems, J.
Glaciol., 58, 915–925, https://doi.org/10.3189/2012JoG11J115, 2012. a, b
Hager, A. O., Hoffman, M. J., Price, S. F., and Schroeder, D. M.: Persistent, Extensive Channelized Drainage Modeled Beneath Thwaites Glacier, West Antarctica, Zenodo [code and data set], https://doi.org/10.5281/zenodo.5593376, 2021. a
Haynes, M. S., Chapin, E., and Schroeder, D. M.: Geometric power fall-off in
radar sounding, IEEE T. Geosci. Remote, 56,
6571–6585, https://doi.org/10.1109/TGRS.2018.2840511, 2018. a
Helm, V., Humbert, A., and Miller, H.: Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2, The Cryosphere, 8, 1539–1559, https://doi.org/10.5194/tc-8-1539-2014, 2014. a
Hewitt, I.: Seasonal changes in ice sheet motion due to melt water lubrication,
Earth Planet. Sc. Lett., 371, 16–25,
https://doi.org/10.1016/j.epsl.2013.04.022, 2013. a, b
Hoffman, M. J. and Price, S.: Feedbacks between coupled subglacial hydrology
and glacier dynamics, J. Geophys. Res.-Earth, 119,
414–436, https://doi.org/10.1002/2013JF002943, 2014. a, b
Hoffman, M. J., Andrews, L. C., Price, S. F., Catania, G. A., Neumann, T. A.,
Lüthi, M. P., Gulley, J., Ryser, C., Hawley, R. L., and Morriss, B.:
Greenland subglacial drainage evolution regulated by weakly connected regions
of the bed, Nat. Commun., 7, 13903, https://doi.org/10.1038/ncomms13903, 2016. a, b, c, d, e
Hoffman, M. J., Perego, M., Price, S. F., Lipscomb, W. H., Zhang, T., Jacobsen, D., Tezaur, I., Salinger, A. G., Tuminaro, R., and Bertagna, L.: MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids, Geosci. Model Dev., 11, 3747–3780, https://doi.org/10.5194/gmd-11-3747-2018, 2018. a, b, c
Hoffman, M. J., Asay‐Davis, X., Price, S. F., Fyke, J., and Perego, M.:
Effect of Subshelf Melt Variability on Sea Level Rise Contribution From
Thwaites Glacier, Antarctica, J. Geophys. Res.-Earth, 124, 2798–2822, https://doi.org/10.1029/2019JF005155, 2019. a, b
Hogan, K. A., Larter, R. D., Graham, A. G. C., Arthern, R., Kirkham, J. D., Totten Minzoni, R., Jordan, T. A., Clark, R., Fitzgerald, V., Wåhlin, A. K., Anderson, J. B., Hillenbrand, C.-D., Nitsche, F. O., Simkins, L., Smith, J. A., Gohl, K., Arndt, J. E., Hong, J., and Wellner, J.: Revealing the former bed of Thwaites Glacier using sea-floor bathymetry: implications for warm-water routing and bed controls on ice flow and buttressing, The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, 2020. a, b
Holschuh, N., Christianson, K., Paden, J., Alley, R., and Anandakrishnan, S.:
Linking postglacial landscapes to glacier dynamics using swath radar at
Thwaites Glacier, Antarctica, Geology, 48, 268–272, https://doi.org/10.1130/G46772.1,
2020. a
Irarrazaval, I., Werder, M. A., Huss, M., Herman, F., and Mariethoz, G.:
Determining the evolution of an alpine glacier drainage system by solving
inverse problems, J. Glaciol., 67, 421–434,
https://doi.org/10.1017/jog.2020.116, 2021. a
Jenkins, A.: Convection-driven melting near the grounding lines of ice shelves
and tidewater glaciers, J. Phys. Oceanogr., 41, 2279–2294,
https://doi.org/10.1175/JPO-D-11-03.1, 2011. a
Joughin, I., Tulaczyk, S., Bamber, J. L., Blankenship, D., Holt, J. W.,
Scambos, T., and Vaughan, D. G.: Basal conditions for Pine Island and
Thwaites Glaciers, West Antarctica, determined using satellite and airborne
data, J. Glaciol., 55, 245–257, https://doi.org/10.3189/002214309788608705,
2009. a, b, c, d, e, f, g, h
Joughin, I., Smith, B. E., and Medley, B.: Marine ice sheet collapse
potentially underway for the Thwaites Glacier basin, West Antarctica,
Science, 344, 735–738, https://doi.org/10.1126/science.1249055, 2014. a, b
Joughin, I., Smith, B. E., and Schoof, C. G.: Regularized Coulomb Friction Laws
for Ice Sheet Sliding: Application to Pine Island Glacier, Antarctica,
Geophys. Res. Lett., 46, 4764–4771, https://doi.org/10.1029/2019GL082526,
2019. a, b, c, d
Kamb, B.: Glacier surge mechanism based on linked cavity configuration of the
basal water conduit system, J. Geophys. Res.-Sol. Ea., 92,
9083–9100, https://doi.org/10.1029/JB092iB09p09083, 1987. a, b, c
Koziol, C. P. and Arnold, N.: Incorporating modelled subglacial hydrology into inversions for basal drag, The Cryosphere, 11, 2783–2797, https://doi.org/10.5194/tc-11-2783-2017, 2017. a
Kyrke-Smith, T. and Fowler, A. C.: Subglacial swamps, P. Roy.
