Articles | Volume 16, issue 7
https://doi.org/10.5194/tc-16-2837-2022
https://doi.org/10.5194/tc-16-2837-2022
Research article
 | 
19 Jul 2022
Research article |  | 19 Jul 2022

Contrasted geomorphological and limnological properties of thermokarst lakes formed in buried glacier ice and ice-wedge polygon terrain

Stéphanie Coulombe, Daniel Fortier, Frédéric Bouchard, Michel Paquette, Simon Charbonneau, Denis Lacelle, Isabelle Laurion, and Reinhard Pienitz

Related authors

Temporal patterns of greenhouse gas emissions from two small thermokarst lakes in Nunavik, Canada
Amélie Pouliot, Isabelle Laurion, Antoine Thiboult, and Daniel F. Nadeau
EGUsphere, https://doi.org/10.5194/egusphere-2025-1497,https://doi.org/10.5194/egusphere-2025-1497, 2025
Short summary
Preservation and degradation of ancient organic matter in mid-Miocene Antarctic permafrost
Marjolaine Verret, Sebastian Naeher, Denis Lacelle, Catherine Ginnane, Warren Dickinson, Kevin Norton, Jocelyn Turnbull, and Richard Levy
EGUsphere, https://doi.org/10.5194/egusphere-2025-786,https://doi.org/10.5194/egusphere-2025-786, 2025
Short summary
The cryostratigraphy of thermo-erosion gullies in the Canadian High Arctic demonstrates the resilience of permafrost
Samuel Gagnon, Daniel Fortier, Étienne Godin, and Audrey Veillette
The Cryosphere, 18, 4743–4763, https://doi.org/10.5194/tc-18-4743-2024,https://doi.org/10.5194/tc-18-4743-2024, 2024
Short summary
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024,https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Pairing remote sensing and clustering in landscape hydrology for large-scale change identification: an application to the subarctic watershed of the George River (Nunavik, Canada)
Eliot Sicaud, Daniel Fortier, Jean-Pierre Dedieu, and Jan Franssen
Hydrol. Earth Syst. Sci., 28, 65–86, https://doi.org/10.5194/hess-28-65-2024,https://doi.org/10.5194/hess-28-65-2024, 2024
Short summary

Cited articles

Allard, M.: Geomorphological changes and permafrost dynamics: key factors in changing arctic ecosystems. An example from Bylot Island, Nunavut, Canada, 205–212, 1996. 
Allard, M., Sarrazin, D., and L'Herault, E.: Borehole and near-surface ground temperatures in northeastern Canada, Nordicana D8, https://doi.org/10.5885/45291SL-34F28A9491014AFD, 2020. 
Astakhov, V. I. and Isayeva, L. L.: The `Ice Hill': An example of `retarded deglaciation' in siberia, Quaternary Sci. Rev., 7, 29–40, https://doi.org/10.1016/0277-3791(88)90091-1, 1988. 
Baddeley, A., Turner, R., and Rubak, E.: Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests, 2019. 
Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate: LAKE METHANE EMISSIONS, Global Biogeochem. Cy., 18, 4, https://doi.org/10.1029/2004GB002238, 2004. 
Download
Short summary
Buried glacier ice is widespread in Arctic regions that were once covered by glaciers and ice sheets. In this study, we investigated the influence of buried glacier ice on the formation of Arctic tundra lakes on Bylot Island, Nunavut. Our results suggest that initiation of deeper lakes was triggered by the melting of buried glacier ice. Given future climate projections, the melting of glacier ice permafrost could create new aquatic ecosystems and strongly modify existing ones.
Share