Soc. A-Math. Phy., 470, 20140340,
https://doi.org/10.1098/rspa.2014.0340, 2014. a
Kyrke-Smith, T., Katz, R., and Fowler, A.: Subglacial hydrology and the
formation of ice streams, P. Roy. Soc. A-Math.
Phy., 470, 20130494,
https://doi.org/10.1098/rspa.2013.0494, 2014. a
Le Brocq, A. M., Payne, A., Siegert, M., and Alley, R.: A subglacial water-flow
model for West Antarctica, J. Glaciol., 55, 879–888,
https://doi.org/10.3189/002214309790152564, 2009. a
Le Brocq, A. M., Ross, N., Griggs, J. A., Bingham, R. G., Corr, H. F.,
Ferraccioli, F., Jenkins, A., Jordan, T. A., Payne, A. J., Rippin, D. M.,
et al.: Evidence from ice shelves for channelized meltwater flow beneath the
Antarctic Ice Sheet, Nat. Geosci., 6, 945–948, https://doi.org/10.1038/ngeo1977,
2013. a, b, c
Leguy, G. R., Asay-Davis, X. S., and Lipscomb, W. H.: Parameterization of basal friction near grounding lines in a one-dimensional ice sheet model, The Cryosphere, 8, 1239–1259, https://doi.org/10.5194/tc-8-1239-2014, 2014. a, b
Livingstone, S. J., Clark, C. D., Woodward, J., and Kingslake, J.: Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets, The Cryosphere, 7, 1721–1740, https://doi.org/10.5194/tc-7-1721-2013, 2013. a
Magnusson, E., Rott, H., Bjornsson, H., and Palsson, F.: The impact of
jokulhlaups on basal sliding observed by SAR interferometry on Vatnajokull,
Iceland, J. Glaciol., 53, 232–240,
https://doi.org/10.3189/172756507782202810, 2007. a
Marsh, O. J., Fricker, H. A., Siegfried, M. R., Christianson, K., Nicholls,
K. W., Corr, H. F., and Catania, G.: High basal melting forming a channel at
the grounding line of Ross Ice Shelf, Antarctica, Geophys. Res.
Lett., 43, 250–255, https://doi.org/10.1002/2015GL066612, 2016. a, b
Martos, Y. M., Catalán, M., Jordan, T. A., Golynsky, A., Golynsky, D.,
Eagles, G., and Vaughan, D. G.: Heat Flux Distribution of Antarctica
Unveiled, Geophys. Res. Lett., 44, 11417–11426,
https://doi.org/10.1002/2017GL075609, 2017. a
Meierbachtol, T., Harper, J., and Humphrey, N.: Basal drainage system response
to increasing surface melt on the Greenland ice sheet, Science, 341,
777–779, https://doi.org/10.1126/science.1235905, 2013. a
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J., Bueso-Bello,
J., and Prats-Iraola, P.: Heterogeneous retreat and ice melt of Thwaites
Glacier, West Antarctica, Science Advances, 5, eaau3433,
https://doi.org/10.1126/sciadv.aau3433, 2019. a, b, c, d
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G.,
Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum,
J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert,
A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan, R.,
Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A.,
Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., den Broeke, M. R., Ommen,
T. D., van Wessem, M., and Young, D. A.: Deep glacial troughs and
stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet,
Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020. a
Mouginot, J., Rignot, E., and Scheuchl, B.: Sustained increase in ice discharge
from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013,
Geophys. Res. Lett., 41, 1576–1584, https://doi.org/10.1002/2013GL059069,
2014. a
Murray, T. and Clarke, G. K.: Black-box modeling of the subglacial water
system, J. Geophys. Res.-Sol. Ea., 100, 10231–10245,
https://doi.org/10.1029/95JB00671, 1995. a, b
Muto, A., Alley, R. B., Parizek, B. R., and Anandakrishnan, S.: Bed-type
variability and till (dis)continuity beneath Thwaites Glacier, West
Antarctica, Ann. Glaciol., 60, 82–90, https://doi.org/10.1017/aog.2019.32,
2019a. a, b, c
Muto, A., Anandakrishnan, S., Alley, R. B., Horgan, H. J., Parizek, B. R.,
Koellner, S., Christianson, K., and Holschuh, N.: Relating bed character and
subglacial morphology using seismic data from Thwaites Glacier, West
Antarctica, Earth Planet. Sc. Lett., 507, 199–206,
https://doi.org/10.1016/j.epsl.2018.12.008, 2019b. a, b, c
Nakayama, Y., Manucharyan, G., Zhang, H., Dutrieux, P., Torres, H. S., Klein,
P., Seroussi, H., Schodlok, M., Rignot, E., and Menemenlis, D.: Pathways of
ocean heat towards Pine Island and Thwaites grounding lines, Scientific
Reports, 9, 16649, https://doi.org/10.1038/s41598-019-53190-6, 2019. a, b
Nakayama, Y., Cai, C., and Seroussi, H.: Impact of subglacial freshwater
discharge on Pine Island Ice Shelf, Geophys. Res. Lett., 48, e2021GL093923,
https://doi.org/10.1029/2021GL093923, 2021. a, b
Nias, I., Cornford, S., and Payne, A.: New mass-conserving bedrock topography
for Pine Island Glacier impacts simulated decadal rates of mass loss,
Geophys. Res. Lett., 45, 3173–3181, https://doi.org/10.1002/2017GL076493,
2018. a, b, c, d
Nye, J. F.: Water Flow in Glaciers: Jökulhlaups, Tunnels and Veins, J.
Glaciol., 17, 181–207, https://doi.org/10.3189/S002214300001354X, 1976. a, b
Perego, M., Price, S., and Stadler, G.: Optimal initial conditions for
coupling ice sheet models to Earth system models, J. Geophys.
Res.-Earth, 119, 1894–1917, https://doi.org/10.1002/2014JF003181, 2014. a
Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.: Extensive
dynamic thinning on the margins of the Greenland and Antarctic ice sheets,
Nature, 461, 971–975, https://doi.org/10.1038/nature08471, 2009. a
Rada, C. and Schoof, C.: Channelized, distributed, and disconnected: subglacial drainage under a valley glacier in the Yukon, The Cryosphere, 12, 2609–2636, https://doi.org/10.5194/tc-12-2609-2018, 2018. a, b, c, d
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and
Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res.
Lett., 41, 3502–3509, https://doi.org/10.1002/2014GL060140, 2014. a, b, c
Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M. J.,
and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103,
https://doi.org/10.1073/pnas.1812883116, 2019. a
Röthlisberger, H.: Water pressure in intra-and subglacial channels, J. Glaciol., 11, 177–203, https://doi.org/10.3189/S0022143000022188, 1972. a, b
Schoof, C.: The effect of cavitation on glacier sliding, P.
Roy. Soc. A-Math. Phy., 461,
609–627, https://doi.org/10.1098/rspa.2004.1350, 2005. a
Schoof, C.: Ice-sheet acceleration driven by melt supply variability, Nature,
468, 803–806, https://doi.org/10.1038/nature09618, 2010. a, b, c, d
Schoof, C., Hewitt, I. J., and Werder, M. A.: Flotation and free surface flow
in a model for subglacial drainage. Part 1. Distributed drainage, J.
Fluid Mech., 702, 126–156, https://doi.org/10.1017/jfm.2012.165, 2012. a, b
Schroeder, D. M., Blankenship, D. D., Raney, R. K., and Grima, C.: Estimating
subglacial water geometry using radar bed echo specularity: application to
Thwaites Glacier, West Antarctica, IEEE Geosci. Remote S., 12, 443–447, https://doi.org/10.1109/LGRS.2014.2337878, 2015. a, b, c
Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M., Rignot,
E., and Khazendar, A.: Continued retreat of Thwaites Glacier, West
Antarctica, controlled by bed topography and ocean circulation, Geophys.
Res. Lett., 44, 6191–6199, https://doi.org/10.1002/2017GL072910, 2017. a, b
Slater, D., Nienow, P., Cowton, T., Goldberg, D., and Sole, A.: Effect of
near-terminus subglacial hydrology on tidewater glacier submarine melt rates,
Geophys. Res. Lett., 42, 2861–2868, https://doi.org/10.1002/2014GL062494,
2015.
a, b
Stearns, L. A., Smith, B. E., and Hamilton, G. S.: Increased flow speed on a
large East Antarctic outlet glacier caused by subglacial floods, Nat.
Geosci., 1, 827–831, https://doi.org/10.1038/ngeo356, 2008. a
Walder, J. S.: Hydraulics of subglacial cavities, J. Glaciol., 32,
439–445, https://doi.org/10.3189/S0022143000012156, 1986. a, b
Walder, J. S. and Fowler, A.: Channelized subglacial drainage over a deformable
bed, J. Glaciol., 40, 3–15, https://doi.org/10.3189/S0022143000003750, 1994. a, b
Weertman, J.: General theory of water flow at the base of a glacier or ice
sheet, Rev. Geophys., 10, 287–333, https://doi.org/10.1029/RG010i001p00287,
1972. a, b
Wei, W., Blankenship, D. D., Greenbaum, J. S., Gourmelen, N., Dow, C. F., Richter, T. G., Greene, C. A., Young, D. A., Lee, S., Kim, T.-W., Lee, W. S., and Assmann, K. M.: Getz Ice Shelf melt enhanced by freshwater discharge from beneath the West Antarctic Ice Sheet, The Cryosphere, 14, 1399–1408, https://doi.org/10.5194/tc-14-1399-2020, 2020. a, b, c, d
Werder, M. A.: The hydrology of subglacial overdeepenings: A new supercooling
threshold formula, Geophys. Res. Lett., 43, 2045–2052,
https://doi.org/10.1002/2015GL067542, 2016. a
Werder, M. A. and Funk, M.: Dye tracing a jokulhlaup: II. Testing a jokulhlaup
model against flow speeds inferred from measurements, J. Glaciol., 55,
899–908, https://doi.org/10.3189/002214309790152375, 2009. a
Young, D., Schroeder, D., Blankenship, D., Kempf, S. D., and Quartini, E.: The
distribution of basal water between Antarctic subglacial lakes from radar
sounding, Philos. T. R. Soc. A, 374, 20140297, https://doi.org/10.1098/rsta.2014.0297, 2016. a, b
Young, D. A., Roberts, J. L., Ritz, C., Frezzotti, M., Quartini, E., Cavitte, M. G. P., Tozer, C. R., Steinhage, D., Urbini, S., Corr, H. F. J., van Ommen, T., and Blankenship, D. D.: High-resolution boundary conditions of an old ice target near Dome C, Antarctica, The Cryosphere, 11, 1897–1911, https://doi.org/10.5194/tc-11-1897-2017, 2017. a
Zhao, K. X., Stewart, A. L., and McWilliams, J. C.: Geometric Constraints on
Glacial Fjord–Shelf Exchange, J. Phys. Oceanogr. 51,
1223–1246, 2021. a
Short summary
The presence of water beneath glaciers is a control on glacier speed and ocean-caused melting, yet it has been unclear whether sizable volumes of water can exist beneath Antarctic glaciers or how this water may flow along the glacier bed. We use computer simulations, supported by observations, to show that enough water exists at the base of Thwaites Glacier, Antarctica, to form "rivers" beneath the glacier. These rivers likely moderate glacier speed and may influence its rate of retreat.
The presence of water beneath glaciers is a control on glacier speed and ocean-caused melting,...